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Abstract

We propose a scheme for training a computerized agent to
perform complex human tasks such as highway steering.
The scheme is designed to follow a natural learning process
wherein a human instructor teaches a computerized trainee.
It enables leveraging the weak supervision abilities of a (hu-
man) instructor who – while unable to perform the required
task well herself – can provide coherent and learnable in-
stantaneous reward signals to the computerized trainee. The
learning process consists of three supervised elements fol-
lowed by reinforcement learning. The supervised learning
stages are: (i) supervised imitation learning; (ii) supervised
reward induction; and (iii) supervised safety module con-
struction. We implemented this scheme using deep convo-
lutional networks and successfully created a computerized
agent capable of autonomous highway steering in the well-
known racing game Assetto Corsa. We demonstrate that the
use of all components is essential to effectively carry out re-
inforcement learning of the steering task using vision alone,
without access to a driving simulator internals, and operating
in wall-clock time.

1 Introduction
Consider the task of designing a robot capable of perform-
ing a complex human task such as dishwashing, driving or
ironing clothes. Although these tasks are natural for adult
humans, designing a hard-coded algorithm for such a robot
can be a daunting challenge. Obstacles include difficulties
in accurately modeling the robot and its interaction with
the environment, creating hand-crafted features from high-
dimensional sensor data, and guaranteeing that the robot is
able to adapt to new situations, to name just a few. In this
paper, we propose a general scheme that combines several
learning techniques to tackle such challenges. As a proof a
concept, we implemented the scheme and applied it to the
challenging problem of autonomous highway steering. To
this end, we use one of the most popular computer racing
games (Assetto Corsa)1, and attempt to create a self-steering
car in the sense that given raw image pixels (of the car rac-
ing game screen), we wish to output correct steering con-
trol commands for the steering wheel. We use Convolutional
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1At the time of writing, this game is considered to be one of the
most realistic computer racing environments.

Neural Networks (CNNs) as mapping functions from high-
dimensional data to control actions and to instantaneous re-
ward signals. The choice of CNNs is based on their proven
ability to extract informative features from images in the
context of classification and control tasks (Mnih et al. 2015;
Krizhevsky, Sutskever, and Hinton 2012), thus obviating the
exhausting task of manually defining features. For example,
in the work of Mnih et al. (2015), a CNN was successfully
trained to predict desired control actions in the Atari 2600
domain, given high-dimensional pixel data.

Two of the most promising approaches for robot train-
ing are Imitation Learning (IL) and Reinforcement Learning
(RL). In IL, a human demonstrator performs the desired task
with the goal of teaching a (robotic) agent to mimic her ac-
tions (Argall et al. 2009). The demonstrations are used to
learn a mapping from a given world state, s, received via
sensors, to a desired action, a, consisting of instructions to
the agent’s controllers. In RL, the goal is to enable the agent
to find its own policy, one that maximizes a value function
defined in terms of certain guidance reward signals received
during its interaction with the environment. IL and RL can
be naturally combined, as was recently proposed by Tay-
lor, Suay, and Chernova (2011). The idea is to initiate the
reinforcement learning process with a policy learned dur-
ing a preceding IL stage. This combined approach can sig-
nificantly accelerate the RL learning process and minimize
costly agent–environment interactions. In addition, deploy-
ing the RL algorithm after the IL stage compensates for the
noisy demonstrations from which IL can suffer and extends
the imitation strategy to previously unseen areas of the state
space.

Noisy demonstrations in the IL stage typically result from
inconsistent strategies adopted by the human demonstrator.
Consequently, the performance of an IL agent is limited by
the quality of the observed demonstration. Another draw-
back of IL is its susceptibility to ‘distributional divergences’,
where a sequence of minor errors in the agent’s behavior is
compounded and leads to a state that is completely outside
the scope of the training sample. The agent’s behavior in
such states can be arbitrary and possibly dangerous. RL has
it flaws as well: it either requires a realistic simulation of
the agent’s interaction with the environment or requires op-
erating the agent in a real-world environment, which can be
quite costly. Moreover, the sample complexity of RL can be
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large and the modeling of an effective reward function is of-
ten quite challenging, requiring expert insight and domain
knowledge. The current state of affairs in robotic design us-
ing any technique clearly leaves much to be desired, where
ultimate goals such as domestic robot housekeepers remain
futuristic.

