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Abstract

Volunteers who help with online crowdsourcing such as cit-
izen science tasks typically make only a few contributions
before exiting. We propose a computational approach for in-
creasing users’ engagement in such settings that is based on
optimizing policies for displaying motivational messages to
users. The approach, which we refer to as Trajectory Cor-
rected Intervention (TCI), reasons about the tradeoff between
the long-term influence of engagement messages on partici-
pants’ contributions and the potential risk of disrupting their
current work. We combine model-based reinforcement learn-
ing with off-line policy evaluation to generate intervention
policies, without relying on a fixed representation of the do-
main. TCI works iteratively to learn the best representation
from a set of random intervention trials and to generate can-
didate intervention policies. It is able to refine selected poli-
cies off-line by exploiting the fact that users can only be in-
terrupted once per session. We implemented TCI in the wild
with Galaxy Zoo, one of the largest citizen science platforms
on the web. We found that TCI was able to outperform the
state-of-the-art intervention policy for this domain, and sig-
nificantly increased the contributions of thousands of users.
This work demonstrates the benefit of combining traditional
AI planning with off-line policy methods to generate intelli-
gent intervention strategies.

Introduction
Volunteer-based crowdsourcing has been harnessed to
engage thousands of people in solving challenges on-
line. Examples include citizen science applications like
Foldit (Khatib et al. 2011), e-bird (Sullivan et al. 2009) and
Zooniverse (Simpson, Page, and De Roure 2014), as well as
question and answer sites like stack overflow (Anderson et
al. 2012). A large majority of people coming to these sites
only make a few contributions before leaving (Preece and
Shneiderman 2009; Varshney 2012). We address the chal-
lenge of engagement in such systems through adaptive in-
terventions, aimed at unlocking additional value that would
come with more sustained contributions (Eveleigh et al.
2014; Segal et al. 2015). We show the value of generating
interventional policies based on joining model-based rein-
forcement learning with offline policy evaluation.
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We formalize the task of computing effective interven-
tional policies as a problem in sequential decision making
under uncertainty, where an agent can choose whether to
generate one of several possible motivational messages to
users at a given point in time. Interventions are associated
with a cost of interruption that can interfere with the user’s
work (Horvitz, Jacobs, and Hovel 1999). Thus, the agent
needs to manage the tradeoff between intervening at a cur-
rent state versus waiting to collect more information and tak-
ing the risk that the user will disengage from the system.
The agent also needs to balance the long-term benefits and
short-term disruptions associated with different intervention
actions.

The online nature and quick turnaround of individual
users in volunteer-based crowdsourcing poses new chal-
lenges for optimizing intervention decisions. We do not
know the dynamics governing people’s online behavior and
their responses to potential interventions. However, efforts
to learn a good policy online by performing experiments via
interventions may disrupt the work of volunteers and con-
tribute to early disengagement.

We address these challenges by applying a combination
of techniques from model-based reinforcement learning and
offline policy evaluation on historical data collected previ-
ously from trials with random interventions. We search it-
eratively for a representation that succinctly maps histories
to states. We build on previous efforts that have used off-
line policy evaluation to compute non-biased estimates of
the value of a given policy using an existing set of random
trials (Precup 2000; Mandel et al. 2014). We show with ex-
periments that traditional uses of importance sampling can
be arbitrarily noisy when applied to human interaction data.
We extend these approaches by providing an offline method-
ology for correcting candidate policies, under the constraint
that users can be interrupted only once during a session in
order to bound the potential disruption.

Our approach, called Trajectory Corrected Intervention
(TCI), searches iteratively for the representation that leads
to the best intervention policy. For any candidate represen-
tation, TCI builds a corresponding MDP based on a training
set taken from past trajectories and solves the MDP to ex-
tract a target policy. The resulting target policy is evaluated
using importance sampling on a validation set taken from
the past trajectories. The search terminates when perturbing

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1536



the representation does not yield further improvements to the
expected value of the policy. The resulting policy is subse-
quently evaluated in a policy-correction step for each state,
on a test set taken from the past trajectories. The correction
step exploits the structure of the domain, in which only a
single interruption is possible in each session (a limitation
dictated by the community leaders), to statistically validate
if the action selected by the target policy indeed provides
better value than alternatives. This procedure replaces an in-
tervention action with an alternative intervention action (or a
decision not to intervene) when the alternative action yields
higher value on the trajectory history.

