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Abstract

Research has shown that a person’s financial success is more
dependent on the ability to deal with people than on pro-
fessional knowledge. Sage advice, such as “if you can’t say
something nice, don’t say anything at all” and principles ar-
ticulated in Carnegie’s classic How to Win Friends and In-
fluence People, offer trusted rules-of-thumb for how people
can successfully deal with each other. However, alternative
philosophies for dealing with people have also emerged. The
success of an AI system is likewise contingent on its ability to
win friends and influence people. In this paper, we study how
AI systems should be designed to win friends and influence
people in repeated games with cheap talk (RGCTs). We cre-
ate several algorithms for playing RGCTs by combining ex-
isting behavioral strategies (what the AI does) with signaling
strategies (what the AI says) derived from several competing
philosophies. Via user study, we evaluate these algorithms in
four RGCTs. Our results suggest sufficient properties for AIs
to win friends and influence people in RGCTs.

Introduction

In his classic book How to Win Friends and Influence Peo-
ple, Dale Carnegie argued that a person’s financial success is
impacted more by the ability to “deal with people” than by
professional knowledge (Carnegie 1937, p. 15)1. However,
so-called people skills are not easy to come by. For many
of us, it takes years (and even a lifetime) of guidance and
practice to learn the “fine art” of getting along with others,
particularly in situations in which other people’s interests are
not fully aligned with our own.

As AI matures, autonomous agents will perform more
tasks in behalf of their human stakeholders. Many of these

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Carnegie’s full statement is worth noting: “Dealing with peo-
ple is probably the biggest problem you face, especially if you are
in business. Yes, and that is also true if you are a housewife, archi-
tect or engineer. Research done a few years ago under the auspices
of the Carnegie Foundation for the Advancement of Teaching un-
covered a most important and significant fact–a fact later confirmed
by additional studies made at the Carnegie Institute of Technology.
These investigations revealed that even in such technical lines as
engineering, about 15 percent of one’s financial success is due to
one’s technical knowledge and about 85 percent is due to skill in
human engineering–to personality and the ability to lead people.”

tasks will require these agents to repeatedly interact with
other people (apart from their stakeholders) who may not
share all of their preferences. To be successful in such sce-
narios, autonomous agents must, like humans, be able to win
friends and influence people.

In this paper, we study how an AI can develop success-
ful long-term relationships, modeled as repeated games with
cheap talk (RGCTs), with people. Dealing successfully with
people, we argue, entails two properties. First, a successful
AI should obtain high material payoffs for its stakeholder,
which requires it to effectively influence the behavior of peo-
ple with whom it interacts. We refer to this property as influ-
encing people. Second, a successful AI should win friends,
meaning that the people with whom it interacts should both
think highly of it and desire to continue associating with it.
In short, the success of an AI in RGCTs is determined by its
ability to both win friends and influence people.

An AI’s ability to win friends and influence people in
RGCTs depends on both its behavioral strategy (what it
does) and its signaling strategy (what it says). While be-
havior generation in repeated games has been well studied,
effectively signaling in RGCTs is less understood. To begin
to address this shortcoming, we derive several algorithms
for RGCTs by combining existing behavioral strategies with
signaling strategies based on known philosophies for deal-
ing with people, including Thumper’s Rule (if you can’t say
something nice, don’t say anything at all), Carnegie’s Princi-
ples (Carnegie 1937), and other alternative theories. Via user
studies, we then evaluate the abilities of these algorithms to
win friends and influence people across four RGCTs.

This paper has two primary contributions. First, we pro-
pose that, when interacting with people in RGCTs, algo-
rithms should be evaluated with respect to both winning
friends and influencing people, rather than the single met-
ric class (payoff maximization) traditionally considered in
repeated games. Second, our results suggest sufficient prop-
erties for winning friends and influencing people in RGCTs.
These results show that an algorithm that (1) quickly learns
an effective behavioral strategy while using a signaling strat-
egy built on both (2) Carnegie’s Principles and (3) explain-
able AI (XAI) (Gunning 2016) was more successful at win-
ning friends and influencing people than algorithms that
lacked any of those characteristics. This finding has impor-
tant implications for the design of algorithms that interact
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(a) Prisoner’s Dilemma
X Y

A 60, 60 0, 100
B 100, 0 20, 20

(b) Chicken
X Y

A 0, 0 100, 33
B 33, 100 84, 84

(c) Alternator Game
X Y Z

A 0, 0 35, 70 100, 40
B 70, 35 10, 10 45, 30
C 40, 100 30, 45 40, 40

(d) Endless
X Y

A 33, 67 67, 100
B 0, 33 100, 0

Table 1: Payoff matrices of four normal-form games. In each
round, Player 1 selects the row, while Player 2 selects the
column. The resulting cell of the matrix specifies the payoffs
obtained by players 1 and 2, respectively, in the round.

with people who do not share the AI’s preferences.

