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Abstract

This paper examines two-sided matching with budget con-
straints where one side (a firm or hospital) can make mone-
tary transfers (offer wages) to the other (a worker or doctor).
In a standard model, while multiple doctors can be matched
to a single hospital, a hospital has a maximum quota; thus,
the number of doctors assigned to a hospital cannot exceed a
certain limit. In our model, in contrast, a hospital has a fixed
budget; that is, the total amount of wages allocated by each
hospital to doctors is constrained. With budget constraints,
stable matchings may fail to exist and checking for the exis-
tence is hard. To deal with the nonexistence, we extend the
“matching with contracts” model of Hatfield and Milgrom
so that it deals with approximately stable matchings where
each of the hospitals’ utilities after deviation can increase by
a factor up to a certain amount. We then propose two novel
mechanisms that efficiently return a stable matching that ex-
actly satisfies the budget constraints. Specifically, by sacrific-
ing strategy-proofness, our first mechanism achieves the best
possible bound. We also explore a special case on which a
simple mechanism is strategy-proof for doctors, while main-
taining the best possible bound of the general case.

Introduction

This paper studies a two-sided, one-to-many matching
model when there are budget constraints on one side (a firm
or hospital), that is, the total amount of wages that it can pay
to the other side (a worker or doctor) is limited. The the-
ory of two-sided matching has been extensively developed,
as illustrated by the comprehensive surveys of Roth and So-
tomayor (1990) or Manlove (2013). Rather than fixed bud-
gets, maximum quotas limiting the total number of doctors
that each hospital can hire are typically used.

Some real-world examples are subject to matching with
such budget constraints: a college can offer stipends to re-
cruit better students when the budget for admission is lim-
ited; a firm can offer wages to workers under the condition
that employment costs depend on earnings in the previous
accounting period; a public hospital can offer salaries to doc-
tors when the total amount relies on funds from the govern-
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ment; and so on. To establish our model and concepts, we
use doctor-hospital matching as a running example.

To date, most papers on matching with monetary transfers
assume that budgets are unrestricted, e.g., Kelso and Craw-
ford (1982). When they are restricted, stable matchings may
fail to exist (Mongell and Roth 1986; Abizada 2016). There
are several other possibilities to circumvent the nonexistence
problem. Abizada (2016) modifies the notion of stability in a
different way and proposes a variant of the Deferred Accep-
tance (DA) mechanism that produces a pairwise, instead of
coalitional, stable matching and is strategy-proof for doc-
tors. Dean, Goemans, and Immorlica (2006) assume that
hospitals’ priorities are lexicographic to ensure the existence
of a stable matching. We instead allow each hospital to have
an additive utility, but the existence is not guaranteed yet.
Kawase and Iwasaki (2017) focus on near-feasible match-
ings that exceed each budget of the hospitals by a certain
amount. Their mechanisms find a “nearby” instance with a
stable matching for each instance of a matching problem.

This paper focuses on approximately stable matchings
where the participants are willing to change the assign-
ments only for a multiplicative improvement of a certain
amount (Arkin et al. 2009). This idea can be interpreted
as one in which a hospital in a blocking pair changes his
match as soon as his utility after the change increases by
any (arbitrarily small) amount. Arkin et al. (2009) examine
a stable roommate problem, which is a non-bipartite one-to-
one matching problem, while we examine a bipartite one-
to-many matching problem. It is reasonable for a hospital
to change his assignment only in favor of a significant im-
provement (the grass may be greener on the other side, but
it takes effort to cross the fence).

Furthermore, it must be emphasized that these stud-
ies, except the works of Abizada (2016) and Kawase and
Iwasaki (2017), discuss no strategic issue, that is, misreport-
ing a doctor’s preference may be profitable. The literature
on matching has found strategy-proofness for doctors, i.e.,
no doctor has an incentive to misreport her preference, to be
a key property in a wide variety of settings (Abdulkadiroğlu
and Sönmez 2003).

The contribution of this paper is twofold: First, we mod-
ify the generalized DA algorithm and devise a new property,
which we call α-approximation, on the matching with con-
tract framework (Hatfield and Milgrom 2005). This is be-
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Table 1: Summary of the Results: UB and LB stand for up-
per and lower bounds, respectively. Let s be the maximum
fraction of a wage to budget among the given contracts and
|D| be the number of doctors.

(a) Non-Strategy-Proof Mechanisms: Thm. 2 holds if s > 1/2.

Hosp. Utils. Approximation Ratio

Additive UB: 1
1−s (Alg. 2 and Thm. 4)

(incl. Proportional) LB: 1
1−s (Thm. 2)

Proportional
UB: 1.62 (Alg. 4 and Thm. 7)
LB: 1.62 (Thm. 6)

(b) Strategy-Proof Mechanisms.

Hosp. Utils. Approximation Ratio

Additive UB: � 1+ln(|D|−1)
1−s � (Alg. 3 and Thm. 5)

(incl. Proportional) LB: open

Proportional
UB: 1

1−s (Alg. 5 and Thm. 8)
LB: open

cause the existing class of mechanisms and properties are
not sufficient to characterize a choice function that produces
such an approximately stable matching. Second, we propose
two novel mechanisms that efficiently return a stable match-
ing that exactly satisfies the budget constraints. Specifically,
by sacrificing strategy-proofness, the best possible bound is
achieved. We further examine a special case in which each
hospital has a utility that is proportional to the size of each
contract. We establish two mechanisms that achieve better
approximation ratios and, Notably, by sacrificing strategy-
proofness, the ratio is bounded by a constant. Table 1 sum-
marizes the results on approximation ratios.