We implemented the TCI approach on Galaxy Zoo, one
of the largest citizen science platforms in the world, where
volunteers are asked to classify celestial bodies drawn from
the massive Sloan Digital Sky Survey (SDSS). Analyses of
Galaxy Zoo logs have shown that the vast majority of users
leave quickly and make only a few contributions. We exam-
ine the value of providing personalized motivational mes-
sages aimed at increasing the contributions of users. We con-
sider how best to balance intervening immediately with a
motivational message, based on the current state of informa-
tion about the participant, with waiting to collect additional
information and risking the loss of the user.

TCI learned a representation that includes features that
summarize users’ behavior in the domain, as well as a belief
state that measures the probability that the user will disen-
gage from the system. The TCI approach identified a policy
of choosing either one of three motivational messages or no
intervention at each state. Our experiments, which were per-
formed in the wild on the Galaxy Zoo platform, showed that
TCI was able to outperform an earlier myopic approach, by
considering the long term effects of the intervention mes-
sages. We also found that the policy correction step is crit-
ical; the corrected policy achieved significant gains in user
productivity when deployed in the live system compared to
the target policy generated with a version of TCI without the
correction step.

We make three key contributions: First, we provide an
end-to-end method for computing optimal intervention poli-
cies with application to volunteer-based crowdsourcing. The
policies are based on an analysis of past trajectories, and do
not rely on a specific representation. Second, we provide a
new correction method that can address the errors associ-
ated with applying offline policy evaluation to Galaxy Zoo
by exploiting the structure of the domain. Third, we show the
real-world influence of the methods, by significantly extend-
ing the engagement and contributions made by thousands of
volunteers in the Galaxy Zoo platform.

Related Work
Our approach builds on prior work in two separate fields
of research: modeling and extending engagement in crowd-
sourcing and off-line policy evaluation in reinforcement
learning.

There is a growing interest in methods for motivating
users in volunteer based crowsourcing (Eveleigh et al. 2014;
Jackson et al. 2014). We consider several studies of compu-
tational approaches for describing and extending user en-

gagement in online communities. Anderson et al. (2013)
used badges to steer behavior towards required goals in
question-answer sites. They developed a model of behav-
ioral change that is induced by badges for the stackoverflow
site. Their model showed that change in user behavior in-
creases as the badge frontier gets closer, and was able to pre-
dict observations about the real-world behavior of user on
stackoverflow. In subsequent work, Anderson et. al (2014)
performed a large-scale deployment of badges as incentives
for engagement in a MOOC, including randomized experi-
ments in which the presentation of badges was varied across
subpopulations.

Mao et al. (2013) developed a predictor of the disengage-
ment of participants in Galaxy Zoo. Their study considered
different features including statistics about volunteers’ char-
acteristics, the tasks they solved, and their history of prior
sessions on the system. They demonstrated the effects of dif-
ferent session lengths and window sizes on the accuracy of
the predictions about the timing of disengagement.

Segal et al. (2016) studied three different intervention
messages on the volunteers of Galaxy Zoo when the mes-
sages were timed according to predictions of their disen-
gagement. A controlled study showed that the combination
of a motivational message emphasizing the individual con-
tribution of users and its prediction-based timing was able
to generate the highest engagement levels from users, when
compared to alternative messages that emphasized users’
sense of community and relieved their anxiety about mak-
ing mistakes. The work presented here builds on this line of
work and shows that the TCI approach was able to achieve
significantly better results than this myopic method, by op-
timizing the intervention policy over all message types and
long term effects.

Other relevant efforts come from the literature on inter-
ruption management and retainment modeling. Horvitz et
al. (1999) present a decision-theoretic approach to balanc-
ing the cost of interruptions with the cost of delay in the
transmittal of notifications. Horvitz and Apacible (2003)
used machine learning to infer the cost of interrupting users
over time given data from their online interactions, calen-
dars and visual and acoustical analyses. Shrot et al. (2009;
2014) used collaborative filtering to predict the cost of in-
terruption by exploiting the similarities between users and
used this model to guide an interruption management algo-
rithm. Rosenfeld and Kraus (2016) motivated and persuaded
users in argumentative dialog settings using a POMDP based
model and machine learning based predictions. Azaria et
al. (2014) considered the problem of automatic reward deter-
mination for optimizing crowd system goals and presented
two algorithms that outperformed strategies developed by
human experts.