Repeated Games with Cheap Talk

We study repeated interactions between an AI and a person.
In behavioral economics, mathematical biology, psychology,
sociology, and political science, associations between in-
telligent entities are commonly modeled with normal-form
games. Thus, repeated normal-form games are a natural set-
ting to study long-term relationships between a human and
an AI when their preferences are not fully aligned.

A two-player repeated normal-form game, played by
players i and −i, proceeds as a sequence of rounds. In each
round, each player chooses an action from a finite set. Let
A = Ai × A−i be the set of joint actions available, where
Ai and A−i are the action sets of players i and −i, respec-
tively. When joint action a = (ai, a−i) ∈ A is played, the
players receive the finite rewards ri(a) and r−i(a), respec-
tively. In this paper, we assume perfect information games,
wherein the players are aware of the actions and payoffs of
both players. We also assume that the number of rounds in
the game is unknown to both players.

Examples of normal-form games are shown in Table 1.
While each game models a different conflict between the
players, each game requires the players to decide whether to
try to cooperate with their partner, exploit their partner, or
defend themselves against being exploited.

Though repeated normal-form games provide a natural
setting for studying human-AI partnerships, they do not fa-
cilitate an important aspect of many human relationships–
the ability to communicate using cheap talk, which is a
costless, non-binding, and unverifiable form of communi-
cation. Cheap talk has been shown to facilitate cooperation
in repeated games played by human players (Charness and
Grosskopf 2004; Crawford 1998; Crawford and Sobel 1982;
Farrell 1987; Farrell and Rabin 1996; Green and Stokey
2007). In this paper, we consider how to create autonomous
agents that can use such communication to cooperate with
people in repeated games with cheap talk (RGCTs).

In each round of an RGCT, each player sends a message to
its partner before acting. That is, at the beginning of round t,
player i sends message mi(t) to player −i, who simultane-

ously sends messages m−i(t) to i. Only after sending mi(t)
can i view m−i(t) (and vice versa). The players then select
actions for the round as in conventional repeated games.

Thus, a strategy in an RGCT is a combination of a sig-
naling and a behavioral strategy. Let Mi be the (possibly
infinite) set of messages available to player i. Then, let φt

i
be a probability distribution over Mi denoting player i’s sig-
naling policy in round t, and let πt

i be a probability distribu-
tion over Ai denoting player i’s behavioral policy in round t.
Then, the tuple (φt

i, π
t
i) is player i’s policy in round t. Since

players should likely respond to past messages and actions
used by their partner, player i’s policy (φt

i, π
t
i) in round t is

likely contingent on some or all of the history of the game,
which is defined by the messages and actions taken by both
players in all previous rounds. Thus, player i’s strategy is de-
fined by the policy it would use in all possible game states,
where game states are defined by the full history of the game.

Evaluating Algorithms in RGCTs

A successful algorithm should maximize the utilities of
players that use it. However, in RGCTs played with people,
it is sometimes unclear what to maximize. In such scenarios,
we argue that algorithms should be evaluated in terms of two
sets of metrics: influencing people and winning friends.

Influencing People

Metrics for influencing people measure an algorithm’s abil-
ity to influence its partner’s behavior so that it achieves
high rewards. One direct metric of influence, which we
call Partner Cooperation, is the proportion of rounds that
the algorithm’s partner cooperates with it. We say that
player −i cooperates with player i in round t if at−i ∈
argmaxb∈A−i ri(a

t
i, b), where at−i is the action taken by

player −i in round t. In words, player −i cooperated in
round t if its action maximized the reward received by player
i in round t given the action played by i.

