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Abstract

Assessing the veracity of claims made on the Internet is
an important, challenging, and timely problem. While au-
tomated fact-checking models have potential to help people
better assess what they read, we argue such models must be
explainable, accurate, and fast to be useful in practice; while
prediction accuracy is clearly important, model transparency
is critical in order for users to trust the system and integrate
their own knowledge with model predictions. To achieve this,
we propose a novel probabilistic graphical model (PGM)
which combines machine learning with crowd annotations.
Nodes in our model correspond to claim veracity, article
stance regarding claims, reputation of news sources, and an-
notator reliabilities. We introduce a fast variational method
for parameter estimation. Evaluation across two real-world
datasets and three scenarios shows that: (1) joint modeling
of sources, claims and crowd annotators in a PGM improves
the predictive performance and interpretability for predict-
ing claim veracity; and (2) our variational inference method
achieves scalably fast parameter estimation, with only mod-
est degradation in performance compared to Gibbs sampling.
Regarding model transparency, we designed and deployed
a prototype fact-checker Web tool, including a visual inter-
face for explaining model predictions. Results of a small user
study indicate that model explanations improve user satisfac-
tion and trust in model predictions. We share our web demo,
model source code, and the 13K crowd labels we collected.1

Introduction

Fact-checking, the task of determining the veracity (or cor-
rectness) of claims, has attracted significant attention. Web-
sites such as Snopes, Politifact and Emergent, which rely on
professional fact-checkers to carefully analyze claims and
sources in order to assess veracity, have emerged as valuable
resources for assessing potential misinformation. Unfortu-
nately, the scalability of this manual approach is challenged
by the pace and volume of modern online media, which con-
tinually generate and report new claims.

Recent research has pursued development of automated
fact-checking systems (Popat et al. 2017; Nakashole and
Mitchell 2014; Samadi et al. 2016), but these systems do not
explicitly model joint interactions between key variables:
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claims, sources and annotators. Moreover, while such mod-
els may realize reasonable prediction accuracy, it is not clear
how explainable these models are, which we argue is critical
for this domain in order for people to be able to trust a model
or integrate its predictions with their own knowledge.

We adopt a probabilistic graphical model (PGM) frame-
work for our approach. PGMs afford important benefits over
alternative approaches when humans are assumed to be in
‘in-the-loop’: (i) transparency, (ii) incorporation of users’
knowledge; and (iii) uncertainty quantification. Concerning
(i), fact-checking is intended to assuage skeptics of claims,
who would likely also be skeptical about any automated
fact-checking tool. Consequently, the model should be trans-
parent in how it arrived at its prediction. The second con-
sideration — incorporating users’ knowledge (ii) — may,
first, improve predictive performance. Second, and perhaps
more importantly, this allows model predictions to be seen
as relative statements with respect to prior knowledge, rather
than definitive judgments regarding claims; this is natural
for the fact-checking task. Finally, uncertainty quantifica-
tion (iii) is important for characterizing our confidence (or,
from a Bayesian perspective, our beliefs) regarding predic-
tions while accounting for potential sources of errors. PGMs
realize all of these desiderata and allow joint reasoning over
claim, source and annotator reliabilities. Crucially, PGMs
afford clear interpretation, facilitating in-depth inspection
and criticism of the system by individuals.

Our approach is further distinguished by its crowd com-
ponent. Beyond using crowd labels to train our model, we
can call upon the crowd at run-time, integrating human in-
telligence with machine learning to further boost accuracy.

Key contributions: (1) a novel, interpretable PGM for
fact-checking, providing a unified framework for model-
ing source credibility and stance with respect to individual
claims, crowd worker reliability, and claim veracity; and (2)
an efficient variational inference method for model estima-
tion; (3) a small user study suggesting that model explana-
tions improve user satisfaction and trust in the model.

