
The Conference Paper Assignment Problem:
Using Order Weighted Averages to Assign Indivisible Goods

Jing Wu Lian
UNSW Sydney

Sydney, Australia
Lianjingwu@gmail.com

Nicholas Mattei
IBM Research AI
New York, USA

n.mattei@ibm.com

Renee Noble
Data61, CSIRO

Sydney, Australia
renee.noble@data61.csiro.au

Toby Walsh
Data61, UNSW Sydney,

and TU Berlin
Sydney, Australia

toby.walsh@data61.csiro.au

Abstract

We propose a novel mechanism for solving the assignment
problem when we have a two sided matching problem with
preferences from one side (the agents/reviewers) over the
other side (the objects/papers) and both sides have capacity
constraints. The assignment problem is a fundamental in both
computer science and economics with application in many
areas including task and resource allocation. Drawing inspi-
ration from work in multi-criteria decision making and so-
cial choice theory we use order weighted averages (OWAs), a
parameterized class of mean aggregators, to propose a novel
and flexible class of algorithms for the assignment problem.
We show an algorithm for finding an Σ-OWA assignment in
polynomial time, in contrast to the NP-hardness of finding
an egalitarian assignment. We demonstrate through empirical
experiments that using Σ-OWA assignments can lead to high
quality and more fair assignments.

Introduction

Assigning indivisible objects to multiple agents is a funda-
mental problem in many fields including computer science,
economics and operations research. Algorithms for match-
ing and assignment are used in a variety of application ar-
eas including allocating runways to airplanes, residents to
hospitals, kidneys to patients (Dickerson, Procaccia, and
Sandholm 2014), students to schools (Budish and Cantillon
2012), assets to individuals in a divorce, jobs to machines,
and tasks to cloud computing nodes (Manlove 2013). Un-
derstanding the properties of the underlying algorithms is an
important aspect to ensuring that all participating agents are
happy with their allocations and do not attempt to misrepre-
sent their preferences; a key area of study for computational
social choice (Brandt et al. 2016).

An area that is near to many academics’ hearts is the prob-
lem of allocating papers to referees for peer review. Grant,
journal, and conference reviewing has significant impact on
the careers of scientists. Ensuring that papers and proposals
are reviewed by the most qualified/interested referees is part
of ensuring that objects are treated properly and all partici-
pants support the outcome of the processes. The importance
of and methods for improving peer review have been pro-
posed across the sciences (Merrifield and Saari 2009).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

There are a number of ways one can improve the quality
of peer review (Price and Flach 2016). First is to ensure that
reviewers are not incentivized to misreport their reviews for
personal gain. Along this line there has been significant in-
terest recently in strategyproof mechanisms for peer review
(Aziz et al. 2016). Unfortunately, the method that we discuss
in this paper is not strategyproof. Another way is to ensure
that reviewers are competent to provide judgements on the
papers they are assigned. The Toronto Paper Matching Sys-
tem (Charlin and Zemel 2013) is designed to improve the
process from this paper-centric model. A third alternative,
and the one we focus on in this study, is ensuring that review-
ers are happy with the diversity and quality of papers they
are asked to review (Ahmed, Dickerson, and Fuge 2017).

Formally, we study the Conference Paper Assignment
Problem (CPAP) (Goldsmith and Sloan 2007) which is a
special case of the Multi-Agent Resource Allocation Prob-
lem (MARA) (Bouveret, Chevaleyre, and Lang 2016), and
propose a novel assignment, the Σ-OWA assignment. In the
CPAP setting we have a two-sided market where on one side
the agents/reviewers have preferences over the other side,
the objects/papers, and both sides have (possibly infinite)
upper and lower capacities. A fundamental tension in assign-
ment settings is the tradeoff between maximizing the social
welfare, also known as the utilitarian maximal assignment
and the Rawlsian (Rawls 1971) fairness concept of maximiz-
ing the utility of the worst off agent, known as the egalitarian
maximal assignment. These two ideas are incompatible op-
timization objectives and diverge in a computational sense
as well: computing the utilitarian assignment for additive
utilities can be done in polynomial time, while computing
the egalitarian assignment is NP-complete (Demko and Hill
1988). This, perhaps, could be the reason that implementers
of large conference paper assignment software often opt for
utilitarian assignments, as is supposedly the case for Easy-
Chair (Garg et al. 2010).1 However, it is also not clear if an
egalitarian assignment is desirable for CPAP.
Contributions. We establish a motivation for using OWA

1This is technically unsubstantiated as when the authors con-
tacted EasyChair to understand the assignment process we were
told, “We do not provide information on how paper assignment in
EasyChair is implemented. The information in Garg et.al. may be
incorrect or out of date - none of the authors worked for EasyChair,
they also had no access to the EasyChair code.”

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1138

vectors in the assignment setting and define a novel notion
of allocation, the Σ-OWA assignment. We give an algorithm
to compute an Σ-OWA maximal assignment in polynomial
time and we show that the Σ-OWA objective generalizes the
utilitarian objective. We show that Σ-OWA assignments sat-
isfy a notion of Pareto optimality w.r.t. the pairwise com-
parisons of the objects by the agents. We implement an al-
gorithm for Σ-OWA assignments and perform experiments
on real world conference paper assignment data to show that
the Σ-OWA objective can lead to more fair allocations.

Preliminaries

From here we will use the more general notation
agents/objects to describe our setting. In assignment settings
each agent provides their preference over the objects as a re-
flexive, and transitive preference relation (incomplete weak
order) over the set of objects, �i. We do not assume that �i is
complete; it is possible that some agents may have conflicts
of interest or have no preference for a particular object; this
assumption is often called “having unacceptable objects” in
the literature (Manlove 2013).