Since influence typically leads to high payoffs, the total
reward, called material payoff, achieved by a player through-
out a repeated game, is an alternative, but less direct, metric
of influence. Player i’s material payoff in an RGCT with T
rounds is its average per-round payoff Ui. Let rti be player
i’s reward in round t. Then, Ui =

1
T

∑T
t=1 r

t
i .

Traditionally, success in repeated games has been defined
by the ability to maximize payoffs. However, since achiev-
ing, defining, and measuring optimal behavior in repeated
games is difficult (Axelrod 1984; de Farias and Megiddo
2004; Crandall 2014), much work has focused on developing
algorithms that meet certain criteria, such as convergence
to Nash equilibria (Fudenberg and Levine 1998; Hu and
Wellman 1998; Littman 2001; Bowling and Veloso 2002)
or Pareto optimal solutions (Powers and Shoham 2005),
minimizing regret (Foster and Vohra 1999; Bowling 2004;
Greenwald and Jafari 2003; Fudenberg and Levine 1998),
and being secure (Fudenberg and Levine 1998; Powers and
Shoham 2005). Despite the appeal of these metrics, we do
not consider them in this paper since they often do not cor-
relate with high material payoffs (de Farias and Megiddo
2004; Arora, Dekel, and Tewari 2012; Crandall 2014).
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Winning Friends

Metrics of winning friends measure social consequences not
necessarily reflected in a single repeated game. Many AIs
repeatedly interact with many different people. People’s per-
ceptions of the AI determine whether they encourage others
to enter into relationships with the AI. Furthermore, in prac-
tice, people often can choose whether or not they continue
associating with the AI. As such, human perceptions of the
AI could be as important (or even more so) than the actual
payoffs obtained by the AI in any given RGCT.

We measure an AI’s ability to win friends in two ways.
First, we measure how much people want to continue asso-
ciating with it using the Attraction Index, a metric derived
from responses of human participants in user studies. Af-
ter participants play an RGCT, we ask them if they would
like to interact with their partner again. Agn(j) = 1 if
the participant answered yes after associating with player j,
and Agn(j) = 0 otherwise. Additionally, after a participant
plays four RGCTs (each with a different partner), we ask
them which of their partners was their favorite. Fav(j) = 1
if the participant chose player j, and Fav(j) = 0 otherwise.
Then, the Attraction Index of player j as assessed by the par-
ticipant is Agn(j)+Fav(j). Higher average values over all
participants indicate a greater ability to maintain friends.

Second, we measure the character reputation the AI forges
with human partners. To do this, we ask participants to rate
their partners (on a 5-point Likert scale) with respect to eight
attributes: likable, intelligent, cooperative, trustworthy, for-
giving, selfish, vengeful, and tendency to bully. To summa-
rize the AI’s ability to create a positive character reputation,
we average all eight ratings, inverting the last three negative
attributes. We call this metric the Character Index.

Algorithms for RGCTs

Many algorithms have been proposed and analyzed for re-
peated games (Bouzy and Metivier 2010; Hoen et al. 2006;
Shoham, Powers, and Grenager 2007; Hernandez-Leal et al.
2017). RGCTs have been less studied. Most work in RGCTs
has been limited to human-human interactions (Charness
and Grosskopf 2004; Crawford 1998; Crawford and So-
bel 1982; Farrell 1987; Farrell and Rabin 1996; Green
and Stokey 2007). However, a new algorithm, called S#,
was recently shown to match human cooperation in several
RGCTs (Oudah et al. 2015; Crandall et al. 2017). While this
prior work demonstrated that a particular signaling and be-
havioral strategy could induce people to cooperate with an
AI, it did not thoroughly study what makes the algorithm
successful. Thus, in this paper, we study how various behav-
ioral and signaling strategies jointly impact an AI’s ability to
both win friends and influence people by comparing the per-
formance of a variety of algorithms via user studies. These
algorithms are formed by combining together two existing
behavioral strategies with various signaling strategies.

Selected Behavioral Strategies

From the many algorithms that have been created for re-
peated games, we selected S++ (Crandall 2014) and EEE (de
Farias and Megiddo 2004) to generate behavioral strategies

Table 2: Algorithmic events and corresponding speech cate-
gories. Table 4 maps these speech categories to speech acts.