Let us finally note that there is a certain amount of re-
cent studies on two-sided matchings in the AI commu-
nity, although this literature has been established mainly in
the field across algorithms and economics. Drummond and
Boutilier (2013; 2014) examine preference elicitation pro-
cedures for two-sided matching. In the context of mecha-
nism design, Hosseini, Larson, and Cohen (2015) consider a
mechanism for a situation where agents’ preferences dynam-
ically change. Kurata et al. (2017) deal with strategy-proof
mechanisms for affirmative action in school choice pro-
grams (diversity constraints), while Goto et al. (2016) han-
dle regional constraints, e.g., regional minimum/maximum
quotas are imposed on hospitals in urban areas so that more
doctors are allocated to rural areas.

Model

This section describes a model for two-sided matchings with
budget constraints. A market is a tuple (D,H,X,�D, u, s)
where each component is defined as follows: There is a finite
set of doctors D = {d1, . . . , dn} and a finite set of hospitals
H = {h1, . . . , hm}. Let X denote a finite set of contracts
where each contract x ∈ X is associated with a doctor xD ∈
D and a hospital xH ∈ H . Let s : X → R+ be the size
function, where R+ is the set of nonnegative real numbers. A
contract x means that hospital xH offers s(x) fraction of its

budget as a wage to doctor xD. For any subset of contracts
X ′ ⊆ X , let X ′

d denote {x ∈ X ′ : xD = d} and X ′
h

denote {x ∈ X ′ : xH = h}. For notational simplicity, let
s(X ′) =

∑
x∈X′ s(x) for X ′ ⊆ X .

Let �D= (�d)d∈D denote the doctors’ preference profile
where �d is the strict relation of d ∈ D over Xd ∪ {∅}; that
is, x �d x′ means that d strictly prefers x to x′. ∅ indicates
a null contract. Let u : X → R+ be the utility function. We
assume that the utility of each hospital is additive; that is, for
any two sets of contracts X ′, X ′′ ⊆ Xh, hospital h prefers
X ′ to X ′′ if and only if

∑
x∈X′ u(x) >

∑
x∈X′′ u(x) holds.

In what follows, we denote
∑

x∈X′
h
u(x) by u(X ′

h) for sim-
plicity.

We call a subset of contracts X ′ ⊆ X a matching if
|X ′

d| ≤ 1 for all d ∈ D and s(X ′
h) ≤ 1 for all h ∈ H .

Given a matching X ′, another matching X ′′ ⊆ Xh for a
hospital h is an α-blocking coalition if

1. x �xD
x′ for any x ∈ X ′′ \X ′ and x′ ∈ X ′

xD
, and

2. u(X ′′) > α · u(X ′
h).

We then obtain a stability concept.
Definition 1 (α-stability (Arkin et al. 2009)). We say a
matching X ′ is α-stable if there exists no α-blocking coali-
tion.

As we can see, 1-stability is equivalent to the standard sta-
bility concept. Intuitively, the hospitals are willing to change
the assignments only for a multiplicative improvement of α.
This idea regards the value of α as a switching cost for the
hospitals. Note that we can also define the second condi-
tion in an additive manner, i.e., u(X ′′) > u(X ′

h) + α. How-
ever, since this does not satisfy scale invariance, the value
of α is not well bounded. In fact, when a market has no α-
stable matching in the additive sense, a market with the hos-
pitals’ utilities that are multiplied by 100 has no 100α-stable
matching.

A mechanism is a function that takes a profile of doc-
tors’ preferences as input and returns a matching X ′. We
say a mechanism is α-stable if it always produces an α-
stable matching for certain α. We also say a mechanism is
strategy-proof for doctors if no doctor ever has any incen-
tive to misreport her preference, regardless of what the other
doctors report.

To design and analyze a mechanism, we modify the
matching with contract framework (Hatfield and Milgrom
2005) for our approximate stability concept. It uses choice
functions ChD : 2X → 2X and ChH : 2X → 2X . For each
doctor d, its choice Chd(X

′
d) is {x} such that x is the most

preferred contract within X ′
d. We assume Chd(X

′
d) = ∅ if

∅ �d x for all x ∈ X ′
d. Then, the choice function of all

doctors ChD(X ′) is given as
⋃

d∈D Chd(X
′
d).

Similarly, the choice of all hospitals ChH(X ′) is⋃
h∈H Chh(X

′
h), where Chh(X

′
h) is a subset of X ′

h. There
are alternative ways to define the choice function of each
hospital Chh. As we discuss later, the mechanisms consid-
ered in this paper can be expressed by the generalized DA
with different formulations of ChH .

In particular, we construct it from a class of sequential
choice functions that receives a sequence of contracts.
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Definition 2. Let Xh = {x1, . . . , xn} and Sn be the sym-
metric group of degree n. A sequential choice function on
Xh is a function Chh over a sequence of distinct contracts
in Xh such that

Chh(xσ(1), . . . , xσ(k)) ⊆ {xσ(1), . . . , xσ(k)} (1)

for all σ ∈ Sn and 0 ≤ k ≤ n,

and

{xσ(1), . . . , xσ(k)} \ Chh(xσ(1), . . . , xσ(k))
⊆ {xσ(1), . . . , xσ(k+1)} \ Chh(xσ(1), . . . , xσ(k+1))

(2)

for all σ ∈ Sn and 0 ≤ k < n.

Here (1) signifies that the choice must be taken from avail-
able contracts and (2) signifies that, if a contract x is rejected
at some point, then it is also rejected ever after.

This framework characterizes a class of mechanisms
called the generalized DA mechanism. If a mechanism—
specifically, the choice function of every hospital—satisfies
three properties, substitutability, irrelevance of rejected con-
tracts, and law of aggregate demand, then it always finds a
“stable” allocation and is strategy-proof for doctors (Hat-
field and Milgrom 2005). This result is preserved because
a sequential choice function can induce a (standard) choice
function if it is order-invariant.