Many actual CPAP settings have a fixed number of equiv-
alence classes into which agents are asked to place the ob-
jects (Mattei and Walsh 2013). We assume that the number
of equivalence classes (ranks) of objects are given as input
to the problem and agents tell us within which rank each ob-
jects belong. Agents also provide a decreasing utility value
for each rank2. Our main result can be extended to the case
where the number of equivalence classes is not fixed.

Formally, the CPAP problem is defined by (N,O,�,u,Δ):
a set of n agents N = {a1, . . . ,an}; a set of m objects O =
{o1, . . . ,om}; for each i ∈ N, a reflexive and transitive pref-
erence relation (weak order) over the set of objects, �i, di-
vided into Δ equivalence classes (ranks); and for each i∈N a
utility vector ui of length Δ which assigns a decreasing util-
ity ui(k)→ R for each k ∈ [1,Δ], i.e., ui(1)> ui(2)> .. . >
ui(Δ). Let ri(j) be the rank of object j for i and ui(ri(j))
denote the value of i for j.

Side Constraints and Feasible Assignments

We include two practical constrains in our model, making
it more general than the standard MARA or CPAP prob-
lems studied in computer science (Bouveret, Chevaleyre,
and Lang 2016): upper and lower capacities on both the
agents and objects. Agent Capacity: each agent i ∈ N has
(possibly all equal) upper and lower bound on their capac-
ity, the number of objects they can be allocated, cN

min(i) and
cN

max(i). Object Capacity: each object j ∈ O has a (possibly
all equal) upper and lower bound on the number of agents
assigned to it, cO

min(j) and cO
max(j), respectively.

We can now define a feasible assignment A for an in-
stance (N,O,�,u,Δ). For a given assignment A, let A(i, :)
denote the set of objects assigned to agent i in A, let A(:, j)

2We assume that agents can give any utilities as input. However,
often the utilities are restricted to be the same, i.e., Borda utilities
in conference paper bidding, or come from some fixed budget, i.e.,
bidding fake currency as in course allocation at Harvard (Budish
and Cantillon 2012).

denote the set of agents assigned to object j, and let | · |
denote the size (number of elements) of a set or vector. A
feasible assignment A must obey: [∀i ∈ N : cN

min(i) ≤ |A(i, :
)| ≤ cN

max(i)]∧ [∀ j ∈ O : cO
min(j) ≤ |A(:, j)| ≤ cO

max(j)]. We
write the set of all feasible assignments for an instance as
A(N,O,�,u,Δ).3

Individual Agent Evaluation

We first formalize how an individual agent evaluates their
assigned objects. Each feasible assignment A ∈ A gives rise
to a signature vector for each agent i ∈ N; intuitively the sig-
nature vector is the number of objects at each rank assigned
to i. Formally let σi(A) = (σi,1(A), . . . ,σi,Δ(A)) where
σi,l(A) = |{ j ∈ A(i, :)|ri(j) = l}| for each l ∈ [1, . . . ,Δ].

Lexicographic: Agent i lexicographically prefers A to B
if σi(A) comes before σi(B) in the lexicographic order. That
is, there is an index 1 ≥ l ≥ Δ such that for all k > l we
have σi,k(A) = σi,k(B) and σi,l(A) > σi,l(B); i.e., i receives
at least one more paper of a higher rank in A than in B. The
lexicographic relation over vectors has a long history in the
assignment literature (Fishburn 1974).

Additive Utility: Agent i prefers A to B if he has more
additive utility for the objects assigned to him in A than in
B. Formally, (abusing notation) ui(A) = ∑ j∈A(i,:) ui(ri(j))>
∑ j∈B(i,:) ui(ri(j)), or an alternative formulation using the dot
product, ui(A) = ui ·σi(A)> ui ·σi(B).

For indivisible (discrete) objects the lexicographic rela-
tion can be modeled by the additive utility relation by set-
ting the agent utilities to high enough values. Formally, if
the utility for rank i < j is u(i) > u(j) ·m then the lexico-
graphic and additive utility relations are the same, i.e., no
matter how many additional objects of rank j the agent re-
ceives, one more object of rank i is more preferred.

Overall Assignment Evaluation

There are several optimization objectives for assignments
can be considered; we limit our discussion to the two clas-
sical notions below. Garg et al. (2010) and Bouveret and
Lemaı̂tre (2016) discuss additional features for the CPAP
and MARA settings, respectivly.

Utilitarian Social Welfare Maximal Assignment: We
maximize the total social welfare over all the agents. A util-
itarian assignment is argmaxA∈A ∑i∈N ∑ j∈A(i,:) ui(ri(j)) =
argmaxA∈A ∑i∈N ui ·σi(A).

Egalitarian Social Welfare Maximal Assignment: We
want to enforce the Rawlsian notion of fairness by en-
suring the worst off is as happy as possible. An egali-
tarian assignment is argmaxA∈A mini∈N ∑ j∈A(i,:) ui(ri(j)) =
argmaxA∈A mini∈N ui ·σi(A).

In the discrete MARA and CPAP setting where objects
are not divisible, the problem of finding an egalitarian as-
signment is NP-hard (Demko and Hill 1988) while finding a
utilitarian assignment can be done in polynomial time (Bou-
veret, Chevaleyre, and Lang 2016).

There are a number of measures of inequality or fairness
in the econometric literature, two of the most popular are the

3We will omit the arguments when they are clear from context.

1139

Gini Index and the Hoover (Robin Hood) Index. Let i, j be
agents in the assignment and let u be the mean utility over
all agents. The Gini Index measures the ration of the area
that lies between the line of equality and the Lorenz curve,
G =

∑i ∑ j |ui−u j |
2n∑i ui

. The Hoover Index measures the amount of
utility that needs to be transferred to the worse off agents
in order to achieve full equality, H = 1

2
∑i |ui−u|

∑i ui
. Minimizing

the inequality directly in the assignment setting is NP-hard
for either of these measures (Schneckenburger, Dorn, and
Endriss 2017). In our empirical section we will use these
measures to judge the fairness of an assignment.