Algorithmic Events
Speech

Category

Select a new behavioral strategy 0-4
Accept the partner’s proposal 5
Reject the partner’s proposal (due to distrust) 6
Reject the partner’s proposal (it seems unfair) 7
Belief that both players can get higher payoffs 8
The partner defected 9
The partner profited from its defection 10
The alg. punished its guilty partner 11
The alg. forgives its partner 12
Last round’s payoff was satisfactory to the alg. 13
The game begins; the alg. is initialized. 14

due to their distinct behavior and performance attributes.
Both algorithms are expert algorithms that pre-compute a
set of expert strategies from the game’s payoff matrix, and
then learn over time which expert strategy to follow. S++
uses an enhanced version of aspiration-learning (Karandikar
et al. 1998) to choose among these experts. We selected
this algorithm because it was the highest performing algo-
rithm in a recent comparison of 25 algorithms in repeated
games (Crandall et al. 2017). It often quickly learns to re-
ciprocate defection and cooperation, and to convey a fair and
demanding expectation to its partner. Our implementation of
S++ was identical to the implementation used by Crandall et
al. (2017).

On the other hand, EEE uses an ε-greedy mechanism for
selecting which expert to follow in each round. In the same
comparison of 25 algorithms for repeated games, it had a
lower, but still adequate, level of performance than S++.
EEE is more lenient toward its partner than S++, as (partic-
ularly during early rounds of a game) it can be convinced to
follow experts that produce higher payoffs to its partner than
to itself. As such, its partners tend to receive higher payoffs
than S++’s. Details of our implementation of EEE are given
in the supplementary material.

While these two algorithms differ with respect to both be-
havior and performance, both algorithms produce coherent
strategies within a relatively small number of rounds of in-
teraction. This makes these algorithms potentially accept-
able for interacting with people.

Adding Signaling Strategies

S++ and EEE are both designed for repeated games. They
are not equipped for RGCTs, as they do not produce or re-
spond to cheap talk. However, recent work (Oudah et al.
2015; Crandall et al. 2017) provides one mechanism for gen-
erating and responding to speech acts using existing behav-
ioral strategies. In that work, S++’s internal state is used
to identify game-invariant algorithmic events (Table 2) re-
lated to proficiency assessment, fairness assessment, behav-
ioral expectations, and social mechanisms such as punish-
ment and forgiveness. This algorithm is called S#. In the
same way, EEE can also be used to identify the same game-
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Table 3: A subset of Carnegie’s Principles (Carnegie 1937),
grouped and reworded for brevity.

ID Carnegie’s Principles

A Don’t criticize, condemn, or complain.

B If you must, call attention to other people’s mistakes
indirectly. Make a fault seem easy to correct.

C Give sincere appreciation. Praise improvements.
D Talk in terms of the other person’s interest.
E Be sympathetic with the other person’s ideas and desires.
F If you’re wrong, admit it quickly and emphatically.
G Begin in a friendly way.
H Ask questions instead of giving direct orders.
I Let the other person feel the idea is his or hers.
J Give the other person a fine reputation to live up to.

invariant algorithmic events from which speech acts can be
generated and from which the proposal of one’s partner can
be used to select actions (see the supplementary material).
We refer to this new algorithm as EEE#. S# and EEE# dif-
fer from S++ and EEE only with respect to their ability to
generate and respond to speech acts.

By mapping game-invariant algorithmic events to speech
categories (Table 2), behavioral strategies identify cheap talk
that is consistent with the algorithm’s internal state. To com-
plete the signaling strategy, we need only specify speech acts
for each speech category. We create distinct signaling strate-
gies by varying the speech acts in each speech category.

We consider four different signaling strategies, which we
refer to as personas. Rather than basing signaling strategies
on emotion (Breazeal and Scassellati 1999) or personality
taxonomies (von der Putten, Kramer, and Gratch 2010), we
derives these personas from four popularized rules-of-thumb
defining how successful people should treat each other.
The first of these personas is derived from the principles
presented in Dale Carnegie’s classic How to Win Friends
and Influence People (Carnegie 1937). These principles are
summarized in Table 3. We call this persona CARNEGIE.
CARNEGIE seeks to avoid criticizing, complaining, or con-
demning its partners, while respectfully building them up.
Table 4 lists an example speech act for each speech cate-
gory used by CARNEGIE. The table also indicates how each
speech act relates to Carnegie’s Principles in Table 3.