Definition 3 (Order-invariance). A sequential choice func-
tion Chh on Xh = {x1, . . . , xn} is order-invariant if

Chh(xσ(1), . . . , xσ(k)) = Chh(xτ(1), . . . , xτ(k))

holds for any σ, τ ∈ Sn and 0 ≤ k ≤ n such that
{xσ(1), . . . , xσ(k)} = {xτ(1), . . . , xτ(k)}.

Thus, if a sequential choice function is order-invariant,
the induced choice function satisfies substitutability. The in-
duced choice function satisfies law of aggregate demand if
it further satisfies size-monotonicity.1

Definition 4 (Size-monotonicity). A sequential choice func-
tion Chh on Xh = {x1, . . . , xn} is size-monotone if

|Chh(xσ(1), . . . , xσ(i))| ≤ |Chh(xσ(1), . . . , xσ(j))|
holds for any σ ∈ Sn and 0 ≤ i ≤ j ≤ n.

Here, strategy-proofness is still characterized by order-
invariance and size-monotonicity because hospital choice
does not affect doctor preferences. However, even if a se-
quential choice function for each hospital is order-invariant,
the mechanism employed with the function does not always
find a stable matching because such a matching may not ex-
ist in the presence of budget constraints.

Finally, for Lemma 2, let us briefly explain a matroid,
which is a set system (X,F) with the following proper-
ties: (i) ∅ ∈ F ; (ii) F ⊆ G ∈ F implies F ∈ F ; and (iii)
F,G ∈ F , |F | < |G| implies the existence of x ∈ G \ F
such that F ∪{x} ∈ F . Notice that a subset F of X is called
an independent set if F belongs to F .

1If a choice function satisfies substitutability and law of aggre-
gate demand simultaneously, it also satisfies irrelevance of rejected
contracts (Aizerman and Malishevski 1981).

Negative Results
The nonexistence of stable matchings raises the issue of the
complexity of deciding the existence of a (1-)stable match-
ing. McDermid and Manlove (2010) considered a special
case of our model and proved NP-hardness. Hamada et
al. (2017) examined a similar model to ours and proved that
the existence problem is ΣP

2 -complete. With approximately
stable matchings in Definition 1, we provide the following
hardness result.
Theorem 1. For any constant α > 1, distinguishing
whether a given market has a 1-stable matching or has no
α-stable matching is NP-complete.

We prove the NP-completeness by reducing from the sub-
set sum problem (Garey and Johnson 1979), though details
are omitted due to space limitations.

Furthermore, to obtain an approximately stable matching,
the amount of approximation does not fall 1

1−s , where s in-
dicates the largest wage size among the given contracts, i.e.,
s = maxx∈X s(x).
Theorem 2. For any positive reals 1/2 < s < 1 and ε,
there exists a market such that s(x) ≤ s for all x and no(

1
1−s − ε

)
-stable matching exists.

We provide the instance below to prove this theorem due
to the space limitation (Please see the full version for addi-
tional details).

Proof. Let δ be a sufficiently small positive real and α =
1/(1 − s). Let n = �1/δ3, m = �1/s�, and l = �(1 −
s)/δ+ 1.

Consider a market with n+ 1 doctors and n− l + 1 hos-
pitals: D = {d∗, d1, . . . , dn} and H = {h∗, hl+1, . . . , hn}.
The set of contracts X is given as

{x∗, x1, . . . , xn} ∪
{
yi,j :

i = 1, . . . , n,
j = max{i, l + 1}, . . . , n

}
,

where
x∗
D = d∗, x∗

H = h∗, u(x) = s, s(x) = s,
xi
D = di, xi

H = h∗, u(xi) = i · δ3, s(xi) = δ (i = 1, . . . , n), and

yi,jD = di, y
i,j
H = hj , u(y

i,j) = α−i, s(yi,j) = s (i=1,...,n,
j=max{i,l+1},...,n).

The doctors’ preferences are given as follows:
�d0 : x∗,

�di : xi �di y
i,l+1 �di · · · �di y

i,n (i = 1, . . . , l), and

�di : yi,i �di x
i �di y

i,i+1 �di · · · �di y
i,n (i = l + 1, . . . , n).

Then, we claim that there exists no (α− ε)-stable matching
in the market instance.

Note that we have no non-trivial lower bound of the ap-
proximation ratio when s ≤ 1/2.

Framework for Approximate Stability
This section introduces a new property, which we call α-
approximation, and modifies the matching with contract
framework (Hatfield and Milgrom 2005). Let A(Xh) be the
set of sequences of distinct contracts in Xh. A sequential
choice function Chh is called α-approximate if Chh always
chooses a feasible subset of given contracts with utility at
least 1/α times the optimal one.
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Definition 5 (α-approximation). Given α ≥ 1, for a hos-
pital h ∈ H , a sequential choice function Chh on Xh is
α-approximate if s(Chh(x)) ≤ 1 and

α · u(Chh(x)) ≥ max

⎧⎨
⎩u(X̃) :

s(X̃) ≤ 1,

|X̃d| ≤ 1 (∀d ∈ D),

X̃ ⊆ {x1, . . . , xk}

⎫⎬
⎭ (3)

holds for any x = (x1, . . . , xk) ∈ A(Xh) such that
|Chh(x)d| ≤ 1 (∀d ∈ D).

We note that a sequential choice function can be viewed as
an online algorithm for a removable knapsack problem and
an α-competitive online algorithm (Komm 2016) implies an
α-approximate sequential choice function.