Background and Related Work

One and two sided matching and assignment problems have
been studied in economics (Roth and Sotomayor 1992) and
computer science (Manlove 2013; Brandt et al. 2016) for
over 60 years. Matching and assignment have many appli-
cations including kidneys exchanges (Dickerson, Procaccia,
and Sandholm 2014) and school choice. Our problem is of-
ten called the multi-agent resource allocation (MARA) prob-
lem in computer science (Bouveret, Chevaleyre, and Lang
2016) The papers to referees formulation of this problem
has some additional side constraints common in the eco-
nomics literature, but not as common in computer science
(Manlove 2013). In the economics literature the Workers-
Firms problem is the most closely related analogue to our
problem, modeling many-many matchings with capacities
(Klaus, Manlove, and Rossi 2016).

The conference paper assignment has been studied a num-
ber of times over the years in computer science (Goldsmith
and Sloan 2007), as has defining and refining notions of
fairness for the assignment vectors in multi-agent alloca-
tion problems (Golden and Perny 2010). We build off the
work of Garg et al. (2010), who extensively study the no-
tion of fair paper assignments, including lexi-min and rank-
maximal assignments, within the context of conference pa-
per assignment. Garg et al. (2010) show that for the setting
we study, finding an egalitarian optimal assignment and find-
ing a leximin optimal assignment are both NP-hard when
there are three or more equivalence classes; and polynomial
time computable when there are only two. They also pro-
vide an approximation algorithm for leximin optimal assign-
ments. We know that if the capacity constraints are hard val-
ues, i.e., each reviewer must review ≤ x papers and each pa-
per must receive exactly y reviews, then the resulting version
of capacitated assignment is NP-hard (Long et al. 2013). An-
swer set programming for CPAP was studied by Amendola
et al. (2016); they encode the CPAP problem in ASP and
show that finding a solution that roughly correspond to the
leximin optimal and egalitarian solutions can be done in rea-
sonable time for large settings (≈ 100 agents).

CPAP also receives considerable attention in the recom-
mender systems (Conry, Koren, and Ramakrishnan 2009)
and machine learning (Charlin, Zemel, and Boutilier 2012)
communities. Often though, this work takes the approach
of attempting to infer a more refined utility or preference
model in order to distinguish papers. Fairness and efficiency
concerns are secondary. A prime example of this is the

Toronto Paper Matching System designed by Charlin and
Zemel (2013). This system attempts to increase the accuracy
of the matching algorithms by having the papers express
preferences over the reviewers themselves; where these pref-
erences are inferred from the contents of the papers.

We make use of Order weighted averages (OWAs), often
employed in multi-criteria decision making (Yager 1988).
OWAs have recently received attention in computational so-
cial choice for voting and ranking (Goldsmith et al. 2014),
finding a collective set of objects for a group (Skowron, Fal-
iszewski, and Lang 2016), and multi-winner voting with pro-
portional representation (Elkind et al. 2014; Elkind and Is-
maili 2015). The key difference between CPAP and voting
using OWAs in the ComSoc literature is that CPAP does not
select a set of winners that all agents will share. Instead, all
agents are allocated a possibly disjoint set of objects.

Σ-OWA Assignments

An OWA is a function defined as a K length vector of non-
negative numbers, as a vector α(K) = (α1, . . . ,αK). Let x =
(x1, . . . ,xK) be a vector of K numbers and let x↓ be the non-
increasing rearrangement of x, i.e. x↓ = x

↓
1 ≥ x

↓
2 ≥ . . .≥ x

↓
K .

We say: OWAα(x) = α ·x↓ = ∑K
i=1 αi ·x↓i .

In order to apply OWAs to our setting we need to de-
fine the weighted rank signature of an assignment. Let ωi(A)
be defined as the sorted vector of utility that a referee gets
from an assignment A. Formally, ωi(A) = sort({∀ j ∈A(i, :) :
ui(r(j))}). For example, if A(i, :) included two objects with
utility 3, one of utility 1, and one of utility 0, we would have
ωi(A) = (3,3,1,0).

Our inspiration for applying OWAs comes from a multi-
winner voting rule known as Proportional Approval Voting
(PAV) (Kilgour 2010; Aziz et al. 2015b; 2015a) and gener-
alizations studied in social choice (Faliszewski et al. 2017).
In approval voting settings, each agent can approve of as
many candidates as they wish. Under the standard approval
voting (AV) method, all approvals from each agent have the
same weight, though this is not always desirable (Aziz et
al. 2015b). It intuitively does not seem fair; once a can-
didate that you like has been selected your next candidate
in the winning set should seemingly count less. Hence in
PAV, which is designed to be more fair (Aziz et al. 2015a),
a voter’s first approval counts for a full point, the second for
1/2, the next for 1/3, etc.

We want to find a way to distribute objects to agents in a
“more fair” way inspired by PAV. If we desire to directly get
a rank maximal assignment, completely ignoring the utili-
ties, then we know this is polynomial by a result from Garg
et al. (2010). However we can use OWAs if we wish to mod-
ulate between using the utilities and using only the ranks.
We use the sum over all agents of OWAα(ω) = α ·ω as the
optimization criteria for the assignment.