While Carnegie’s Principles have been widely accepted as
winning principles for dealing with people, a counter-culture
is prevalent in society. For example, it has become somewhat
commonplace for politicians, many of whom would be con-
sidered successful by many standards, to criticize and be-
little their political opponents and associates. This counter-
culture eschews political correctness in favor of bluntness
(perhaps because there is no time for such niceties), seeks
to pull others down rather than build them up, and promotes
one’s own self. In short, this counter-culture espouses prin-
ciples opposite to Carnegie’s Principles.

To learn how adopting this philosophy impacts an AI’s
ability to win friends and influence people, we created a
second signaling strategy that seeks to emulate it. We call

this persona BIFF2 after the fictional character Biff Tan-
nen in Back to the Future. BIFF belittles its partner, blames
its partner for undesirable outcomes, takes credit for good
outcomes, and talks in terms of its own interests. Example
speech acts for BIFF are also given in Table 4.

Our third persona, which also contrasts BIFF, adheres to
Thumper’s Rule as expressed in the Disney film Bambi: “If
you can’t say something nice, don’t say anything at all.”
While BIFF says things that are not nice, this third persona,
called THUMPER, refrains from saying anything at all. Thus,
algorithms that use this persona listen to their partner, but are
nonverbal. They do not generate speech acts themselves.

Finally, while CARNEGIE and BIFF both express emo-
tions and opinions through speech acts, our fourth persona
does not. This persona, named SPOCK after the fictional Star
Trek character, encodes a stereotypical robot that expresses
facts, but not emotions and opinions. Though SPOCK does
not express appreciation or build others up, it adheres to sev-
eral of Carnegie’s Principles (Table 3), particularly with re-
gards to not criticizing, condemning, or complaining.

We combined the two selected behavioral strategies with
each of the four personas to form eight distinct algo-
rithms, which we refer to as S#-CARNEGIE, S#-BIFF,
S#-THUMPER, S#-SPOCK, EEE#-CARNEGIE, EEE#-BIFF,
EEE#-THUMPER, and EEE#-SPOCK. In the next section, we
describe a user study designed to evaluate how well these al-
gorithms win friends and influence people.

User Study 1

In this user study, participants played RGCTs with the eight
algorithms described in the previous section. We describe
the experimental design of the study, followed by the results.

Experimental Design

The user study was a 2×4 mixed factorial design in
which behavioral strategy (S# and EEE#) was a between-
subjects variable and persona (CARNEGIE, BIFF, SPOCK,
and THUMPER) was a within-subjects variable.

Experimental Protocol Ninety-six people (average age:
26.7 years) at Masdar Institute (Abu Dhabi, UAE) volun-
teered to participate in this study. Each participant was ran-
domly assigned to play RGCTs with either S# or EEE#, such
that 48 subjects were assigned to each condition. Each par-
ticipant played the four RGCTs shown in Table 1 in the or-
der shown in the table. In each game, the participant was
paired with a different persona, though they were not told if
they were paired with another person or an AI. The order the
participants were exposed to the personas was fully counter-
balanced across participants to nullify ordering effects.

The games were played through a GUI on a desktop com-
puter. Participants were first trained on how to play the game
through the GUI, of which a full description is provided
in the supplementary material. At the start of each round,
the participant created and sent a chat message to the other

2We use the names of fictional characters from popular films to
help the reader remember the signaling strategies.
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Table 4: Example speech acts for the signaling strategies CARNEGIE, SPOCK, and BIFF for each speech category (Table 2). The
full set of speech acts for each category is given in the supplementary material. CP denotes the Carnegie Principles (partially)
invoked by a speech act (Table 3). ¬ denotes that the speech act directly contradicts a principle.

Cat. Example speech acts for CARNEGIE Example speech acts for SPOCK Example speech acts for BIFF

0 Let’s always play <solution>. Let’s always play <solution>. Let’s always play <solution>.

1
Let’s alternate between <solution> and
<solution>.

Let’s alternate between <solution> and
<solution>.

Let’s alternate between <solution> and
<solution>.