Let us next introduce a modified version of the gen-
eralized DA mechanism, which is formally given as Al-
gorithm 1. This mechanism uses choice functions for the
doctors (Chd)d∈D and sequential choice functions for the
hospitals (Chh)h∈H . Initially, each doctor is set to be un-
matched. Then, an unmatched doctor d proposes to her most
preferred contract x that has not been rejected and the pro-
posed hospital xH chooses a set of contracts ChxH

(axH ),
where axH is the sequence of proposed contracts for hos-
pital xH . The proposal procedure continues as long as an
unmatched doctor has a non-rejected acceptable contract.

Algorithm 1: Generalized DA
input: X, (Chd)d∈D, (Chh)h∈H output: matching

1 X ′ ← ∅, R ← ∅, I ← D;
2 ah ← () for all h ∈ H;
3 while I �= ∅ do
4 pick d ∈ I arbitrarily;
5 let {x} = Chd(Xd \Rd);
6 append x to the end of axH ;
7 X ′ ← ChxH

(axH ) ∪⋃h∈H\{xH} X
′
h;

8 R ← R ∪ {x};
9 I ← {d ∈ D : X ′

d = ∅ and Chd(Xd \Rd) �= ∅};
10 return X ′;

We next prove that α-approximate choice functions lead
to approximately stable matchings. Note that although the
output of the generalized DA depends on which doctor is
selected in line 4, Theorem 3 holds regardless of the output
of the mechanism.

Theorem 3. If the sequential choice function Chh is α-
approximate for every hospital h ∈ H , then the generalized
DA produces an α-stable matching X ′ ⊆ X .

Proof. Let ah = (xh
1 , . . . , x

h
ih
) for each h ∈ H . Note that

X ′ is a matching and X ′
h = Chh(a

h) = Chh(x
h
1 , . . . , x

h
n)

by the definition of the algorithm.
We prove that X ′ is α-stable by contradiction. Suppose

that X ′′ ⊆ Xh is an α-blocking coalition for X ′. Then,
X ′′ ⊆ {xh

1 , . . . , x
h
ih
} since x �xD

x′ holds for any x ∈

X ′′ \X ′ and x′ ∈ X ′
xD

. Thus, we have

u(X ′′) > α · u(X ′
h) = α · u(Chh(ah))

≥ max

⎧⎨
⎩u(X̃) :

s(X̃) ≤ 1,

|X̃d| ≤ 1 (∀d ∈ D),

X̃ ⊆ {xh
1 , . . . , x

h
ih
}

⎫⎬
⎭ ≥ u(X ′′),

which is a contradiction. Here, the first inequality holds
since X ′′ is an α-blocking coalition and the second inequal-
ity holds since Chh is α-approximate and |Chh(ah)d| ≤
1 (∀d ∈ D).

It must be emphasized that this framework can be ap-
plied to other types of constraints, e.g., matroid intersec-
tion constraints. The typical example is diversity constraints
in school choice programs where a school is required to
balance the composition of students, typically in terms
of socioeconomic status (Kurata et al. 2017). The frame-
work also works even when each hospital has a submod-
ular utility. Designing such mechanisms is our immedi-
ate future work and it will be achieved with online algo-
rithms for the corresponding problems (Ashwinkumar 2011;
Han et al. 2014; Chakrabarti and Kale 2015; Buchbinder,
Feldman, and Schwartz 2015; Han et al. 2017; Chan et al.
2017).

Approximately Stable Mechanisms

In matching with constraints (Kamada and Kojima 2015;
Goto et al. 2016; Kurata et al. 2017), designing a desirable
mechanism essentially tailors the choice functions for hos-
pitals to satisfy the necessary properties and constraints si-
multaneously. The design task is difficult because the given
sequences of contracts for hospitals depend on the (sequen-
tial) choice functions themselves and, hence, they are un-
predictable. We tackle this challenging task as an analogue
to online algorithms for knapsack problems.

Non-Strategy-Proof Stable Mechanism

This subsection proposes an approximately stable mecha-
nism that achieves the best possible stability bound, but is
not strategy-proof for doctors. The sequential choice func-
tions greedily choose contracts according to decreasing or-
der of utility per size (i.e., utility per wage). Formally, let us
consider the functions defined in Algorithm 2.2 Note that we
can compute the choice in O(k log k) time.

Let us next illustrate this mechanism via an example.
Example 1. Consider a market with four doctors D =
{d1, d2, d3, d4} and two hospitals H = {h1, h2}. The set
of offered contracts X is {xi,j : i = 1, . . . , 4, j = 1, 2},
where xi,j

D = di, x
i,j
H = hj (i = 1, . . . , 4, j = 1, 2). We

assume that xi,1 �di
xi,2 for i = 1, 2, 3 and x4,2 �d4

x4,1.
The contracts’ utilities and sizes are provided in Table 2.

Initially, we set X ′ = R = ∅, I = {d1, . . . , d4}, and
ahi = () (i = 1, 2).

Suppose that we select d1 ∈ I at the beginning of the
first iteration. Then, d1 chooses her most preferred contract

2When ties occur in the argmin, we break these ties by choosing
the one with the smallest index.
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Algorithm 2:

input: (x1, . . . , xk) ∈ A(Xh) output:
Chh(x1, . . . , xk)

1 if k = 0 then return ∅;
2 let Y ← Chh(x1, . . . , xk−1) ∪ {xk};
3 while s(Y ) > 1 do
4 Y ← Y \ {a} where

a ∈ argmin
{u(x)

s(x) : x ∈ Y
}

;

5 return Y ;

Table 2: Utilities and Sizes of the Contracts.

xi,1 ∈ Xh1
xi,2 ∈ Xh2

u s u/s u s u/s
x1,j ∈ Xd1

111 0.57 194.7 30 0.56 53.6
x2,j ∈ Xd2

98 0.50 196.0 40 0.55 72.7
x3,j ∈ Xd3

83 0.42 197.6 10 0.60 16.7
x4,j ∈ Xd4 110 0.55 200.0 20 0.45 44.4

x1,1 and we have ah1 = (x1,1), ah2 = (), X ′ = {x1,1},
R = {x1,1}, I = {d2, d3, d4} at the end of the first iteration.