Methods

Model

We assume that there are n claims, m sources, and a set
of news articles in which each article from a source j ∈
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{1, ...,m} reports a claim i ∈ {1, ..., n}. An example:
Claim: ISIS is harvesting and selling human organs to help
fund its operations. (Veracity: unknown)
Headline: Iraqi Official Accuses ISIS Of Harvesting Organs
To Finance Operations. (Stance: observing claim)
Source: washington.cbslocal.com

Let Vi be the veracity (correctness) of claim i, and Sij

the stance of source j w.r.t. claim i. A claim’s veracity can
be true, false or unknown (i.e., not enough is known about
it). An article stance may be for, against or merely observ-
ing a claim (i.e., reporting it without assessing its veracity).
We first define a multiclass logistic regression (LR) model
parameterized by weight matrix W to predict stances Sij :

p(Sij |Tij ,W ) = Cat(Sij | softmax(Tij ·W )) (1)

where Cat is the pmf of the Categorical distribution: Cat(X |
p) =

∏
i p

I(X=i)
i , and I is an indicator function. Tij encodes

text features extracted from claim i and the article that re-
ports this claim from source j. To predict the veracity of
claim i, we define another LR model, parameterized by R,
that uses all source stances for i as features.

p(Vi | Si, R) = Cat(Vi | softmax(Si ·R)) (2)

where Si = [Si1, . . . , Sim] is a vector of the stances as-
sumed by articles that report on claim i. In this model,
we predict claim veracity based on the stances assumed by
all articles reporting on it. We use the following coding
scheme for stances: for= 1, observing= 0, and against=
−1. Under this scheme, R can be interpreted as learning
the reputation scores of the sources. While some previ-
ous work (Popat et al. 2017; Nakashole and Mitchell 2014;
Wang 2017) has tried to predict claim veracity using tex-
tual features, we do not use them in this work because such
features may be difficult for users to interpret. For example,
one of the top textual features for predicting veracity is the
word ‘journalist’; but why would the presence of that word
increase the probability that the claim is true?

Next we define the worker model. Consider labeler k
(here, a crowd worker or a professional journalist). Let Lijk

and Uik be the labels for article stance and veracity, respec-
tively, provided by labeler k. That is, labeler k estimates Sij

to be Lijk and estimates Vi to be Uik.

p(Lijk | Sij , A
(k)) = Cat(Lijk | A(k)

Sij
) (3)

p(Uik | Vi, B
(k)) = Cat(Uik | B(k)

Vi
) (4)

where A(k) is the stance confusion matrix for labeler k: A(k)
st

is the probability that the labeler provides the stance label t
for an article with true stance label s. The claim veracity
confusion matrix B(k) specifies the probability of labeler k
providing each veracity label, conditioned on the true label.
These confusion matrices encode the quality of labels pro-
vided by individuals. The confusion matrix for a perfect la-
beler (who makes no mistakes) would be the identity matrix.

Our model assumes all annotators are fallible. This is par-
ticularly appropriate for fact-checking because the task is
difficult and can be somewhat subjective. Our model can in
principle incorporate users’ knowledge, e.g., if users believe
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Symbol Description

V claim veracity
U veracity label (by journalists)
R source reputation
T text features
S article headline stance
L stance label (by crowds and journalists)
W parameters for predicting stances
A labeler confusion matrix for stance
B labeler confusion matrix for veracity

Figure 1: Our graphical model and the symbols we use.

that journalists are only sometimes correct (say 90% of the
time). However, we are limited in this study by our dataset,
which includes only a single journalist ‘gold’ label per ex-
ample. For the purpose of evaluation (only), we therefore
assume that journalists are perfect labelers. Also, we call on
the crowd only to collect stance labels; future work could
investigate the more challenging task of asking the crowd to
assess claim veracity.

We interpret the veracity Vi and the stance Sij as hid-
den variables, while W,R,A,B are parameters, which we
learn using the EM algorithm (Dempster, Laird, and Ru-
bin 1977).2 In the E-step (assuming that the parameters are
known), we infer the posterior distribution over the hid-
den variables. In the M-step, we find the expected maxi-
mum likelihood estimation (MLE) values of the parame-
ters, where the expectation is over the posterior distribu-
tion in the E-step. These steps are repeated until conver-
gence. In the following sections we present two instantia-
tions for estimation: Gibbs sampling and variational infer-
ence. Gibbs sampling is simple and produces samples that
asymptotically converge to the correct distribution, but it is
often slow and not scalable in practice. Variational inference
can be much faster, although may yield biased estimates. In
a fact-checking system, we envision using variational infer-
ence to make near real-time predictions while performing
Gibbs sampling in the background to improve these initial
estimates.