2 This round, let’s play <solution>. This round, let’s play <solution>. This round, let’s play <solution>.

3 if we can agree, we’ll both benefit. (CP: D)
u will get punished if u don’t follow this plan. (CP:
D)

listen to me or U WILL REGRET BEING BORN.
(CP: ¬A, ¬H)

4
let’s explore other options that may be better for us.
(CP: A, D)

I am going to explore other options. (CP: A)
... sigh, u aren’t letting me get as many points as I
deserve. (CP: ¬A, ¬D)

5
good idea. as expected from a generous person like
u. I accept your proposal. (CP: I, J)

I accept your proposal.
even u managed to see the obvious. I accept your
proposal. (CP: ¬I)

6
good proposal. if u show that u are trustworthy, I
will consider accepting it in the future. (CP: B, D, J)

I don’t accept your proposal. (CP: A) u r SLEAZY. Can’t trust u. (CP: ¬A, ¬B, ¬E)

7
a fairer proposal would work to your benefit. (CP:
A, B, D)

I don’t accept your proposal. (CP: A)
as for your proposal: r u kidding me? it is very
unfair! VERY unfair!! (CP: ¬A, ¬B, ¬E)

8 your payoffs can be higher than this. (CP: A, B, D) we can get higher payoffs than this. (CP: A, B, D) I need u to listen to me. (CP: ¬D)

9
what u did is totally understandable, though it will
not benefit u in the long run. (CP: D, E)

that was not what I expected. (CP: A, B)
selfish traitor! you’ve treated me very unfairly. (CP:
¬A, ¬D, ¬J)

10
in the next round comes the expected penalty, but we
can then return to cooperating. (CP: A)

I will punish u for this. (CP: D) u will regret having backstabbed me. (CP: ¬A, ¬E)

11 I’m really sorry I had to do that. (CP: F) I punished u. (CP: D)
THAT was exactly what the likes of u deserve. (CP:
¬C)

12
let’s move on. I am sure we can get along. (CP: A,
B)

I am done punishing u. (CP: D)
u have been unimaginably selfish, but I will look
past it for now. (CP: ¬A, ¬B, ¬E, ¬I)

13 excellent! Thanks for cooperating with me. (CP: C) I make great deals. (CP: ¬I)

14
Hey there! What do you think would be a fair
outcome? (CP: G, H)

Hello, I would like to make lots of money in this
game. (CP: ¬D)

player (the computer algorithm). Participants could say any-
thing they wanted, except that they were not allowed to re-
veal or try to determine the identify of their partner through
these messages. After sending the message, the chat mes-
sage sent by the participant’s partner was displayed on the
GUI and spoken to the participant over headsets using a
computerized voice. The participant then selected an action
and viewed the results of the round of play. This process
continued for 50 rounds, though neither player was told how
many rounds the game would last to avoid end-game effects.
After each game, participants completed a survey, which
asked questions related to the Attraction and Character In-
dices described previously.

Participants were told that they would be paid proportion-
ally to the rewards they received in the games they played.
Overall, participants typically received between $15-25 de-
pending on performance. The amount of money earned by
participants was displayed on the GUI. Participants were
not told the identity of their partners. To conceal whether
they were partnered with human or computer players, partic-
ipants were recruited in groups of four. Computers were ar-
ranged so that the participants were not visible to each other.

Metrics Table 5 summarizes the metrics used to evaluate
the algorithms’ abilities to win friends and influence people.
To compare the relative performance of algorithms across
games, we use the standardized z-score for each metric.
For example, a player’s relative material payoff for repeated

Table 5: Performance metrics used in the study.
Influencing People Winning Friends

1. Partner Cooperation 1. Attraction Index
2. Material Payoffs 2. Character Index

game g is given by Ui−U(g)
σ(g) , where U(g) and σ(g) are the

mean and standard deviations of material payoffs achieved
by players in game g.

Games Our goal is to identify algorithms that win friends
and influence people in general, and not just in certain
games. While we are limited to evaluating algorithms in a
handful of scenarios, we carefully selected games to gener-
alize distinct types of conflicts between players. To do this,
we selected games using the periodic table of games (Robin-
son and Goforth 2005), which classifies normal-form games
into six payoff families. The four RGCTs included in our
study (Table 1) were drawn from distinct payoff families
that encoded the most challenging conflicts. By and large,
the results were consistent across games.