In offline policy evaluation, a target policy is evaluated
using a pre-collected dataset that was generated via execu-
tion of a different behavioral policy (Thomas, Theocharous,
and Ghavamzadeh 2015; Thomas and Brunskill 2016; Liu,
Mahadevan, and Liu 2012; Peshkin and Shelton 2002). This
approach is common in many settings involving human in-
teractions where it is not possible to probe users online (e.g.,
patient diagnosis systems and e-learning). Many approaches
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for solving the off-line policy evaluation problem have used
sampling techniques to compute the value of target policies.
Precup (2000) introduced several importance sampling esti-
mators for the value of a target policy, by weighing samples
according to the ratio of the likelihood between the target
policy and the behavior policy. Jiang et al. (2015) extended
a bandits’ approach to estimating values of the target pol-
icy. They produced non-biased estimators of the true policy
value that may exhibit lower variance than using traditional
importance sampling techniques.

Most relevant to our approach is the work by Mandel et
al. (2014; 2016) who used sampling methods for off-line
policy evaluation across several candidate representations in
educational games. We extend this approach in two ways.
First, we provide a search based optimization across repre-
sentations, focusing on binary representations for continu-
ous features. Second, we introduce a correction mechanism
to decrease variance in our generated policies and show its
efficacy in a large scale deployment.

Lastly, we consider the optimal stopping literature in
statistics, which studies the problem of timing a termina-
tion action in order to maximize an expected reward. Our
intervention problem has the special structure that a single
intervention is possible at a given session. Thus the prob-
lem can alternatively be formalized as an optimal stopping
problem where the reward for taking an intervention ac-
tion is uncertain and can be estimated based on trajectories.
Tractable algorithms (e.g., threshold-based methods) exist
for classes of optimal stopping problems where the world
dynamics have a known, well-characterized structure (Peskir
and Shiryaev 2006). However, these tractable algorithms are
not applicable to human-interaction settings where transi-
tions have an arbitrary form. These problems can then be
solved through existing MDP solutions techniques such as
dynamic programming (Monahan 1982), which we carry out
in this work.

Problem Description and Approach
We consider a setting with two actors: a user who is repeat-
edly interacting with a system to complete tasks and who
can disengage at any time at will; and an agent that can in-
tervene in real time, presenting messages to the user with the
goal of increasing her contributions.

We start by providing definitions that are used in our
formalization. A user episode (session) of length T con-
sists of a sequence of agent actions, observations and re-
wards. At each timestep t ∈ [1, . . . , T ] the agent performs
an agent action at which consists of one of several possi-
ble intervention actions (e.g., generating a motivational mes-
sage in Galaxy zoo) or a no-op action (no intervention).
The user generates an observation ot (e.g., classifying a
galaxy), and the agent incurs a scalar reward rt (e.g., the
quality of the classification). The history at timestep t is de-
noted {(a1, r1, o1), . . . , (at, rt, ot)}. An agent can interrupt
the user at most once per episode. There exists at most a sin-
gle timestep i in which ai is an intervention action, which
consequently influences the rewards and observations in the
future time steps.

Algorithm 1: The TCI Approach
Data: Domain description B, feature set F , past

trajectories D = Dtrain ∪Dval ∪Dtest

Result: Optimized representation M , Target Policy
π∗
M .

1 EV ∗ ← 0
2 repeat
3 M ← GetNextRepresentation(B,F )
4 πM ← argmaxπ EV [π | M,Dtrain]
5 EV (πM ) ← ComputeV al(πM , Dval)
6 if (EV (πM ) > EV ∗) then
7 EV ∗ ← EV (πM )
8 π′

M ← πM

9 until convergence;
10 π∗

M ← CorrectPolicy(B, π′
M , Dtest)

11 return Representation M , Policy π∗
M

The overall TCI approach is outlined in Algorithm 1. The
input to the TCI process is (1) a domain description B that
includes a set of agent actions, user observations and re-
wards; (2) a set of features F that are aggregations over his-
tories, and used to create the state space; (3) a dataset D of
past trajectories that are composed of histories of random
agent actions and their observed effect on user behavior in
the system. The policy that generated these trajectories is
called the ”behavioral policy”. This data is divided to sepa-
rate training, validation and testing sets.