2A Bayesian approach would place priors on parameters and
perform inference over them. But this is computationally expensive
and in our preliminary experiments did not yield improvements.
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Gibbs sampling

Gibbs sampling (Geman and Geman 1984) works by itera-
tively drawing samples from the conditional distribution of
each variable, given all other variables. To derive these con-
ditionals, we first consider the (unnormalized) joint posterior
distribution as follows:

p(S, V |L,U) ∝
∏
i,j

[
p(Sij |Tij ,W )

∏
k

p(Lijk|Sij , A
(k))

]

∏
i

[
p(Vi|Si, R)

∏
k′

p(Uik′ |Vi, B
(k′))

]

(5)

where i is over all claims; j is over all sources having arti-
cles about claim i; k is over all workers who have provided
labels for stance Sij ; and k′ is over all workers who pro-
vided labels regarding the veracity of claim Vi. Picking out
the terms involving Vi yields the unnormalized conditional:

p(Vi | . . .) ∝ p(Vi | Si, R)
∏
k′

p(Uik′ | Vi, B
(k′)) (6)

Similarly, we have the conditional for Sij :

p(Sij | . . .) =p(Sij | Tij ,W )·∏
k

p(Lijk | Sij , A
(k))p(Vi | Si, R) (7)

Equation 6 samples claim i veracity from a distribution that
is the product of two distributions: (1) the veracity predic-
tion for claim i based on the current stances, and, (2) the
likelihood of the veracity labels for this claim, given the la-
belers’ confusion matrices. Equation 7 samples the stance
of the article from source j for claim i from the product of
three distributions. The first two are similar to the veracity
sampling while the third is the likelihood of claim i verac-
ity given corresponding stances. We will see that the update
equations for variational inference have a similar structure.

In the M-step, we need to find the (expected) maximum
likelihood (ML) solutions for the Logistic Regression (LR)
parameters (W and R), and the confusion matrices for the
crowd workers. For the former, we fit an LR model for
each Gibbs sample in the E-step and average the parame-
ters of these fitted models. For example, let {S(1), . . . , S(g)}
be the g Gibbs samples for S. We fit g sets of LR pa-
rameters {W (1), . . . ,W (g)}, one for each sample: W (i) =
argmaxW p(S(i) | T,W ) for i = 1, . . . , g. The final solution
is simply the average: W =

∑g
i=1 W

(i)/g. Empirically, we
found this to provide better results than simply fitting one
LR model weighted by the Gibbs samples, suggesting that
there are complex interactions between the variables S and
V . For the labeler confusion matrices, the (expected) ML so-
lutions are simply the proportions: A(k)

st = E
(k)
st /

∑
t′ E

(k)
st′ ,

where E
(k)
st is the expected number of times that labeler k

provided labels t for an instance of true label s (where the
expectation is taken over the Gibbs samples).

Variational Inference

Variational Inference (Wainwright and Jordan 2008) approx-
imates complex posterior distributions using a simpler dis-
tribution. The idea is to perform optimization to make this
simple distribution as ‘close’ to the complex distribution as
possible. Here, we want to approximate the posterior distri-
bution p(S, V ) (implicitly conditioned on the observed vari-
ables and parameters). Using the ‘mean field’ assumption
(Opper and Saad 2001), we first introduce a fully factorized
distribution over S and V :

q(S, V ) =
∏
i,j

q(Sij)
∏
i

q(Vi) (8)

where we further assume that each factor has univariate cate-
gorical distribution with parameter α for claim veracity fac-
tors and β for stance factors:

q(Vi) = Cat(Vi | αi) (9)
q(Sij) = Cat(Sij | βij) (10)