Results

Relative comparisons of the algorithms with respect to the
four individual metrics are shown in Figure 1. Figure 2 sum-
marizes the results of the study by showing the relative per-
formance of the eight algorithms with respect to both win-
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Figure 1: Measures of winning friends (Character Index and Attraction Index) and influencing people (Partner Cooperation
and Material Payoffs) in the first user study. Results are displayed as standardized z-scores to illustrate relative performance,
with error bars giving the standard error of the mean. The unit of each axis is the standard deviation from the mean.
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Figure 2: A summary of results of the first user study. Influ-
encing People (y-axis) is the average of Material Payoffs and
Partner Cooperation, while Winning Friends (x-axis) is the
average of the Character and Attraction Indices. Axes units
are standard deviations from the mean. Signaling strategies
(personas) are represented by their first letters.

ning friends and influencing people. In the interest of space,
we focus on a handful of results, each of which is supported
by a full statistical analysis, using the Aligned Rank Trans-
form (Wobbrock et al. 2011) for analyzing non-parametric
factorial data with repeated measures, provided in the sup-
plementary material. We also reflect on the importance of
Carnegie’s Principles and Thumper’s Rule.

Primary Outcomes An algorithm’s ability to successfully
influence people was driven by both its behavioral and sig-
naling strategies. We note two outcomes related to influ-
ence. First, algorithms that generated cheap talk had higher
influence than those that did not. Across both behaviors,
THUMPER had less influence with respect to both material

payoffs and partner cooperation than the other three per-
sonas (p < 0.001). Second, given a verbal signaling strat-
egy, S# outperformed EEE#. For example, with respect to
material payoffs, S# outperformed EEE# given the personas
CARNEGIE, BIFF, and SPOCK (p < 0.001, p = 0.001, and
p = 0.015, respectively). Results for partner cooperation
were similar, though the difference between S#-BIFF and
EEE#-BIFF was only marginally significant (p = 060).

Further analysis of the results indicates why S# outper-
formed EEE# given a verbal persona: EEE# is often con-
tent with solutions that give its partner a much higher payoff
than it receives itself, whereas S# is not. Across all games
played, EEE# reciprocated defection immediately after be-
ing exploited in a round just 27% of the time, while S# recip-
rocated defection after being exploited 76% of the time. As
a result, human players were forced to cooperate with S# to
receive high payoffs, while they were often able to get away
with exploiting EEE#. This translated into higher payoffs
for participants when they associate with EEE# than with
S# (p < 0.001), a result that held regardless of the signal-
ing strategy. On the other hand, S# received higher payoffs
when paired with people than did EEE#.

Even though people earned more money when paired with
EEE# than S#, EEE# was not universally better than S# with
respect to winning friends. EEE# had a marginally statisti-
cally higher Character Index (p = 0.052) over all personas,
but there was no statistically significant difference with re-
spect to the Attraction Index (p = 0.232). Main interac-
tion effects between behavior and signaling strategy showed
that the ability to win friends was impacted by the joint
signaling and behavioral strategies. While S#-BIFF and S#-
THUMPER performed poorly with respect to both the Char-
acter Index and the Attraction Index, there were no statis-
tically significant differences between S# and EEE# given
the personas CARNEGIE and SPOCK. Though participants
received lower rewards when partnered with S#-CARNEGIE
and S#-SPOCK, they still rated these algorithms as highly
as EEE#-CARNEGIE and EEE#-SPOCK with respect to the
Character and Attraction Indices.
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Critique of Carnegie’s Principles Figures 1–2 demon-
strate the usefulness of Carnegie’s Principles when imple-
menting signaling strategies. Recall that both CARNEGIE
and SPOCK adhere to some of Carnegie’s Principles. While
CARNEGIE embraces these principles to a large degree,
SPOCK conforms only to a subset of these principles, in par-
ticular with respect to not complaining, criticizing, or con-
demning others. Across all four metrics, these two signal-
ing strategies performed very well compared to the other
signaling strategies. However, there was essentially no dis-
tinction between CARNEGIE and SPOCK with respect to any
metric. These results suggest that not going directly against
Carnegie’s Principles is important, though some of these
principles may be more important than others.

Critique of Thumper’s Rule Common convention sug-
gests that “if you can’t say something nice, don’t say any-
thing at all.” A comparison between the BIFF and THUMPER
signaling strategies suggests that this advice is not univer-
sally true, and is even, with respect to some metrics, mis-
guided. In our study, THUMPER was outperformed by BIFF
with respect to both metrics of influence (p < 0.001). The
results are less conclusive with respect to winning friends.
EEE#-THUMPER did outperform EEE#-BIFF with respect
to the Character Index (interestingly, users felt, in particular,
that EEE#-BIFF was not very intelligent). However, in all
other comparisons related to the Character and Attraction
Indices, THUMPER did not outperform BIFF.