Suppose that we pick d2 ∈ I at the beginning of the sec-
ond iteration. Then, d2 chooses her most preferred contract
x2,1. As h1 cannot keep x1,1 and x2,1 together, it accepts
x2,1 and rejects x1,1. Thus, we have ah1 = (x1,1, x2,1),
ah2 = (), X ′ = {x2,1}, R = {x1,1, x2,1}, I = {d1, d3, d4}
at the end of the second iteration.

Similarly, suppose that we choose a doctor with the small-
est index in I at the beginning of each iteration. Our algo-
rithm then works as in Table 3.

Table 3: Our Algorithm’s Procedure.

iter. X ′ I ah1 ah2

0 ∅ {d1, d2, d3, d4} () ()
1 {x1,1} {d2, d3, d4} (x1,1) ()
2 {x2,1} {d1, d3, d4} (x1,1, x2,1) ()
3 {x1,2, x2,1} {d3, d4} (x1,1, x2,1) (x1,2)
4 {x1,2, x2,1, x3,1} {d4} (x1,1, x2,1, x3,1) (x1,2)
5 {x1,2, x2,1, x3,1} {d4} (x1,1, x2,1, x3,1) (x1,2, x4,2)
6 {x1,2, x3,1, x4,1} {d2} (x1,1, x2,1, x3,1, x4,1) (x1,2, x4,2)
7 {x2,2, x3,1, x4,1} ∅ (x1,1, x2,1, x3,1, x4,1) (x1,2, x4,2, x2,2)

To conclude, our algorithm returns the matching X ′ =
{x2,2, x3,1, x4,1}. Although X ′′ = {x1,1, x3,1} is a blocking
coalition, X ′ is almost stable.

We argue that the sequential choice function Chh satisfies
the following property:

Lemma 1. The sequential choice function Chh defined in
Algorithm 2 is 1

1−s -approximate.

Proof. Let us consider a sequence of distinct con-
tracts (x1, . . . , xk) ∈ A(Xh). Note that Chh satis-
fies the conditions (1) and (2) since Chh(x1, . . . , xk) ⊆
Chh(x1, . . . , xk−1)∪{xk}. If

∑k
i=1 s(xi) ≤ 1, then the se-

quential choice function returns all the contracts and there-
fore satisfies (3). Thus, we assume that

∑k
i=1 s(xi) > 1.

Let σ ∈ Sk be a permutation such that
u(xσ(1))/s(xσ(1)) ≥ · · · ≥ u(xσ(k))/s(xσ(k)).

Let � be the largest index such that
∑�

i=1 s(xσ(i)) ≤ 1. Note
that

∑�+1
i=1 s(xσ(i)) > 1. Then, by a simple induction, we

can see that {xσ(1), . . . , xσ(�)} ⊆ Chh(x1, . . . , xk). There-
fore, we obtain u(Chh(x1, . . . , xk)) is at least

�∑
i=1

u(xσ(i)) ≥
∑�

i=1 s(xσ(i))∑�+1
i=1 s(xσ(i))

(
�+1∑
i=1

u(xσ(i))

)

=

(
1− s(xσ(�+1))∑�+1

i=1 s(xσ(i))

)(
�+1∑
i=1

u(xσ(i))

)

≥ (1− s)

(
�+1∑
i=1

u(xσ(i))

)

≥ (1− s) ·max

{
u(X̃) :

s(X̃) ≤ 1,

X̃ ⊆ {x1, . . . , xk}
}
.

Here, the first inequality holds since
∑j

i=1 u(xσ(i))
∑j

i=1 s(xσ(i))
is mono-

tone nonincreasing for j and the second inequality holds by∑�+1
i=1 s(xσ(i)) > 1 and s(xσ(�+1)) ≤ s. Thus, it is 1

1−s -
approximate.

Now, we obtain the following theorem:
Theorem 4. For any market, the generalized DA mechanism
with the choice functions defined in Algorithm 2 produces
a 1

1−s -stable matching. In addition, the mechanism can be
implemented to run in O(|X| log |X|) time.

This mechanism is not strategy-proof for doctors (See
Proposition 1 in the full version).

Strategy-Proof Stable Mechanism

This subsection proposes another stable mechanism that
does not achieve the best possible stability bound, but is
strategy-proof for doctors. Let us consider a set system
(Xh,Fh), where

Fh =

{
X ′ ⊆ Xh :

∣∣∣{x ∈ X ′ : s(x) > 1
tγ

}∣∣∣ ≤ t

(t = 1, . . . , |D|)

}

and γ =
⌈
1+ln(|D|−1)

1−s

⌉
. We can easily check that the set sys-

tem (Xh,Fh) is a transversal matroid for each h ∈ H (Ox-
ley 1992). In addition, we have s(X ′) ≤ 1 if X ′ ∈ Fh and
|X ′

d| ≤ 1 (∀d ∈ D) because

s(X ′) ≤ s+

|D|−1∑
t=1

1

tγ
≤ s+

1

γ
·
(
1 +

∫ |D|−1

1

dx

x

)

≤ s+
1 + ln(|D| − 1)

γ
≤ 1.

The second sequential choice function Chh chooses the
maximum utility independent set by a greedy algorithm. The
formal definition is given in Algorithm 3.