Our optimization problem is to minimize the KL diver-
gence KL[q(S, V )||p(S, V )] with respect to α and β. This
is equivalent to maximizing a log likelihood lower bound.
Optimization can be performed via coordinate ascent, where
each variable is updated while holding all others constant.
The update equation has a convenient form: the updated
variational distribution for a variable is proportional to the
exponentiated expected (unnormalized) log posterior, where
the expectation is taken with respect to the current varia-
tional distribution over all other variables

q∗(Xi) ∝ exp[Eq(X−i) log p(X)] (11)

where X−i is the set of all variables except Xi. In our model,
we have:

q∗(Vi) ∝ exp
[
ESi∼q(Si) log p(Vi | Si, R)

+
∑
k′

log p(Uik′ | Vi, B
(k′))

]
(12)

q∗(Sij) ∝ exp
[
ESi∼q(−Sij) log p(Vi | Si, R)

+
∑
k

log p(Lijk | Sij , A
(k)) + log p(Sij | Tij ,W )

]
(13)

We now see the similarity to the Gibbs sampling update
equations 6 and 7. Two key differences are: (i) instead of
sampling, we update the variational distribution; and (ii) in-
stead of conditioning on other variables, we take the expec-
tation over them under the current variational distribution.
The main difficulty is computing the following expectation
(w.r.t. the high dimensional vector Si):

ESi∼q(Si) log
(∑

k

exp(Si ·Rk)
)

(14)

Where the sum of exp comes from the softmax function.
This is a common problem in variational inference, and
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many solutions have been proposed, including: a log con-
cavity bound for correlated topic models (Blei and Lafferty
2007), a Bohning bound for factor analysis (Khan et al.
2010), and more general techniques for non-conjugate mod-
els with Laplace or delta methods (Wang and Blei 2013).
Recent black-box inference algorithms (Ranganath, Gerrish,
and Blei 2014) can automatically handle this, but we are
interested in a very efficient implementation to power a
near real-time system. We thus propose using a Taylor ap-
proximation on the log and exp functions. For log, a Tay-
lor expansion about a gives the approximation (with error
o(
∑

i Xi − E
∑

i Xi)):

E log
(∑

i

Xi

)
≈ log(a) +

[∑
i

E(Xi)− a
]/

a (15)

We can optimize for a by setting the derivative of the above
to zero and solving to yield: a = E(

∑
i Xi). Plugging this

back in, we get E log(
∑

i Xi) ≈ log[(
∑

i E(Xi)]. Similarly
for exp, we have: E exp(X) ≈ exp[E(x)]. We can thus ap-
proximate Equation 14 by simply pushing the expectation
into log and exp. Although this does not preserve the likeli-
hood lower bound, it is efficient in practice.

Given a method to approximate Equation 14, we can now
approximate the updates in 12 and 13, which are alternately
applied until convergence in coordinate ascent. Convergence
appears to be very quick, in just a few iterations.

Online and Transfer Scenarios

In the online scenario, we assume no journalist stance labels
are available in the training set, but that systems may request
test set stance labels from the crowd at run-time. To select
articles for which to solicit crowd stance labels, we calcu-
late article scores and select articles stochastically w.r.t. the
softmax of the scores. For an article from source j about
claim i, we have:

scoreij = λc ·H(Vi) + λs ·H(Sij) + λr · rj (16)

where H(Vi) is the entropy in the prediction of claim i ve-
racity, H(Sij) is the same entropy for this article stance and
rj is a measure of source j reputation: rj = |Rj1|+ |Rj2|+
|Rj3| — recall that R is the LR parameter for veracity pre-
diction. We normalize the above H(Vi), H(Sij) and rj for
them to be on the same scale. λc, λs and λr are weight pa-
rameters. We explored setting these to values over {0, 1, 10}
and we report results for the best configuration λc = 10,
λs = 0 and λr = 1 for all methods.3 This configuration
roughly corresponds to selecting the articles reporting the
most uncertain claim from the most credible source.

Our methods so far assume the availability of stance la-
bels, which are often limited in practice, while veracity la-
bels are more common. Transfer learning (Pan and Yang
2010; Raina et al. 2007) aims to reuse the knowledge learned
in a source domain in a target domain, where few or no labels
are available. In the transfer scenario, we want to adapt the
trained stance classifier to a new dataset for which we have
no stance labels. We achieve this by simply using the pa-
rameters of the trained stance classifier to initialize the new

3Results were not particularly sensitive to these parameters.

stance classifier. We then perform inference and learning on
the new dataset as described above.