Together, these results suggest that, if one must choose
between silence and communicating albeit rudely, erring on
the side of communicating is likely more beneficial with re-
spect to influence in RGCTs. However, rude communication
may lower one’s character reputation, and hence may not be
beneficial with respect to winning friends.

Summary of Results for User Study 1

Across all four metrics, only S#-CARNEGIE and S#-SPOCK
were not statistically outperformed with respect to any mea-
sure. This suggests that these two algorithms provide a nice
balance of winning friends and influencing people. Coupling
a behavioral strategy that learns quickly and effectively with
a signaling strategy built on Carnegie’s Principles (or at least
not violating them) appears to result in a strategy that wins
friends and influences people.

However, these results raise further questions. In the next
section, we seek to better understand what makes a signaling
strategy successful. In particular, we investigate the impor-
tance of explainable AI.

User Study 2

In the previous study, S# and EEE# were endowed with ex-
plainable AI (XAI) (van Lent, Fisher, and Mancuso 2004;
Gunning 2016), which allowed them to express strategies at
levels people understood, and to comprehend their partners’
proposals. In normal-form games, communicating strategies
is relatively simple, as actions can be described by simply
naming the rows or columns in the payoff matrix. However,
XAI is not so easily achieved in more complex domains in
which humans communicate at a high level of abstraction.
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Figure 3: An overview of the results of the second user study.
See Figure 2 for axes descriptions.

We conducted a second user study to understand
the importance of XAI in signaling strategies. In this
study, we compared the performance of S#-CARNEGIE
to algorithms not equipped with XAI (NXAI), in-
cluding S#-CARNEGIENXAI, S#-BIFFNXAI, and S#-
THUMPERNXAI. These algorithms were equivalent to sim-
ilarly named algorithms used in the first study, except that
they could not understand their partner’s proposals, nor
could they voice speech acts that communicated high-level
plans. The speech acts used by S#-CARNEGIENXAI and
S#-BIFFNXAI are given in the supplementary material.

Forty-eight people at Brigham Young University (Provo,
UT, USA) volunteered to participate in this second study.
We used the same experimental protocol in this study as in
the first study. Each participant interacted with each of the
four algorithms in the same four RGCTs (Table 1).

Results are summarized in Figure 3. S#-CARNEGIE out-
performed the other algorithms with respect to all four met-
rics. On the other hand, there was no statistical separation
between S#-CARNEGIENXAI and S#-THUMPERNXAI
with respect to any of the metrics. As such, it appears
that XAI accounted for much of S#-CARNEGIE’s ability
to win friends and influence people in the first user study.
We note, however, that even without XAI, not violating
Carnegie’s Principles was still important with respect to
winning friends, as indicated by comparisons between S#-
CARNEGIENXAI and S#-BIFFNXAI.

Unsurprisingly, participants understood S#-CARNEGIE’s
intentions better than those of the other three algorithms.
After each game, participants were asked (using a 5-point
Likert scale) the degree to which they understood their part-
ner’s intentions. Across all games, participants perceived
S#-CARNEGIE to be more understandable than the other
three algorithms (in each case, p < 0.001).
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Conclusions

Like people, AI must have the ability to win friends and in-
fluence people. In this paper, we studied how behavioral and
signaling strategies jointly impact the ability of AI to win
friends and influence people in repeated games with cheap
talk (RGCTs) when the AI does not share the same prefer-
ences as its human partner. Results from user studies showed
that an algorithm that (1) quickly learns an effective behav-
ioral strategy while using a signaling strategy built on both
(2) Carnegie’s Principles and (3) explainable AI (XAI) bet-
ter won friends and influenced people than algorithms that
lacked any of those characteristics.

Future work is needed to further understand how to con-
struct AI systems that win friends and influence people.
Open questions include designing algorithms that effectively
interact with people across cultures, and developing XAI to
aid the development of signaling strategies in more complex
settings. Solutions to these and other challenges will allow
AI systems to better win friends and influence people.
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