We place some restrictions on our OWA vectors. Firstly,
the length of α needs to be at least as long as the maxi-
mum agent capacity,|α| ≥ argmaxi∈N(cN

max(i)), this is to en-
sure that α ·ω is well defined for every agent (we truncate
α if necssary). Typically the literature on OWAs assumes
that α is normalized, i.e., ∑1≤i≤K αi = 1. We do not enforce

1140

this convention as we wish to study the PAV setting with
α = (1, 1/2, . . .). This is formally a relaxation and we observe
that whether or not the OWAs are normalized does not affect
our computational results. However, we do require that our
OWA vector be non-increasing and that each entry be ≥ 0,
i.e., for any i, j ∈ [|α|], i < j we have αi ≥ α j ≥ 0. We will
discuss increasing OWA vectors in the experimental section.

Σ-OWA ASSIGNMENT
Input: Given an assignment setting (N,O,�,u,Δ)

with agent capacities [cN
min(i),c

N
max(i)]

for all i ∈ N, and object capacities
[cO

min(j),cO
max(j)] for all j ∈ O, and a

non-increasing OWA vector αi with
|α| ≥ max∀i∈N(cN

max(i)).
Question: Find a feasible assignment A such that

A = argmax
A∈A

|n|
∑
i=1

αi ·ωi(A).

In our formulation, the OWA operator is applied to the
vector of agent utilities and then we aggregate (or sum) these
modified utilities to give the assignment objective. Hence,
the Σ-OWA name. We observe that this formulation strictly
generalizes the utilitarian assignment objective; if we set
α = (1)n we recover the utilitarian assignment.

One may also wish to consider applying the OWA over
the sorted vector of total agent utility for their allocation,
which one could call the OWA-Σ version of our problem.
Indeed, this formulation of the problem has been consid-
ered before and proposed in the earliest writings on OWAs
for decision making (Yager 1988). Taking the OWA-Σ for-
mulation allows one to recover both the utilitarian assign-
ment, α = (1/n, . . . , 1/n), as well as the egalitarian assign-
ment, α = (0, . . . ,0n−1,1). However, because the OWA-Σ
formulation is a generalization of the egalitarian assignment,
it becomes NP-hard in general (Demko and Hill 1988).

We think of the α vector as a kind of control knob given
to the implementer of the market, allowing them to apply a
sub-linear transform to the agent utilities. This ability may
be especially useful when agents are free to report their (nor-
malized) utilities for ranks via bidding or other mechanisms
(Budish and Cantillon 2012). In many settings the utility
vector is controlled by the individual agents, while the OWA
vector is under the control of the market implementers. Con-
sider the following example.

Example 1 Consider a setting with four agents N =
{a1,a2,a3,a4} agents and four objects O = {o1,o2,o3,o4}.
For all agents let cN

min = cN
max = 2 and for all objects let

cO
min = cO

max = 2. For the Σ-OWA assignment, let α = (1, 1/2).

o1 o2 o3 o4
a1 11 9 0 0
a2 8 8 2 2
a3 7 7 3 3
a4 6 6 4 4

We get the following allocations.

Utilitarian: A(a1, :) = {o1,o2},u1(A) = 20; A(a2, :) =
{o1,o2},u2(A) = 16; A(a3, :) = {o3,o4},u3(A) = 6;
A(a4, :) = {o3,o4},u4(A) = 8;
∑i ui(A) = 50.
OWA with α = (1,1/2): A(a1, :) = {o1,o2},u1(A) = 20,
α · ω1 = 15.5; A(a2, :) = {o2,o3},u2(A) = 10,
α ·ω2 = 9.0; A(a3, :) = {o1,o4},u3(A) = 10, α ·ω3 = 8.5;
A(a4, :) = {o3,o4},u4(A) = 8, α ·ω4 = 5.0;
∑i ui(A) = 48.
Egalitarian: A(a1, :) = {o1,o4},u1(A) = 11; A(a2, :) =
{o2,o4},u2(A) = 10; A(a3, :) = {o2,o3},u3(A) = 10;
A(a4, :) = {o1,o3},u4(A) = 10; ∑i ui(A) = 41.

Inspecting the results of Example 1, we observe that in
the set of all utilitarian maximal assignments have a1 and
a2 each being assigned to o1 and o2, in the set of all Σ-
OWA maximal assignments a3 is assigned one of o1 or o2
while a2 is assigned one of o3 or o4, while in the set of all
egalitarian maximal assignments each of the agents receives
one of either o1 or o2 along with one of o3 or o4. Thus we
observe the following.

Observation 2 The set of assignments returned by each of
the three objective functions, utilitarian, egalitarian, and
OWA, can be disjoint.

There are instances where the set of Σ-OWA assignments
is the same as the set of egalitarian assignments, but dis-
joint from the set of utilitarian assignments. An interesting
direction for future work to fully characterize Σ-OWA as-
signments and discover OWA vectors with nice properties.

Pareto Optimality

An allocation S is more preferred by a given agent with re-
spect to pairwise comparisons than allocation T if S is a
result of replacing an object in T with a strictly more pre-
ferred object (Aziz et al. 2014). Note that we use the word
allocation to refer to the allocation to a single agent and as-
signment to all agents. Also note that the pairwise compar-
ison relation is transitive. An assignment is Pareto optimal
with respect to pairwise comparisons if there exists no other
assignment that each agent weakly prefers and at least one
agent strictly prefers.

Lemma 3 Consider an agent i and two allocations S and T
of equal size. Then if S is weakly preferred to T by i with re-
spect to pairwise comparison, then S yields at least as much
OWA value as T for any OWA vector no matter if it is in-
creasing or decreasing.

Proof: Note that S can be viewed as a transformation from T
where each object j is replaced by some other object j′ that
is weakly preferred. If the utility of j′ = j, then j′ is multi-
plied by the same entry of the OWA vector. If the utility of
j′ > j then j′ may rise in the weighted rank signature, be-
ing multiplied by a different entry in the OWA vector. How-
ever, since we sort this signature the values may only stay
the same or increase. Since the OWA transform is bilinear,
the total OWA score of S is at least as much as that of T . �

1141

N O

s

a1

a2

a3

an

Gadget a1

Gadget a2

Gadget a3

Gadget an

o1

o2

o3

om

t

C = [cN
min(1),c

N
max(1)]

C = [cN
min
(2),c

N
max(2

)]

C = [cN
min(3),c

N
max(3)]

C = [cN
min(n),c

N
max(n)]

...