In safe RL (Garcıa and Fernández 2015), the learning
agent seeks a policy that maximizes the long-term future re-
ward received from the environment while respecting some
safety constraints (e.g., damage avoidance). Two of the main
approaches for integrating the safety concept into RL al-
gorithms are: (i) transforming the optimization criteria to
include a notion of risk (e.g., variance of return, worst-
outcome); and (ii) modifying the agent’s exploration pro-
cess while utilizing prior knowledge of the task to avoid
risky states. Our proposed method is related to the second
approach. By incorporating a safety module into the RL al-
gorithm, we are able to significantly reduce the number of
accidents (mostly in the initial stage of the RL). Further-
more, the integration of the safety module into the RL al-
lows us to improve the agent’s exploration of the state space
and speed up the learning. This enables the agent to avoid
the pitfalls of random exploration policies such as ε-greedy,
where the agent wastes time on unimportant regions of the
state space that the optimal policy would never have encoun-
tered.

The proposed approach somewhat resembles the natural
teaching–learning procedure used by humans to teach each
other complex tasks. In the first stage, the student mimics
the actions demonstrated by the instructor, after which the
instructor provides real-time feedback and the student im-
proves performance by both optimizing a policy as well as
learning the feedback function itself. Then, the student con-
tinues to teach herself (without the instructor), using both
the reward function previously induced by the instructor and
reward signals from the environment.

There is a vast body of literature on IL (Argall et al. 2009)
and RL (Kober, Bagnell, and Peters 2013), which we can
not survey due to lack of space. The two closest works to
ours are Taylor, Suay, and Chernova (2011) and Daniel et
al. (2014). In the first, the authors showed that a preceding
demonstration learning stage can significantly expedite the
reinforcement learning process and improve the final policy
performance in a simulated robot soccer domain. In the sec-
ond, the authors proposed to learn a reward model in a super-
vised manner and used alternating steps of reward and rein-
forcement learning to continually improve the reward model
and the agent’s policy in a robotic arm grasping task. We
believe our work is the first to propose and demonstrate a
successful integration of all four learning components.

We propose and apply a learning scheme for complex
tasks that combines four components: IL, Reward Induc-
tion (RI), Safety Network learning, and RL (see supple-
mentary video). First, by performing imitation learning, we
get a reasonable initial performance by the agent. In this
stage, both the actions of a human demonstrator and the cor-
responding game images are recorded while she plays the
game. A policy network, denoted Pθ, is trained in an SL
manner using this data. The goal of this step is to gener-

ate an agent capable of operating in the environment with-
out too much risk (e.g., without damaging itself or the en-
vironment). Second, we learn a reward network, denoted
Rθ, (to be used later by the RL procedure) from instruc-
tor feedback generated while observing the agent operat-
ing in the environment using the initial IL policy. The re-
ward network receives an image and outputs a number in
the range [−1, 1] that indicates the instantaneous reward
for being in that state. We call this method reward induc-
tion since the reward function is induced (in an SL manner)
from a finite set of labeled examples obtained from a hu-
man instructor. Third, we learn a safety network, denoted
Sθ, to be integrated in the RL procedure. Finally, in the RL
stage, the reward network and the safety network are used
to teach the agent a policy without any human supervision.
In this stage, the Double Deep Q-learning (Hasselt 2010;
Hasselt, Guez, and Silver 2016) (DDQN) RL algorithm is
used to train a Q-network, denoted Qθ. The reward signal
used in the RL procedure is constructed from the reward net-
work’s output only. The learned policy network’s parameters
from the imitation part are used to initialize the Q-network’s
parameters.

We emphasize that our entire system is implemented with-
out any access to the internal state of the game simula-
tor (which is a purchased executable code). This is in con-
trast to most previously published works on computerized
autonomous driving, which were conducted in a simula-
tion environment, allowing access to the internal states of
the simulator (e.g., TORCS, Wymann et al. 2000). These
states contain valuable parameters such as the car’s dis-
tance from the roadside or its angle with respect to the
road. Thus, when an open simulator is available, such pa-
rameters can be extracted and utilized in the learning pro-
cess, as can other reward information (Zhang and Cho 2016;
Loiacono et al. 2010; Munoz, Gutierrez, and Sanchis 2009;
Chen et al. 2015). More importantly, the lack of an open
simulator in our setting means that all our learning proce-
dures, including reinforcement learning, must be executed
slowly in wall-clock time (as in real driving), as opposed to
the super-fast learning that can typically be achieved using
a simulator. The latter issue is one of the most significant
limitations when applying RL for real-world tasks. Quoting
Yann LeCun, “But it [RL] doesn’t really work in the real
world ... the main reason for this is ... you cannot run it faster
than real-time” (LeCun 2017). Our work aims at bridging
this gap by demonstrating that non-trivial RL without any
access to the internal state of the game simulator can be ef-
fectively implemented when supported with an appropriate
foundation of supervised learning.