The TCI approach consists of three main steps, which we
outline below. Step 1 (lines 3- 4) integrates two optimization
tasks: finding the optimal representation for the intervention
domain, and extracting the best policy given this represen-
tation. A representation M is a many-to-one mapping from
histories of interactions to states. When M includes the full
history, it provides a complete description of the domain,
but the size of the representation makes the data too sparse
to learn from. Instead, M provides a reduction of the state
space to ranges over subsets of the features in F . We detail
this step in the next section. We learn an MDP over the rep-
resentation M given the training set and extract the current
target policy πM (line 4).

Step 2 (line 5) estimates the value of the target policy πM

on the validation set. We iteratively execute Steps 1 and 2
to find the next representation that improves the value of the
extracted target policy. The process terminates when succes-
sive steps fail to improve the value of the policy for a desig-
nated number of iterations. Step 3 (line 10) corrects the pol-
icy πM for errors by comparing its performance to choosing
alternative intervention decisions (or a decision not to in-
tervene) at each state. The output of the TCI process is the
optimized representation M and its associated target policy
π∗
M .

Implementation: Galaxy Zoo
We now describe how we have applied the TCI approach
to Galaxy Zoo. A user session in Galaxy Zoo includes an
episode with discrete timesteps from 0 (logging on) and T
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Type Message
Helpful Please don’t stop just yet. You’ve been extremely

helpful so far. Your votes are really helping us to
understand deep mysteries about galaxies.

Community Thousands of people are taking part in the project
every month. Visit Talk at talk.galaxyzoo.org
to discuss the images you see with them.

Anxiety We use statistical techniques to get the most
from every answer; So, you don’t need to worry
about being “right”. Just tell us what you see.

Table 1: Intervention messages used in the study.

(inactivity). At each discrete time step t ≤ T the agent
chooses an action (whether to generate a motivational mes-
sage at this timestep, and if so which message). The reward
rt at time t is 1 when a user classifies a galaxy and 0 oth-
erwise. The observation at each timestep included 16 fea-
tures over the user’s history and current session (Mao, Ka-
mar, and Horvitz 2013). The most informative features were:
the number of session counts for the user in the system, the
number of completed tasks in the current session, the num-
ber of completed tasks averaged over all sessions, the num-
ber of seconds spent in the current session, the number of
seconds per session averaged over all sessions, the average
dwell time in the current session (i.e, the average number of
seconds between two consecutive task submissions by the
user).

An additional observation is the probability that the user
will disengage within a 5-minute time window, computed
using these features. This predictor serves as a proxy for the
motivation of the user.

The set of intervention actions for the agent includes three
motivational messages displayed in Table 1. These mes-
sages directly address motivational issues affecting users’
performance in citizen science (Eveleigh et al. 2014). The
“helpful” type message emphasizes users’ contribution to
the project, the “community” type message emphasizes the
collective nature of the project, and the “anxiety” type mes-
sage emphasizes the tolerance to individual mistakes. The
agent actions also include a fourth action which is a no-op
action, deciding not to intervene at the current state.

The trajectory history consists of an expanded version
of the dataset of randomized intervention trials collected
from the study of Segal et al. (2016). This data is divided
into training, validation and test sets as summarized in Ta-
ble 2. In generating random interventions, the timestep of
the motivational messages was drawn uniformly between
the limits of 0 (i.e, intervene immediately) and a session
length that was sampled from a Poisson distribution that
was fit to historical Galaxy Zoo participation rates. Data
and accompanying information to this paper can be found
at http://tinyurl.com/ztujcvz.

Step 1: Representation and Optimization
A representation M includes a subset 〈f1 . . . , fn〉 of
N continuous features and corresponding “cutoff” values
〈v1, . . . , vn〉. The cutoff values partition the state space into
ranges {f1 > v1, . . . , fn > vn}.