...

...

...

C = [cO
min(1),c

O
max(1)]

C = [c O
min (2),c O

max (2)]

C = [cO
min(3),c

O
max(3)]

C = [cO
min(m),cO

max(m)]

Figure 1: Main gadget for the reduction which enforces the agent
and object capacity constraints.

Proposition 4 The Σ-OWA maximal assignment is Pareto
optimal with respect to pairwise comparison irrespective of
the OWA.

Proof: Assume for contradiction that a Σ-OWA maximal
assignment A is not Pareto optimal with respect to pairwise
comparisons. From Lemma 3, there exists another assign-
ment A′ that each agent weakly prefers and at least one agent
strictly prefers. But this means that in A′ each agent gets at
least as much OWA score and at least one agent gets strictly
more. This contradicts the fact that A is OWA maximal.
Lemma 3 applies here as we can enforce the assignments
to be the same size using the capacity constraints. �

An Algorithm for Σ-OWA assignments

We give an algorithm for finding Σ-OWA assignments using
flow networks. In this proof we use the most general for-
mulation of our problem by allowing the values of the up-
per and lower per-agent capacities, [cN

min(i),c
N
max(i)], to vary

for each agent; and the upper and lower object capacities,
[cO

min(j),cO
max(j)], to vary for each object.

Theorem 5 An Σ-OWA assignment can be found in polyno-
mial time.

Proof: We reduce our problem to the problem of finding a
minimum cost feasible flow in a graph with upper and lower
capacities on the edges, which is a polynomial time solvable
problem. In addition to being polynomial time solvable, we
know that the flow is integral as long as all edge capacities
are integral, even if we have real valued costs (Ahuja, Mag-
nanti, and B.Orlin 1993). Figures 1 and 2 provide a high
level view of the flow network that we will construct.

In Figure 1 we first build a tripartite graph with two sets
of nodes and one set of gadgets per agent: the agent nodes,
one for each agent ai; the agent gadgets, one (illustrated in
Figure 2) for each agent ai; and the object nodes, one for
each object o j. There is an edge from the source node s to
each of the agent nodes, each with cost 0, minimum flow ca-
pacity cN

min(i) and a maximum flow capacity cN
max(i). This set

of edges and nodes enforces the constraint that each ai has
capacity [cN

min(i),c
N
max(i)]. We also construct an edge from

each object node to the sink t. Each of these edges has a cost
0, a minimum capacity cO

min(j), and a maximum capacity
cO

max(j). This set of edges enforces the constraint that each
o j has capacity [cO

min(j),cO
max(j)].

We now turn to the agent gadget depicted in Figure 2 for
arbitrary ai. The leftmost node and the rightmost set of nodes

N O

ai

α1

α2

αd

o1α1

o2α1

o3α1

omα1

o1αd

o2αd

o3αd

omαd

aio1

aio2

aio3

aiom

o1

o2

o3

om

w=
−u i(

o 1)
·α 1

w =−ui(o2) ·α1

w =−ui(o3) ·α1

w =−ui (om) ·α1

w =
−ui(o

1)
·αd

w =−ui(o2) ·αd

w =−ui(o3) ·αd

w =−ui (om) ·αD

Figure 2: The per agent gadget. Note that all costs on edges are 0
and all capacities are [0,1] unless otherwise noted.

in Figure 2 correspond to the agent nodes N and object nodes
O in Figure 1, respectively. In each agent gadget we create
a tripartite sub-graph with the agent node ai serving as the
source and the set of object nodes O serving as the sinks.

We create three layers of nodes which we describe in turn
from left to right. First, we create a set of decision nodes
with labels α1, . . . ,αd where cN

max(i) ≤ d ≤ |α| = cN
max(a

′
i)

for some a′i with maximal capacity. We use d here to gen-
erally handle the case when some agent a′i has capacity
cN

max(ai) << cN
max(a

′
i) and hence we need to deal with a

longer α vector than the allowable capacity constraint al-
lows for agent ai. Intuitively, we will be multiplying the
OWA value α1 by the utility for some object, so we need
to keep track of all the values that could result. The arcs
from ai to each of the nodes in this set has upper capacity
1, minimum capacity 0, and cost 0. If we have the case that
cN

max(i)< d then we set the maximum capacity of the edges
to node(s) α j, j > cN

max(i) to 0. This enforces that each value
in the OWA vector can modify at most one utility value.

For each of the decision nodes α1, . . . ,αd constructed,
we create a set of object/decision nodes for each o j
which we denote o jαk. From each of the decision nodes
α1, . . . ,αd we create an edge to each of the object/decision
nodes created for this particular decision node αk, i.e.,
o1α1,o2α1, . . . ,omα1 for α1. Each of these edges has maxi-
mum capacity 1 and a cost equal to −1 ·ui(o j) ·α1 for rank
1 and object o j ∈ O. These costs are the (negative) cost that
matching agent ai with object o j at weighted rank dk con-
tributes to the OWA objective.

Finally, we create one set of agent/object nodes, one for
each o j denoted aio j. From all the object/decision nodes
we connect all nodes with a label of o j to the correspond-
ing agent/paper node, i.e., o1α1,o1α2, . . .o1αd all connect to
aio1 with cost 0 and maximum capacity 1. We then connect
the agent/object node to the corresponding object node in
the main construction from O, i.e., aio1 to o1 with cost 0 and
maximum capacity 1. This set of nodes and edges enforces
that each agent can be assigned each object once.