We claim that the choice function satisfies the following
property.
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Algorithm 3:

input: (x1, . . . , xk) ∈ A(Xh) output:
Chh(x1, . . . , xk)

1 if k = 0 then return ∅;
2 let Y ← Chh(x1, . . . , xk−1) ∪ {xk};
3 if Y �∈ Fh then
4 let a ∈ argmin{u(x) : x ∈ Y, Y \ {x} ∈ Fh};
5 Y ← Y \ {a};
6 return Y ;

Lemma 2. For each hospital h, the sequential choice func-
tion Chh defined in Algorithm 3 is γ (=

⌈
1+ln(|D|−1)

1−s

⌉
)-

approximate.

Proof. Let (x1, . . . , xk) be the input of the choice function.
We prove that, for any X∗ ⊆ {x1, . . . , xk},

γ · u(Chh(x1, . . . , xk)) ≥ u(X∗)

holds when s(X∗) ≤ 1 and |X∗
d | ≤ 1 (∀d ∈ D). Let

us consider a set of contracts X∗ = {y1, . . . , y�} where
s(y1) ≥ · · · ≥ s(y�). Then, we have s(yi) ≤ 1/i for
i = 1, . . . , � because 1 ≥ s(y1)+· · ·+s(yi) ≥ i·s(yi). Thus,
we can partition X∗ into γ sets X1, . . . , Xγ that satisfy
Xi ∈ Fh for all i = 1, . . . , γ. Indeed, we can obtain the par-
tition by setting Xi = {yi, yγ+i, y2γ+i, . . . , y�(�−i)/γ�γ+i}.
As u(Chh(x1, . . . , xk)) ≥ u(Xi), we obtain

γ · u(Chh(x1, . . . , xk)) ≥
γ∑

i=1

u(Xi) = u(X∗),

which proves the theorem.

Lemma 3. For each hospital h, the sequential choice func-
tion Chh defined in Algorithm 3 satisfies order-invariance
and size-monotonicity.

Proof. The choice function is clearly order-invariant, since
the greedy algorithm for matroids, which finds the maximum
utility independent set, is not affected by the input sequence
order (Babaioff, Hartline, and Kleinberg 2009). Moreover,
as |Chh(x1, . . . , xk)| is the rank of {x1, . . . , xk} in the ma-
troid Fh, the choice function is size-monotone.

Now, we obtain the following theorem:

Theorem 5. For any market, the generalized DA mecha-
nism with the choice functions defined in Algorithm 3 is
strategy-proof for doctors and produces a

⌈
1+ln(|D|−1)

1−s

⌉
-

stable matching. In addition, the mechanism can be imple-
mented to run in O(|X|2) time.

Proportional Utilities

This section examines a special case in which each hospital
has a utility over a set of contracts that is proportional to its
size. Formally, for every h ∈ H and x ∈ Xh, u(x) = βh ·
s(x) holds where βh (> 0) is a constant that only depends

on the hospital. We call such a market a proportional market.
W.l.o.g., we may assume that βh = 1 for all h ∈ H .

To admit an approximately stable matching, the amount
of approximation improves to a constant. We first provide
an intractability result.
Theorem 6. For any ε > 0, there exists a proportional mar-
ket with no

(
1+

√
5

2 − ε
)

-stable matching.

Proof. Let φ = 1+
√
5

2 . Consider a market with three doctors
D = {d1, d2, d3} and two hospitals H = {h1, h2}. The set
of contracts is X = {x, y, ŷ, z, ẑ}, where

xD = d1, xH = h1, s(x) = 1/φ+ ε/2,
yD = d2, yH = h1, s(y) = (1/φ)2,
ŷD = d2, ŷH = h2, s(ŷ) = 1,
zD = d3, zH = h1, s(z) = 1/φ, and
ẑD = d3, ẑH = h2, s(ẑ) = ε.

The doctors’ preferences are given as follows:

�d1 : x, �d2 : y �d2 ŷ, �d3 : ẑ �d3 z.

If X ′ = {x, ŷ}, then X ′′ = {y, z} is a (φ − ε)-blocking
coalition for h1 since 1/φ+(1/φ)2

1/φ+ε/2 = φ
1+εφ/2 < φ − ε. Simi-

larly, we can easily check that there exists a (φ−ε)-blocking
coalition for any matching and hence this market has no
(φ− ε)-stable matching.

However, distinguishing whether a given proportional
market has

(
1+

√
5

2 − ε
)

-stable matching or not is NP-hard
(See Theorem 9 in the full version).

Non-Strategy-Proof 1.62-Stable Mechanism

This subsection proposes a 1+
√
5

2 (≈ 1.62)-stable mecha-
nism. We denote the golden ratio by φ (= 1+

√
5

2 ). Note that
φ + 1 = φ2 holds. To obtain the mechanism, we apply an
online algorithm provided by Iwama and Taketomi (2002)
for the (proportional case) removable knapsack problem as
a sequential choice function. Let us divide the set of con-
tracts into three classes—small, medium, and large. These
are defined as

S = {x ∈ X : s(x) ≤ 1− 1/φ},
M = {x ∈ X : 1− 1/φ < s(x) < 1/φ}, and
L = {x ∈ X : s(x) ≥ 1/φ}.