Users Interventions Records
Training 2,302 3,265 245,695

Validation 1,722 1,730 114,788
Test 1,281 2,173 119,457

Table 2: Dataset of randomized intervention trials.

The initial set of features used in the TCI process included
the six prominent features mentioned in the previous section,
as well as the predicted probability that the user will disen-
gage (which used the entire set of 16 features). We hypothe-
sized that the TCI approach would learn a succinct represen-
tation of the domains using a subset of these features while
still providing an intervention policy with high value.

The representation M induces an MDP over the state
space. To learn the MDP parameters, we use the training
set of the trajectory history. The transition function T of the
MDP is computed as the expectation over the observed tran-
sitions in the training set given representation M .

If a is an intervention action (not a no-op), then the sys-
tem transitions to the terminal state with probability 1. The
reward for an action at a given state st depends on whether
the action is an intervention action or a no-op, and whether
st is a terminal state.

We now describe how to compute the reward. Let m be all
of the episodes that match the state-action pair (st, a). The
reward associated with an intervention action a at time t is

R(st, a) = 1 +
1

m

m∑

i=1

Ri (1)

where Ri =
∑T

k=ti+1 δ
k−ti−1 · rk. Here ti is the timestep

in episode i where intervention action a was given in step
st, δ is the discount factor, and rk is the reward at episode i
at time k. If a is a no-op action then we assign R(st, a) = 1
(user performed one contribution in this state). Lastly, tran-
sitioning to the terminal state with a no-op action represents
a user disengaging from the system and is assigned a reward
of zero.

We solve the MDP to compute a target policy πM for the
given representation using value iteration.

To find the optimal policy representation, we perform
search optimization over the representation cutoff values
{v1, . . . , vn} using the Particle Swarm Optimization (PSO)
algorithm (Poli, Kennedy, and Blackwell 2007). PSO is an
evolutionary algorithm for optimizing a problem’s solution
by iteratively searching over a candidate space with regard
to a given measure of quality (in our case the value of a pol-
icy). We used parameter values recommended by Pedersen
et al. (2010) with a swarm size of 100 particles and a max-
imum of 40,000 fitness evaluation steps. Stopping was per-
formed if the evaluation steps limit was reached or if fitness
did not improve in the last 100 iterations (set empirically).

When run on the training set Dtrain of past tra-
jectories, the TCI approach converged on a representa-
tion that included the following four features related to
user activities in a current session: The number of tasks
(s sessionTasks), the number of active seconds in this ses-
sion (s sessionT ime), the dwell time (s avgDwell) and
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Figure 1: Sample of policy optimized for participants in their
first sessions.

the disengagement prediction (s dis pred). Figure 1 shows
a sample from the extracted best policy for users who en-
gaged in a single session with the system (about 70% of
the user population). For example, in state 5 (correspond-
ing to the state where the user is productive, works slowly,
and is not likely to leave) the system generated the commu-
nity based message (“Thousands of people are taking part in
the project...”).

Step 2: Computing the Value of a Policy

Computing the value of a target policy on the validation set
(line 5 in Algorithm 1) is an instance of the off-policy eval-
uation problem (Thomas, Theocharous, and Ghavamzadeh
2015). Specifically, the distribution over states that is in-
duced by the target policy πM is different than the distri-
bution over states in the randomized training set, induced by
the “behavioral” policy (the policy used to create the dataset
at hand). A common approach is to use sampling techniques
to correct for this discrepancy by assigning higher weights to
samples from the target policy that differ from the behavioral
policy (Precup 2000). A main advantage of the importance
sampling technique is that it is consistent, i.e., it provides a
non-biased estimate of the true value of the policy.

The input to the importance sampling step is a behavior
policy πb, a dataset of trajectories Dval and a target policy
πM we want to evaluate. The output is the estimated value
of the target policy on the validation data set described in
Table 2.

Let πM be a target policy, and H be a history of m
episodes. To apply importance sampling in TCI , we need to
define how we compute the likelihood of a target policy on
an episode. For any policy π let Pπ be the induced probabil-
ity distribution assigned by policy π over all agent actions
in action set A. The likelihood of a policy π for a history

ht ∈ H at timestep t is defined as

Pπ(a1, . . . , at | ht) =
t∏

j=1

Pπ(aj | sj) (2)

where sj = M(hj) is the state that corresponds to history
hj according to representation M .