We can extract an assignment from the minimum cost fea-
sible flow by observing that paper o j is allocated to agent ai

1142

if and only if there is a unit of flow passing from the partic-
ular agent/object node aio j to the object node o j. We now
argue for the correctness of our algorithm in two steps, (1)
that all constraints for the Σ-OWA assignment problem are
enforced and (2) that a minimum cost feasible flow in the
constructed graph gives an Σ-OWA assignment. For (1) we
note that since the units of flow across the graph represent
the assignment and we have explained how the capacity con-
straints on all edges enforce each of the particular constraints
imposed by our definition of a feasible assignment, there is
a feasible flow iff the flow satisfies the constraints.

For (2) observe that for each agent, the α nodes fill with
flow in order from α1 to αd as the OWA vector is non-
increasing and the utilities are decreasing, i.e., for each
agent, the edge costs monotonically increase from the edges
associated with α1 to the edges associated with αd . Any unit
of flow from s to t must take the least cost (most negative)
path across the network that has remaining capacity. This
path will move through some agent gadget where it will
cross an edge associated with the smallest α value not yet
used. If this were not the case then we would end up select-
ing a path which assigned an object with higher utility to a
smaller α value than necessary, meaning the flow would no
longer be minimum cost. From the capacity constraints we
know there is only one unit of flow that enters each decision
node αi and there is only one unit of flow that can leave each
agent/paper node aio j. Hence, each αi can modify only one
o j and each o j selected must be unique for this agent.

As the decision nodes are filled in order and αi can only
modify the value for a single object, we know the total cost
of the flow across the agent gadget for each ai is equal to
−1 ·αi ·ωi. Hence, the price of the min cost flow across all
agents is equal to −1 ·∑∀i∈N αi ·ωi(A). Thus, the min cost
flow in the graph is an Σ-OWA assignment. �
Generalizations

We observe two possible generalizations of Theorem 5 that
allows us to use the construction for more general instances.
First, the construction can be generalized to allow for α to
vary for each agent. Observe that the decision nodes for each
agent ai are independent from all other agents. Thus, for
each agent (or a class of agents) we could use an OWA vec-
tor αai . This ability may be useful, e.g., when a group of
agents reports the same extreme utility distribution and the
organizer wishes to apply the same transform.

The second generalization that we can make to the above
construction is to allow each agent to be assigned to each
object more than once. While this ability does not make
sense in the reviewers/papers setting (unless there are sub
reviewers) there could be other capacitated assignment set-
tings where we may wish to assign the agents to objects mul-
tiple times e.g., if there are discrete jobs that need to be done
a certain number of times and a single agent can be assigned
the same job multiple times.

To generalize the capacity constraint from 1 for each
agent i for each object j we introduce a capacity upper bound
zi, j which encodes the number of times that agent i can be
assigned to object j. Taking zi, j = 1 for all i and j gives us
the original CPAP setting. In order to enforce this constraint,

within each agent gadget (Figure 2) we add a capacity con-
straint equal to zi, j from each edge aio j to o j. If we want a
lower bound for the number of copies of o j assigned to ai
we can encode this lower bound on this edge as well.

We can extract an assignment from the minimum cost fea-
sible flow by observing that paper o j is allocated to agent ai
zi j times if and only if there are units of flow passing from
the particular agent/object node aio j to the object node o j.
The argument for correctness follows exactly from the proof
of Theorem 5 above.

Corollary 6 An Σ-OWA assignment can be found in poly-
nomial time even if each agent ai has a unique OWA vector
αai and each object o j can be assigned to each agent ai any
number of times (not just once).

Experiments

We evaluate the quality of Σ-OWA using real-world data
from WWW.PREFLIB.ORG (Mattei and Walsh 2013). We
implemented the algorithm described in Theorem 5 using
networkX for Python and Lemon for C++. While the net-
work flow algorithm gives a nice theoretical proof of poly-
nomial solvability, it does not perform very well on practi-
cal instances. Instead, we modeled the problem as a MIP in
Gurobi 7.0 and it ran in under 1 minute for all instances and
settings using 4 cores. Our MIP is similar to the one given
by Skowron, Faliszewski, and Lang (2016). However, as
we have capacity constraints and individual/variable length
OWAs, our MIP is more general.

We introduce a binary variable xa,o indicating that agent a
is assigned object o as well as binary variable ra,o,p for the
OWA matrix which notes that agent a is assigned object o at
OWA rank p. Given this we maximize Σ-OWA utility using
αa as an OWA vector for each agent.

max ∑a∈A ∑o∈O,p∈P ua(o) ·αa
p · ra,o,p, s.t.

(1) cO
min(o)≤ ∑a∈A xa,o ≤ cO

max(o) ∀o ∈ O
(2) cN

min(a)≤ ∑o∈O xa,o ≤ cN
max(a) ∀a ∈ A

(3) ∑p∈P ra,o,p ≤ 1 ∀a ∈ A,∀o ∈ O
(4) ∑o∈O ra,o,p ≤ 1 ∀a ∈ A,∀p ∈ P
(5) ∑p∈P ra,o,p ≥ xa,o ∀a ∈ A,∀o ∈ O
(6) ∑o∈O ra,o,p ≥ ∑o∈O ra,o,p+1 ∀a ∈ A,∀p ∈ P
(7) ∑o∈O ra,o,p ·ua(o)≥ ∑o∈O ra,o,p+1 ·ua(o) ∀a ∈ A,∀p ∈ P

Constraints (1)–(4) enforce the cardinality constraints on
the agents, objects, and OWA rank matrix. Constraint (5)
links the agent and object assignments to be positions in the
OWA rank matrix. Line (6) enforces that the rank matrix fills
from the first position to the cN

max position. And finally (7)
enforces that the Σ-OWA value of the assignment positions
in the rank matrix must be decreasing. We then maximize
the sum over all agents of the OWA objective value.