It should be noted that, if the algorithm chooses a set of
contracts with a total size of at least 1/φ, then it is φ-
approximate since

φ · u(Chh(x)) ≥ 1 ≥ max

{
u(X̃) :

s(X̃) ≤ 1,

X̃ ⊆ {x1, . . . , xk}
}

for any x = (x1, . . . , xk) ∈ A(Xh).
Thus, if some large contracts have been given, then it

is sufficient to select one of them. Also, if it can choose
two medium contracts together, then it is sufficient to se-
lect both because 2(1− 1/φ) > 1/φ. If a given sequence of
contracts contains medium contracts, but it cannot choose
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Algorithm 4:

input: (x1, . . . , xk) ∈ A(Xh) output:
Chh(x1, . . . , xk)

1 Initialize S, M , L;
2 if k = 0 then return ∅;
3 let Y ← Chh(x1, . . . , xk−1);
4 if s(Y ) ≥ 1/φ then return Y ;
5 else if xk ∈ L then return {xk};
6 else
7 Y ← Y ∪ {xk};
8 if s(Y ∩M) > 1 then
9 Y ← Y \ {a} where

a ∈ argmaxx∈Y ∩M s(x);
10 while s(Y ) > 1 do
11 Y ← Y \ {a} where a ∈ argminx∈Y ∩S s(x);
12 return Y ;

two medium contracts together and no large contract ex-
ists, the algorithm keeps the smallest medium contract.
The formal definition of the algorithm is given in Algo-
rithm 4. Note that the function Chh satisfies (1) and (2) since
Chh(x1, . . . , xk) ⊆ Chh(x1, . . . , xk−1) ∪ {xk}.

We obtain the next lemma through the techniques of
Iwama and Taketomi (2002).
Lemma 4. The sequential choice function defined in Algo-
rithm 4 is φ-approximate.

Now, with Theorem 3, we obtain the following theorem:
Theorem 7. For any proportional market, the generalized
DA mechanism with the choice functions defined in Algo-
rithm 4 produces a φ-stable matching. In addition, the mech-
anism can be implemented to run in O(|X| log |X|) time.

Strategy-Proof Stable Mechanism Achieving the
Best Possible Bound for Additive Utilities

This subsection provides another stable mechanism for the
proportional markets that does not have a constant stability
bound, but is strategy-proof for doctors. We employ a se-
quential choice function Chh that greedily chooses the con-
tracts according to increasing order of size while keeping the
budget constraint. Formally, we define this as Algorithm 5.

Algorithm 5:

input: (x1, . . . , xk) ∈ A(Xh) output:
Chh(x1, . . . , xk)

1 Initialize Y ← ∅;
2 Sort {x1, . . . , xk} according to increasing order of

size;
3 for i = 1, 2, . . . , k do
4 let x be the ith smallest contract;
5 if s(Y ) + s(x) ≤ 1 then Y ← Y ∪ {x};
6 return Y ;

Let us first claim that the choice function is sequential.
Since it clearly satisfies (1), let us check (2). W.l.o.g., we

may assume that s(x1) < s(x2) < · · · < s(xk) be-
cause the hospitals’ choices depend not on the order of
the input sequence, but on size. If

∑k
i=1 s(xi) ≤ 1, then

{x1, . . . , xk} \ Chh(x1, . . . , xk) must be empty and hence
(2) holds. Thus, we assume that

∑k
i=1 s(xi) > 1.

Let � be the largest index such that
∑�

i=1 s(xi) ≤ 1. If the
(�+1)st contract is chosen, the budget is exceeded. We then
have Chh(x1, . . . , xk) = {x1, . . . , x�} and {x1, . . . , xk} \
Chh(x1, . . . , xk) = {x�+1, . . . , xk}. With the (k + 1)st
contract xk+1, if s(xk+1) > s(x�+1), (2) holds because
Chh(x1, . . . , xk+1) = {x1, . . . , x�}. Otherwise, we have
Chh(x1, . . . , xk+1) ⊆ {x1, . . . , x�, xk+1} and hence (2)
holds. Thus, the choice function Chh is sequential. We fur-
ther claim that it satisfies the following properties:
Lemma 5. For each hospital h, the choice function defined
in Algorithm 5 is order-invariant, size-monotone, and 1

1−s -
approximate.

Proof. First, each choice function is clearly order-invariant
from the definition. We thus assume without loss of gener-
ality that s(x1) < s(x2) < · · · < s(xk) throughout this
proof.

Second, we observe that each choice function Chh is size-
monotone. To see this, it is sufficient to prove

|Chh(x1, . . . , xk)| ≤ |Chh(x1, . . . , xk+1)| (4)

for any sequence of contracts (x1, . . . , xk, xk+1). Recall
that � is the largest index such that the budget is not ex-
ceeded. Then, we have Chh(x1, . . . , xk) = {x1, . . . , x�}.
We consider two cases for the (k + 1)st contract xk+1. If
s(xk+1) > s(x�), then (4) holds because {x1, . . . , x�} ⊆
Chh(x1, . . . , xk+1). Otherwise, (4) also holds because
{x1, . . . , x�−1, xk+1} ⊆ Chh(x1, . . . , xk+1). Accordingly,
Chh is size-monotone.

Finally, we show that Chh is 1
1−s -approximate. Let us

assume that the input sequence is x = (x1, . . . , xk). If∑k
i=1 s(xi) ≤ 1, we have Chh(x) = {x1, . . . , xk} and

u(Chh(x)) =
k∑

i=1

s(xi) = max

{
u(X̃) :

s(X̃) ≤ 1,

X̃ ⊆ {x1, . . . , xk}
}
.

Otherwise, for the index �, we have

s(Chh(x)) =

�∑

i=1

s(xi) > 1− s(x�+1) ≥ 1− s

and hence

u(Chh(x)) = (1− s) ≥ (1− s) ·max

{
u(X̃) :

s(X̃) ≤ 1,

X̃ ⊆ {x1, . . . , xk}
}
.

Thus, Chh is 1
1−s -approximate.