We use the approach of Precup (2000) and Mandel (2014)
to compute the expected value of the target policy for
episodes of increasing lengths. We assign higher weights
to samples that are less likely according to the behavioral
policy but more likely according to the target policy. The
expected value of a target policy π on a history H of m
episodes of maximal length T given behavioral policy πb

and representation M is

EV (πM | H) =

T∑

t=1

1

m

m∑

i=1

PπM
(ai,1, . . . , ai,t | hi,t)

Pπb
(ai,1, . . . , ai,t | hi,t)

· δt−1ri,t

(3)

Here, ai,t and ri,t refer to the agent action and reward taken
at episode i at time t, respectively. In our study, the behav-
ioral policy πb is stochastic: it assigns a probability distribu-
tion over agent actions for each possible state, whereas the
target policy πM is deterministic, it assigns a probability of
1 or 0 to a given action and state pair.

Step 3: Policy Correction
The unbiased nature of offline policy evaluation based on
importance sampling does not guarantee that value estimates
are correct. Due to the sparsity in historical data, value esti-
mates for a given policy can be noisy (Jiang and Li 2015).
To analyze the behavior of importance sampling in the do-
main, we generated a simulator based on data collected from
Galaxy Zoo.

The simulator learned distributions representing user ac-
tivity and user response to interventions using the random
intervention dataset. The goal for creating the simulator was
having an experimental domain where we could compute the
ground truth value of any policy, and thus observe the errors
in the value estimates of offline policy evaluation.

We computed the absolute error between the importance
sampling estimator of the value of a target policy, and the
actual value of the policy once executed in the simulation.
Figure 2 plots the error for different representations (y-axis)
given the trajectory support, which is the likelihood simi-
larity between a target policy and behavioral policy used to
generate the simulation (x-axis). We observe high variance
in the errors generated by the importance sampling estima-
tor. We also note that the lower error values are not neces-
sarily for the highest supported trajectories and that there are
high value estimates (darker points) which have high support
and suffer from high error. This means that our offline opti-
mization process may yield policies that may not be optimal
when applied to Galaxy Zoo in real time.

A non-optimal target policy will include suboptimal ac-
tions in some states. Namely, for state st and action πM (st),
there exists an agent action a �= πM (st) which is “better”
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Figure 2: Trajectory support vs. error in importance sam-
pling estimator. Colors represent magnitude of the estimated
policy value.

Figure 3: Sample from corrected policy for first session par-
ticipants.

than πM (st). One approach to find a “better” action is to
let a group of domain experts (e.g., Galaxy Zoo administra-
tors) review the target policy and suggest corrections where
needed based on their domain expertise. The problem with
this approach is that it can be costly to involve human exper-
tise, and consistency across experts in not guaranteed.

An alternative approach is to compare the value of actions
assigned by the target policy for a given state to alternative
intervention actions at that state using statistics from data.
Given that we only interrupt once per session, the value that
is associated with the optimal action for each state st is

EV ∗(st) = max{ argmax
a∈A\{no-op}

R(st, a),

∑

t+1

T (st, no-op, st+1) · EV ∗(st+1)}

(4)

where A denotes all of the agent actions (interventions and
no-op) and R(st, a) is defined in Equation 1. Equation 4 is
a backward induction rule. The optimal return is the max-
imal value of intervening at state st or continuing over the
transitions and values of succeeding steps.

This insight leads to a procedure for correcting a tar-
get policy πM . We first show how to compute the value
EV [st, πM (st) | H] of a target policy πM for a given state
st and a set of trajectories H . Let m denotes all of the

episodes that match the state-action pair (st, πM (st)) in H .

EV (st, πM (st) | H) =
1

m

m∑

i=1

Ri (5)

Here Ri =
∑T

k=ti+1 δ
k−ti−1 · rk as in Equation 1, ti is the

timestep in episode i where intervention action πM (st) was
given in step st and rk is the reward at episode i at time k.