We focus our discussion on MD-00002-00000003 from
PREFLIB which is the largest dataset available.This dataset
contains 146 agents and 175 objects. We evaluate the utili-
tarian, egalitarian, and Σ-OWA assignments when each ob-
ject must receive 3–4 reviews and each agent must review
6–7 objects. In the data, each agent sorts the papers into 4
equivalence classes which we gave utility values (5,3,1,0).
We study three different OWA vectors and their reversals
such that they are increasing or decreasing: (1) the Harmonic

1143

(a) Decreasing OWA Vectors (b) Increasing OWA Vectors

Figure 3: Count of agents receiving x top ranked papers and the cumulative distribution function (CDF) for the number of agents being
assigned x top ranked objects for decreasing OWAs (left) and increasing OWAs (right). Though 100% of the agents receive between 1 and
5 top ranked objects for the egalitarian and Σ-OWA assignments (CDF), the most agents receive the most top ranked objects under the
decreasing Linear OWA assignment. More agents receive fewer top ranked objects than under the increasing vectors.

Mean Hoover Gini

Utilitarian 21.71 (4.59) 0.0916 0.1184
Egalitarian 19.12 (1.13) 0.0234 0.0315

Inc. Harmonic OWA 18.99 (3.43) 0.0680 0.0961
Inc. Geometric OWA 18.52 (3.00) 0.0626 0.0841
Inc. Linear OWA 18.38 (2.75) 0.0617 0.0793

Dec. Harmonic OWA 17.92 (2.90) 0.0643 0.0831
Dec. Geometric OWA 17.74 (2.77) 0.0667 0.0819
Dec. Linear OWA 16.25 (2.51) 0.0576 0.0797

Table 1: Mean utility (and standard deviation) per agent with the
Hoover and Gini indices over all assignment objectives for the real-
world data. The decreasing OWA vectors are strictly better in terms
of maximizing fairness under both indices with the decreasing Lin-
ear OWA being the most fair besides the egalitarian objective.

OWA vector (1,1/2, 1/3, . . .) which has provably nice fair-
ness properties in the multi-winner setting (Faliszewski et al.
2017), the Geometric OWA vector (1, 1/2, 1/4, 1/8 . . .) which
is a steeper redistribution function, and a Linear OWA where
for a vector of length n we have a linear spaced vector be-
tween 1 and 0, e.g., n = 4 gives (1, 2/3, 1/3,0).

Figure 3 shows the counts and the cumulative distribu-
tion function (CDF) for the number of top ranked objects
the agents receive. On the left side, we see that ≈ 70 agents
receive 5 top ranked papers under the decreasing Harmonic
and Geometric OWA assignment but ≈ 85 agents receive 4
top ranked objects under the Linear OWA assignment. For
the increasing OWA papers the performance is the same
across all OWA vectors checked. Under the utilitarian as-
signment, several agents receive an entire set of top ranked
objects, while the egalitarian assignment modulates this so
that most agents only receive 3–4 top ranked objects. In con-
trast, all Σ-OWA assignments are balanced between these
with the most agents receiving 5 top ranked objects.

Table 1 shows the mean and standard deviation for the
agent utilities and fairness scores. Looking first at the egali-
tarian objective we see that the mean agent utility is indeed
quite high and from investigating the standard deviation,

quite tightly packed together. This is also seen when look-
ing at both the Hoover and the Gini index, which are both
significantly lower for the egalitarian objective than they are
for the utilitarian objective. Using the fairness criteria as a
measure it is easy to see that the decreasing OWA vectors
are all strictly more fair than the increasing versions. Either
increasing or decreasing, the Σ-OWA assignments are more
fair than the utilitarian assignment. Hence, an important di-
rection is to establish what OWA vectors are best.

Conclusions

We propose and provide algorithms for the novel notion of
Σ-OWA assignments that give a central organizer a “slider”
to efficiently transition from utility maximizing to rank max-
imal assignments. Finding axiomatic characterizations for
good OWA vectors and to fully understand the difference
between increasing and decreasing OWA vectors are impor-
tant next steps. It is generally the case that reviewers want
to review fewer, not more, papers. It would be interesting to
study CPAP from the point of view of chores, as they are
called in the economics literature.

Acknowledgements

We thank Haris Aziz, Serge Gaspers, and Joachim Gud-
mundsson for their helpful discussions. Data61 is supported
by the Australian Government through the Department
of Communications and the Australian Research Council
through the ICT Centre of Excellence Program. Toby Walsh
is supported by the European Research Council and by
AOARD Grant FA2386-12-1-4056.

References

Ahmed, F.; Dickerson, J. P.; and Fuge, M. 2017. Diverse
weighted bipartite b-matching. In Proc. of the 26th IJCAI.
Ahuja, R. K.; Magnanti, T. L.; and B.Orlin, J. 1993. Network
Flows: Theory, Algorithms, and Applications. Prentice Hall.
Amendola, G.; Dodaro, C.; Leone, N.; and Ricca, F. 2016.
On the application of answer set programming to the confer-