Evaluation

Data. We report results on two datasets. First, we use the
Emergent dataset (Ferreira and Vlachos 2016), which con-
sists of 300 claims and over 2,595 news article headlines re-
porting these claims. The labels are provided by professional
journalists. Note that article stance labels available with
Emergent are not available for many other related datasets,
e.g., Snopes (Popat et al. 2017) includes only veracity la-
bels. The distribution of journalist stance labels is 47.7%
for, 15.2% against and 37.1% observing. For claim verac-
ity, 21% of claims are labeled true. 37% as false, and no-
tably, 42% as unknown. Ferreira and Vlachos (2016) split
the dataset into train and test sets of 240 and 60 claims (cor-
responding to 2,071 and 524 article headlines), respectively.
We further split their training set into our own training and
validation sets of 180 and 60 claims, respectively. We use
the validation set to develop our method and tune the hyper-
parameters, then report test results. We also use their source
code4 to extract text features from the claims and articles.

For our second dataset, we use Snopes (Popat et al. 2017)5

for our transfer scenario. Lacking stance labels, we transfer
the stance classifier trained on Emergent. This dataset con-
sists of 4486 claims, with veracity labeled as true or false
(no unknown category). Following Popat et al. (2017), we
put the claims into Google to retrieve relevant articles (we
retrieve 10 articles from the first result page). We split the
dataset into 60% train, 20% validation and 20% test.

Crowdsourced labels collection. We use Amazon Me-
chanical Turk to collect 5 stance labels for each of the 2,595
article headlines in Emergent. While this task might seem
simple, we find it to be often difficult and somewhat sub-
jective based on both our own examination of the data and
crowd worker disagreement (with journalist labels and one
another’s). Ferreira and Vlachos (2016) do not report multi-
annotator agreement statistics for reference-standard jour-
nalist annotations. For the (claim, headline) pair shown ear-
lier (regarding ISIS possibly harvesting human organs), the
journalist labeled it observing while all crowd workers la-
beled it for.

Close reading of the text and interpretation of task guide-
lines is necessary. In pilot experiments (unreported) that we
ran to iteratively refine the design of our data collection in-
terface, we found that we could improve label quality by re-
quiring workers to write a short rationale for each judgment
(copying words from the headline), adapting recent work by
McDonnell et al. (2016), in which the authors found that
this simple technique yields improvement in collecting web
search relevance judgments.

Baseline. We aim to explore experimentally whether a
joint model (realized via our PGM) improves predictive per-
formance as compared to independent models. Our baseline
thus consists of two LR models: the first predicts article

4https://github.com/willferreira/mscproject
5https://goo.gl/gGzPji
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Figure 2: Left: offline scenario results for stance accuracy (higher is better). Right: Brier score for claim veracity (lower is
better). The ratio of crowd vs. journalist stance training labels is varied along the x-axis (from 0 to 2000 journalist labels).
Results are averaged over 10 runs; confidence bands of one standard deviation (68%) are shown.

stance from the text, and the second predicts claim verac-
ity from the predicted stances using the same features used
by our PGM. Thus for stance classification, our baseline is
effectively (Ferreira and Vlachos 2016). We also use Dawid
and Skene’s (1979) method to aggregate crowd labels; de-
spite its age, this was shown in a recent crowd aggregation
benchmarking study (Sheshadri and Lease 2013) to be the
most consistently strong method. For the transfer scenario,
the baseline uses the stance classifier trained on Emergent to
predict stances in the Snopes dataset.

Metrics. For stance prediction, we follow (Ferreira and
Vlachos 2016) in using accuracy (given the class distribu-
tion reported above, a naive method that always predicted
for would achieve 47.7%). For predicting claim veracity, we
find accuracy to be noisy, possibly due to the small size
of the validation and test sets. We thus instead report the
Brier score (Brier 1950) score for multiclass forecasting:
1
n

∑n
i=1

∑C
j=1(Pij − Iij)

2, where we sum over n claims
and C categories (we have 3 categories in Emergent and 2
categories in Snopes). Pij is the predicted probability that
claim i is of class j and Iij is the indicator that is 1 if claim
i is of class j and 0 otherwise. This metric quantifies prob-
ability calibration, which is an important property for our
application because we believe users will desire estimates of
confidence associated with predictions.