We should thus replace π(st) with an alternative agent
action a �= π(st) if EV [st, a | H] > EV [st, πM (st) |
H]. The next question to ask is how to consider a no-op
action in the set of alternatives at state st. To this end
we define a special no-op∗ action that does not intervene
from state st onwards until the end of the session. The
value EV [st, no-op∗ | H] is a lower bound for choosing
no-op in st and possibly intervening in the future. Thus,
if EV [st, no-op∗ | H] > EV [st, πM (st) | H], then this
means EV [st, no-op | H] > EV [st, πM (st) | H], and we
can replace πM (st) with no-op. We thus consider an alter-
native set Â of agent actions that include all intervention
actions as well as the special no-op∗ action. Note that when
the no-op∗ bound is loose, we may fail to correct a policy
when the utility of the current action is lower than the utility
of no-op but is higher than no-op∗.

This process is described in Algorithm 2. The input to the
correction process is a target policy πM , the test set trajec-
tories of Table 2 and the set of agent actions Â. The output
of this process is a corrected policy which may replace in-
tervention actions in given states with other intervention ac-
tions or with a no-op action. We implemented the correction

Algorithm 2: Policy Correction for Intervention
Policy

Data: Target policy πM , trajectories Dtest,
intervention actions Â.

Result: Corrected deterministic target policy π∗
M

1 forall st ∈ S do
2 π∗

M (st) ← argmaxa∈ÂEV ((st, a) | Dtest)

3 return π∗
M

approach on the target policy computed in Steps 1 and 2 of
Algorithm 1. Figure 3 shows a sample from the corrected
policy for first session users. We highlight the changed ac-
tions (in red) proposed by this correction step. For example,
in state 5, the system corrected the intervention from the
community based message (“Thousands of people are tak-
ing part in the project every month...”) to the anxiety based
one (“you don’t need to worry about being right”).

Empirical Studies
We conducted two separate studies to evaluate the effect of
the TCI approach. Both studies were based on interventions
that were performed in real time in the Galaxy Zoo domain.
In all studies. the discount factor δ was set to 0.95 (de-
termined empirically). The running time of computing the
TCI optimized policy for the dataset in Table 2 on a Mac
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Figure 4: Optimized-policy: Intervention messages fre-
quency.

Book Air 1.7 GHz Intel Core i7, 8GB 1600 MHz DDR3
was 210.84 minutes.

Influence of Optimized Approach In the first experi-
ment, we compared the effects of our optimized approach
to alternative intervention policies, including the approach
of Segal et al. (2016) which represents the state of the art.
The study was run between May 8 and June 21, 2017 and in-
cluded a total of 3,383 users. All users logging on to the sys-
tem during this period of time were randomly divided among
the following cohorts: (1) Users receiving messages accord-
ing to the TCI optimal intervention strategy (Optimized-
Policy-Corrected Group); (2) Users receiving a helpful in-
tervention message when they are predicted to disengage
(Myopic-Policy Group). This is the policy suggested by Se-
gal et al. (2016) (3) Users receiving intervention messages
according to a random policy (Random-Intervention Group).
(4) Users receiving no intervention (Control Group). Each
of the cohorts included 864 participants, except the Myopic
group which included 865 participants. In total, 3,755 inter-
ventions were generated for all of the intervention cohorts.
We computed the expected number of interventions for each
condition and ensured that the number of generated inter-
ventions for each cohort was the same.

Figure 4 shows the distribution over the intervention ac-
tions generated by the TCI policy. As shown by the fig-
ure, the most common message-type generated by the TCI
approach was the helpful message (56%), followed by the
community message type (32%) and anxiety message type
(12%).

A natural question to ask is whether optimizing interven-
tion decisions based on the TCI approach was beneficial.
Figure 5 compares the average contribution rates for users
in the three cohorts. We required that (1) for all cohorts,
users received at least one intervention message, and (2) in
the optimized-policy corrected cohort, users received at least
one intervention message of the anxiety- or community-type
message (different than the helpful-type message used by
the Segal et al. (2016) baseline). As can be seen in the fig-
ure, the users in the Optimized-Policy-Corrected group gen-
erated 69% more contributions than users in the Myopic-
Policy group (p < 0.05, ANOVA). Users in both of these

Figure 5: Comparison of contributions in different cohorts.

groups made more contributions than those in the random-
intervention group and in the control group (the control
group performance was not significantly different than that
of the random group and is not shown in the figure).