Now, we obtain the following theorem:
Theorem 8. For any proportional market, the generalized
DA mechanism with the choice functions defined in Algo-
rithm 5 is strategy-proof for doctors and produces a 1

1−s -
stable matching. In addition, the mechanism can be imple-
mented to run in O(|X| log |X|) time.
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Conclusion

This paper examined matching with budget constraints and
introduced a concept of approximately stable matchings.
First, we extended the existing framework and proposed two
novel mechanisms that return a stable matching in polyno-
mial time: one is strategy-proof for doctors and the other
is not. Second, we derived the bounds of the utilities’ incre-
ment by coalitional deviation. The best possible bound is ob-
tained by sacrificing strategy-proofness for additive utilities.
Finally, we examined a case in which hospitals have pro-
portional utilities and found another two mechanisms that
achieve better approximation ratios.
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Abdulkadiroğlu, A., and Sönmez, T. 2003. School choice:
A mechanism design approach. American Economic Review
93(3):729–747.
Abizada, A. 2016. Stability and incentives for college ad-
missions with budget constraints. Theoretical Economics
11(2):735–756.
Aizerman, M., and Malishevski, A. 1981. General theory of
best variants choice: Some aspects. IEEE Trans. Automatic
Control 26:1030–1040.
Arkin, E. M.; Bae, S. W.; Efrat, A.; Okamoto, K.; Mitchell,
J. S.B.; and Polishchuk, V. 2009. Geometric stable roommates.
Information Processing Letters 109(4):219–224.
Ashwinkumar, B. V. 2011. Buyback problem - approximate
matroid intersection with cancellation costs. In Proceedings
of the 38th International Colloquium on Automata, Language
and Programming, 379–390.
Babaioff, M.; Hartline, J. D.; and Kleinberg, R. D. 2009. Sell-
ing ad campaigns: Online algorithms with cancellations. In
Proceedings of the 10th ACM Conference on Electronic Com-
merce, 61–70.
Buchbinder, N.; Feldman, M.; and Schwartz, R. 2015. Online
submodular maximization with preemption. In Proceedings
of the 26th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 1202–1216. SIAM.
Chakrabarti, A., and Kale, S. 2015. Submodular maximization
meets streaming: Matchings, matroids, and more. Mathemati-
cal Programming 154(1–2):225–247.
Chan, T.-H. H.; Jiang, S. H.-C.; Tang, Z. G.; and Wu, X. 2017.
Online submodular maximization problem with vector pack-
ing constraint. In Proceedings of the 25th Annual European
Symposium on Algorithms, 87, 24:1–24:14.
Dean, B. C.; Goemans, M. X.; and Immorlica, N. 2006. The
unsplittable stable marriage problem. In Proceedings of the
5th IFIP International Conference on Theoretical Computer
Science, 65–75.
Drummond, J., and Boutilier, C. 2013. Elicitation and approx-
imately stable matching with partial preferences. In Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI), 97–105.
Drummond, J., and Boutilier, C. 2014. Preference elicitation
and interview minimization in stable matchings. In Proceed-
ings of the 28th AAAI Conference on Artificial Intelligence,
645–653.

Garey, M. R., and Johnson, D. S. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. Free-
man New York.
Goto, M.; Iwasaki, A.; Kawasaki, Y.; Kurata, R.; Yasuda,
Y.; and Yokoo, M. 2016. Strategyproof matching with re-
gional minimum and maximum quotas. Artificial Intelligence
235:40–57.
Hamada, N.; Ismaili, A.; Suzuki, T.; and Yokoo, M. 2017.
Weighted matching markets with budget constraints. In Pro-
ceedings of the 16th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 317–325.
Han, X.; Kawase, Y.; Makino, K.; and Guo, H. 2014. Online
removable knapsack problem under convex function. Theoret-
ical Computer Science 540:62–69.
Han, X.; Ma, N.; Makino, K.; and Chen, H. 2017. Online
knapsack problem under concave functions. In Proceedings
of 11th International Workshop on Frontiers in Algorithmics,
103–114.
Hatfield, J. W., and Milgrom, P. R. 2005. Matching with con-
tracts. American Economic Review 95(4):913–935.
Hosseini, H.; Larson, K.; and Cohen, R. 2015. Matching with
dynamic ordinal preferences. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence, 936–943.
Iwama, K., and Taketomi, S. 2002. Removable online knap-
sack problems. In Proceedings of the 29th International Col-
loquium on Automata, Languages, and Programming (ICALP),
293–305.
Kamada, Y., and Kojima, F. 2015. Efficient matching under
distributional constraints: Theory and applications. American
Economic Review 105(1):67–99.
Kawase, Y., and Iwasaki, A. 2017. Near-feasible stable match-
ings with budget constraints. In Proceedings of the 26th In-
ternational Joint Conference on Artificial Intelligence (IJCAI),
242–248.
Kellerer, H.; Pferschy, U.; and Pisinger, D. 2004. Knapsack
Problems. Springer.
Kelso, A. S., and Crawford, V. P. 1982. Job matching, coalition
formation, and gross substitutes. Econometrica 50(6):1483–
1504.
Komm, D. 2016. An Introduction to Online Computation:
Determinism, Randomization, Advice. Springer.
Kurata, R.; Hamada, N.; Iwasaki, A.; and Yokoo, M. 2017.
Controlled school choice with soft bounds and overlapping
types. Journal of Artificial Intelligence Research 58:153–184.
Manlove, D. F. 2013. Algorithmics of Matching Under Prefer-
ences. World Scientific Publishing Company.
McDermid, E. J., and Manlove, D. F. 2010. Keeping part-
ners together: Algorithmic results for the hospitals/residents
problem with couples. Journal of Combinatorial Optimization
19:279–303.
Mongell, S. J., and Roth, A. E. 1986. A note on job matching
with budget constraints. Economics Letters 21(2):135–138.
Oxley, J. G. 1992. Matroid Theory. Oxford University Press.
Roth, A. E., and Sotomayor, M. A. O. 1990. Two-Sided Match-
ing: A Study in Game-Theoretic Modeling and Analysis. Cam-
bridge University Press.

1120