1144

ence paper assignment problem. In Proc. of the 15th AI*IA
Conference. 164–178.
Aziz, H.; Gaspers, S.; Mackenzie, S.; and Walsh, T. 2014.
Fair assignment of indivisible objects under ordinal prefer-
ences. In Proc. of the 13th AAMAS Conference, 1305–1312.
Aziz, H.; Brill, M.; Conitzer, V.; Elkind, E.; Freeman, R.;
and Walsh, T. 2015a. Justified representation in approval-
based committee voting. In Proc. of the 29th AAAI Confer-
ence.
Aziz, H.; Gaspers, S.; Gudmundsson, J.; Mackenzie, S.;
Mattei, N.; and Walsh, T. 2015b. Computational aspects of
multi-winner approval voting. In Proc. of the 14th AAMAS
Conference.
Aziz, H.; Lev, O.; Mattei, N.; Rosenschein, J. S.; and Walsh,
T. 2016. Strategyproof peer selection: Mechanisms, analy-
ses, and experiments. In Proc. of the 30th AAAI Conference.
Bouveret, S., and Lemaı̂tre, M. 2016. Characterizing
conflicts in fair division of indivisible goods using a scale
of criteria. Autonomous Agents and Multi-Agent Systems
30(2):259–290.
Bouveret, S.; Chevaleyre, Y.; and Lang, J. 2016. Fair allo-
cation of indivisible goods. In Brandt, F.; Conitzer, V.; En-
driss, U.; Lang, J.; and Procaccia, A. D., eds., Handbook of
Computational Social Choice. Cambridge University Press.
chapter 12, 284–311.
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procac-
cia, A. D., eds. 2016. Handbook of Computational Social
Choice. Cambridge University Press.
Budish, E., and Cantillon, E. 2012. The multi-unit assign-
ment problem: Theory and evidence from course allocation
at harvard. The American Economic Review 102(5):2237–
2271.
Charlin, L., and Zemel, R. S. 2013. The Toronto paper
matching system: an automated paper-reviewer assignment
system. In Proc. of the ICML Workshop on Peer Reviewing
and Publishing Models (PEER).
Charlin, L.; Zemel, R. S.; and Boutilier, C. 2012. A frame-
work for optimizing paper matching. CoRR abs/1202.3706.
Conry, D.; Koren, Y.; and Ramakrishnan, N. 2009. Recom-
mender systems for the conference paper assignment prob-
lem. In Proc. of the 3rd ACM RecSyS, 357–360.
Demko, S., and Hill, T. P. 1988. Equitable distribution of
indivisible objects. Mathematical Social Sciences 16:145–
158.
Dickerson, J. P.; Procaccia, A. D.; and Sandholm, T. 2014.
Price of fairness in kidney exchange. In Proc. of the 13th
AAMAS Conference, 1013–1020.
Elkind, E., and Ismaili, A. 2015. Owa-based extensions
of the Chamberlin-Courant rule. In Proc. of the 4th ADT
Conference, 486–502.
Elkind, E.; P.; Faliszewski; Skowron, P.; and Slinko, A.
2014. Properties of multiwinner voting rules. In Proc. of
the 13th AAMAS Conference, 53–60.
Faliszewski, P.; Skowron, P.; Slinko, A.; and Talmon,

N. 2017. Multiwinner rules on paths from k-borda to
chamberlin–courant. In Proc. of the 26th IJCAI.
Fishburn, P. C. 1974. Lexicographic orders, utilities and
decision rules: A survey. Management science 20(11):1442–
1471.
Garg, N.; Kavitha, T.; Kumar, A.; Mehlhorn, K.; and Mestre,
J. 2010. Assigning papers to referees. Algorithmica
58(1):119–136.
Golden, B., and Perny, P. 2010. Infinite order lorenz dom-
inance for fair multiagent optimization. In Proc. of the 9th
AAMAS Conference, 383–390.
Goldsmith, J., and Sloan, R. 2007. The AI onference paper
assignment problem. In Proc. of the 22nd AAAI Conference-
Workshop on Preference Handling for Artificial Intelligence
(MPREF).
Goldsmith, J.; Lang, J.; Mattei, N.; and Perny, P. 2014. Vot-
ing with rank dependent scoring rules. In Proc. of the 28th
AAAI Conference, 698–704.
Kilgour, D. M. 2010. Approval balloting for multi-winner
elections. In Handbook on Approval Voting. Springer.
Klaus, B.; Manlove, D. F.; and Rossi, F. 2016. Matching
under preferences. In Brandt, F.; Conitzer, V.; Endriss, U.;
Lang, J.; and Procaccia, A. D., eds., Handbook of Compu-
tational Social Choice. Cambridge University Press. chap-
ter 14, 333–356.
Long, C.; Wong, R.; Peng, Y.; and Ye, L. 2013. On good
and fair paper-reviewer assignment. In Proc. of the 13th
IEEE ICDM, 1145–1150.
Manlove, D. 2013. Algorithmics of Matching Under Prefer-
ences. World Scientific.
Mattei, N., and Walsh, T. 2013. Preflib: A library for prefer-
ences, http://www.preflib.org. In Proc. of the 3rd ADT Con-
ference, 259–270.
Merrifield, M. R., and Saari, D. G. 2009. Telescope time
without tears: a distributed approach to peer review. Astron-
omy & Geophysics 50(4):4–16.
Price, S., and Flach, P. A. 2016. Computational support for
academic peer review: A perspective from artificial intelli-
gence. CACM 60(3):70–79.
Rawls, J. 1971. A Theory of Justice. Harvard University
Press.
Roth, A. E., and Sotomayor, M. A. O. 1992. Two-Sided
Matching: A Study in Game-Theoretic Modeling and Analy-
sis. Cambridge University Press.
Schneckenburger, S.; Dorn, B.; and Endriss, U. 2017. The
atkinson inequality index in multiagent resource allocation.
In Proc. of the 16th AAMAS Conference.
Skowron, P.; Faliszewski, P.; and Lang, J. 2016. Find-
ing a collective set of items: From proportional multi-
representation to group recommendation. AIJ 241:191–216.
Yager, R. 1988. On ordered weighted averaging aggrega-
tion operators in multicriteria decisionmaking. IEEE Trans-
actions on Systems, Man and Cybernetics 18(1):183–190.

1145