A potential explanation of the additional influence of the
community and anxiety messages is that they resonate with
participants’ needs and fears at the right time during their
engagement with the system (Segal et al. 2015). Nonethe-
less, without controlling the timing of the intervention based
on predictions of forthcoming disengagement and additional
factors, these messages are not effective, as demonstrated by
the Random condition.

Effect of Correction Step We now report on a study of
the effect of the correction step, in isolation, on the perfor-
mance of our approach. To this end we conducted a sep-
arate experiment for comparing between the target policy
obtained in Step 2 of the TCI process with the corrected pol-
icy obtained in the final Step 3. The study was run between
June 22 and August 10, 2017. Users logging on to the sys-
tem during this time period were randomly divided between
two cohorts: Users receiving the TCI intervention policy af-
ter policy correction (916 users) and before correction (917
users).

Figure 6 shows the contribution rates of users with 1 ses-
sion (the majority of users and where the policy correction
step performed most of the corrections) which received an
intervention for the different cohorts. As shown in the fig-
ure, the average contribution rate for users in the Optimized-
Policy-Corrected group was significantly higher than that of
users in the Optimized-Policy-Uncorrected group (p < 0.05,
t-test). This result demonstrates the crucial effect of the cor-
rection step on users’ contribution rates.

Discussion and Conclusion
We have provided a new computational method called TCI
for increasing engagement in volunteer based crowdsourc-
ing. The input to the TCI approach includes a domain de-
scription and a set of history trajectories of random inter-
vention trials. TCI iteratively searches for the optimal inter-
vention policy for the domain by combining model-based re-
inforcement learning with off-line policy methods. The pol-

1542



Figure 6: Comparison of contributions in uncorrected and
corrected conditions.

icy is then corrected, leveraging the constraint of allowing
only a single interruption per session. The need to minimize
costs of interventions and of the use of single interventions
per session extends to other domains (e.g., e-learning, mo-
bile health). We tested our approach in a live experiment in
the Galaxy Zoo domain, a large-scale citizen science plat-
form where users classify celestial galaxies. We demon-
strated that our approach significantly outperforms a state-
of-the art baseline.

We mention several limitations to our approach and sub-
sequent suggestions for future work. First, TCI relies on a set
of random intervention trials for training the MDP and eval-
uating and correcting candidate policies off-line. In many
time critical domains (e.g., citizen science, healthcare), the
cost of performing random intervention trials may be unac-
ceptable. Other approaches for providing trajectory histories
can use simulations or domain experts. The data collection
step can also leverage active research on finding the mini-
mal number of random interventions required to reach sta-
tistically significant effects in intervention design for health-
care applications (Klasnja et al. 2015). We hope to see sim-
ilar models developed for crowdsourcing domains. Second,
we noted that there were lower average contribution rates in
the correction step experiment compared to the first experi-
ment. We attribute this to the summer period in the northern
hemisphere, which highlights challenges around changing
domain dynamics. The dynamics of participation and en-
gagement in the Galaxy Zoo domain (e.g., changes in contri-
bution distributions across the year) makes it an interesting
experiment platform for future studies. Third, the TCI ap-
proach has assumed that a single interruption is allowed per
session. Allowing more than a single interruption will re-
quire to adapt step 1 (representation and optimization) and
step 3 (policy correction). Specifically, the state space will
be augmented to include the number of interruptions gen-
erated for the user and the MDP transition matrix will be
updated accordingly. Additionally, the correction step will
need to be reformulated to account for the fact that multiple
interruptions are allowed. Finally, while the TCI approach
had a significant positive influence on the behavior of thou-
sands of users in Galaxy Zoo, it still needs to be extended
and tested in other domains. We are working on such an ex-

tension to the e-learning domain.
We are excited about opportunities to leverage offline

policy optimization to enhance engagement in citizen sci-
ence and other volunteer-centric online applications. Be-
yond these applications, the methods can be valuable in
other kinds of engagement challenges, such as in educational
systems, where interventions, for both motivation and for
assisting with inferred conceptual challenges, may enhance
learning experiences and efficacies. Before concluding, we
note the need to be vigilant about potential societal chal-
lenges rising with uses of methods that seek to optimize en-
gagement of people when it comes to goals of financial or
political gain.
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