Results

We consider three scenarios: offline, online and transfer. In
offline and online, we use the Emergent dataset and assume
that the training articles are given with their journalist verac-
ity labels and crowd stance labels. In transfer, we adapt the
stance classifier trained on Emergent to the Snopes dataset.

Offline scenario (Figure 2). We vary the number of jour-
nalist stance labels available in the train set. At the left-most
extreme of the Figure, only stance labels from the crowd are
available; at the right-most extreme, all training examples
have both crowd and journalist stance labels. We thus mea-
sure the relative importance of journalist stance labels for

training. As expected, prediction improves as more journal-
ist labels are added (also recall that we are evaluating accu-
racy w.r.t. journalist labels as the reference standard). With
regard to the methods being compared, our variational and
Gibbs perform better than the baseline, and Gibbs is better
at claim veracity. This suggests that the meanfield assump-
tion (that the variational distribution is fully factorized) has
caused some mis-calibration in veracity prediction, possibly
due to some strong inter-dependence in the variables.

Online scenario (Figure 3). The methods can acquire test
set stance labels from the crowd. This experiment explores
how on-demand crowd labels can be used at run-time to im-
prove performance. We assume that we do not have access to
journalist stance labels because these may be difficult to ac-
quire rapidly in practice; this effectively represents a “worst-
case” scenario. As expected, on-demand crowd labels tend
to improve both stance and veracity predictions. Gibbs sam-
pling provides further improvement over our variational ap-
proach, but at the cost of run-time.

Transfer scenario (Figure 4). We vary the number of
(Snopes) training claims. Since Snopes does not has stance
labels, we can only evaluate the veracity prediction. Our
method and the baseline both utilize the stance classifier
trained on Emergent (with all journalist stance labels), but
we improve by modeling the uncertainty and interactions
between different variables in the presented graphical mod-
els. The dataset is much larger, thus we can only use varia-
tional inference (Gibbs does not adequately scale). We ob-
serve consistent improvement over the baseline.

Discussion. Stance and veracity prediction are both diffi-
cult tasks. Overall, the benefit of getting more labels is small
and the differences between methods are modest, although
significant (as seen in the confidence band). As for runtime,
in the Emergent dataset, Variational takes about 5 minutes to
train; Gibbs sampling requires about an hour. In transferring
to the Snopes dataset, Variational takes nearly 2 hours (on a
3.50GHz machine).
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Figure 3: Online scenario results when on-demand crowd (only) labels for test-set articles are utilized at run-time. The number
of (aggregated) crowd stance labels is varied on the x-axis.

Figure 4: Veracity prediction on the Snopes dataset, trans-
ferring the stance classifier trained on Emergent.

Figure 5: The histogram of user satisfaction in two groups.

Model interpretation and user study

For a fact-checking method to be useful, it has to be inter-
pretable. Our final veracity prediction is based on very intu-
itive concepts: articles stance and sources reputation. In Fig-
ure 6 we present an illustrative example of an explanation
that can be presented to users.

To understand how users interpret our predictions, we
conducted a small user study. We developed a tool with a
web interface where users can enter their own claims or se-
lect from a number of example claims from the Emergent
dataset. The tool uses Google to retrieve 10 articles relevant
to the claim, and then makes a prediction regarding its verac-
ity. We recruited 23 graduate students (mostly in computer
and information science) to use the tool. Students were ran-
domly assigned into one of two groups. Users in the first
group were shown only the final veracity prediction, while
those in the second group were provided an accompanying
explanation similar to Figure 6. Students then completed an
eight question survey regarding their satisfaction with, and
trust of, the tool. In Figure 5, we present overall satisfac-
tion results. In general, explanations increased user satisfac-
tion. Assuming that the responses are numbered from ‘Very
dissatisfied’ = 1 to ‘Very satisfied’ = 5, a two sample t-test
yields p = 0.058 (the null here being no difference in satis-
faction between groups). Regarding trust, users who saw the
explanation found our tool more trustworthy, although the
effect was less pronounced (p = 0.138).

Users who were dissatisfied with the tool tended to enter
claims they believed to be true or false and did not get what
they expected. However, in these cases, model explanations
helped them to understand how the tool arrived at its predic-
tion. Other survey questions revealed that users are generally
open to fact-checking using crowdsourcing, although some
were concerned about workers ability and potential biases.

Related Work

Truth discovery. Work on truth discovery (Pasternack and
Roth 2013; Dong et al. 2015; Li et al. 2016) has aimed
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Figure 6: Claim: IBM will cut more than 110,000 jobs this week (www.emergent.info/IBM-job-cuts). Left: Bar height shows
the predicted reputation of each source. Bar pattern shows the variational inferred posterior distribution over each article’s
stance (for, against, or observing). Right: The posterior over the claim veracity. This claim is predicted unlikely to be true
because credible sources are mixed in stance, which our model explicitly captures and users may inspect.

to resolve conflicts in data from multiple sources by esti-
mating their quality. This work has typically assumed that
‘claims’ have a concrete structure. For example, (Paster-
nack and Roth 2013) considered a dataset involving book
authorship, where claims have the structure ‘person X au-
thors book Y’. Recent work has considered unstructured text
claims (Ferreira and Vlachos 2016; Popat et al. 2016; 2017;
Wang 2017), but these approaches still depend on training
data from expert fact-checkers. By contrast, we exploit both
expert and crowd labels for training and consider an online
scenario in which crowd labels are collected at run-time.

Deceptive opinion. Another related task is detecting ‘de-
ceptive’ opinions, i.e., fake reviews for hotels or restaurants
(Ott et al. 2011; Li et al. 2014). The standard approach is
supervised classification based on linguistic features of the
review texts, which is often much longer than claims text. In
contrast, our method predicts the veracity of a claim based
on the articles reporting it, their stances (support/refute), and
the (estimated) credibilities of the sources.

Rumor detection in social media. Previous work in this
space (Derczynski et al. 2017; Liu et al. 2015; Volkova et al.
2017) has focused on analyzing existing social media con-
tent, typically about some specific events, to predict their
stance and veracity. Our work considers a more general and
challenging task where users can enter an arbitrary claim.

Crowdsourcing aggregation. An oft-studied problem in
crowdsourcing is how to best aggregate crowd responses to
infer the true label (Sheshadri and Lease 2013). PGMs pro-
vide a natural framework for this; true labels for instances
can be treated as hidden variables (Dawid and Skene 1979;
Raykar et al. 2010; Liu, Peng, and Ihler 2012; Bi et al. 2014;
Tian and Zhu 2015). While most previous work assumes
aggregations for different instances to be independent, re-
cent work has proposed models accounting for the structure
of these instances. Rodrigues, Pereira, and Ribeiro (2014)
extend CRFs to aggregate crowdsourced sequential data,
where the true labels of neighboring instances are correlated.
Lakkaraju et al. (2015) propose clustering to exploit the re-
lationship between similar instances (they also cluster the
workers). We similarly relate the instances (article stances)

through the sources they belong to and the claims they re-
port.

Interpretable machine learning. While machine learn-
ing has traditionally optimized predictive performance, re-
cent work has sought to improve interpretability. A PGM ap-
proach has been used for clustering (Kim, Rudin, and Shah
2014) and human decision making (Lakkaraju and Leskovec
2016). For classification, popular interpretable methods are
decision trees (Quinlan 1986) and sparse/prototype models
(Tibshirani 1996; Bien and Tibshirani 2011); but they as-
sume that features are given. Here, the features for veracity
prediction are article headline stances, which are predicted.

Conclusions

Fact-checking has become an increasingly important social
problem, and automating it presents many technical chal-
lenges. We have presented a hybrid machine-crowd PGM
approach that integrates human intelligence with system
scalability to jointly model stance, veracity and crowd-
sourced labels. Our method achieves relatively strong pre-
dictive performance, and, crucially, provides transparency
that affords critical interpretation and assessment of system
outputs. We share our online demo, source code, and 13K
collected crowd labels.
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