2 Imitation learning
Imitation learning, also known as behavioral cloning or
learning from demonstrations, aims at finding a mapping
f� : s → a from a given world state, s, to a desired action
a. This mapping is typically termed “policy.” Robot learn-
ing using mimicry is an old idea, conceived decades ago
(Hayes and Demiris 1994; Argall et al. 2009). While be-
ing an excellent technique for achieving reasonable perfor-
mance, this approach by itself is limited. Clearly, the perfor-
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mance of an agent trained in this manner is upper bounded
by the level of instruction. Moreover, if the training sample
is not sufficiently diverse/representative, the agent will not
be exposed to unexpected difficult states, and can perform
very poorly and unpredictably when such states are encoun-
tered in production. Finally, labeled samples obtained from
human demonstrations are prone to labeling noise.

Noting these limitations, we use imitation learning in our
scheme only to achieve a basic performance level, which
will allow the agent to perform the required task without
damaging itself or the environment. In our setting, world
states are game images, and actions are keyboard keys
pressed by a human demonstrator while playing the game.
The Assetto Corsa game offers the option of connecting a
steering wheel controller; we have not utilized this option
and note that the use of such a wheel controller should im-
prove the driving performance of the learning agent.

In this stage of the scheme we train a policy network that
maps raw image pixels to steering commands of left/right.
The policy network, which is composed of four convolu-
tional layers and two fully connected layers, is trained and
evaluated. The last layer of the network has three nodes that
correspond to the actions: ’No Action’, ’Left’ and ’Right’.
A softmax nonlinearity is applied to the last layer. A full
description of the network’s architecture is given in the sup-
plementary material.

A training sample of state–action pairs, D = {(si, ai)}i,
is recorded while a human expert plays the game. A detailed
explanation of the recording process is given in Section 5
(in the experiments described below, D contained approx-
imately 70,000 samples, equivalent to two hours of human
driving). We then train a policy network using D, denoted
Pθ. The negative log-likelihood is used as a loss function for
training Pθ,

NLL(θ,D) = − 1

|D|
|D|∑
i=0

logPθ (ai|si) ,

where Pθ receives the state s and outputs a probability dis-
tribution on the optional actions, with parameters θ.

A detailed explanation of the performance evaluation pro-
cedure is also given in Section 5, The parameters of Pθ were
used to initialize the Q-network and the reward network.

3 Deep reward induction

The problem of designing suitable reward functions to guide
an agent to successfully learn a desired task is known as re-
ward shaping (Laud 2004; Ng, Harada, and Russell 1999).
The idea is to define supplemental reward signals so as to
make an RL problem easier to learn. The handcrafting of
a reward function can be a complicated task, requiring ex-
perience and a fair amount of specific domain knowledge.
Therefore, other methods for designing a reward function
without the domain expertise requirement have been investi-
gated. In Inverse RL (IRL), a reward function is learned from
expert demonstration (Abbeel and Ng 2004). IRL algorithms
rely on the fact that an expert demonstration implicitly en-
codes the reward function of the task at hand, and their goal

is to recover a reward function that best explains the expert’s
behavior.

Daniel et al. (2014) proposed to learn a reward model in a
supervised manner and use iterations between reward learn-
ing and reinforcement learning to continually improve the
reward model and the agent’s policy. Their approach, which
is based on manual feature generation by experts, has been
applied in a robotic arm grasping task. The reward function
is not learned from the raw states visited by the learner, but
from some assumed to-be-known, low-dimensional feature
representation of them. Constructing such low-dimensional
representations usually requires some expert domain knowl-
edge, making the learning of the reward function somewhat
less advantageous.

Our reward induction component learns the reward func-
tion directly from the raw image pixels. Since we do not
have access to the internal state of a simulator, defining a re-
ward signal using the car’s state parameters (distances from
the roadsides, angle with respect to the road, etc.) is impos-
sible without explicit image processing. In this work, we de-
vise and utilize a deep reward network that is learned from
a human driving instructor. The reward network, which is
implemented with convolutional layers, maps a game state
into the instantaneous reward, r ∈ [−1, 1], corresponding
to that state, Rθ : s → r. The driving instructor provides
binary labeling for each state such that the reward network
is a mapping from raw image pixels to { “good”, “bad” }.
The binary labeling task, which is performed by the human
instructor, continues until we are convinced that the reward
model is sufficiently accurate (when evaluated on a test set.)

During the imitation learning stage, the human instructor
ignored the lane marks on the road (some of the tracks do
not contain lane marks at all), but now we consider a more
complex application whereby the agent must drive in a des-
ignated lane only (the second lane from the right on a four-
lane road). Considering this new task, we aim to convey a
main concept of our scheme: leveraging the weak supervi-
sion abilities of a (human) instructor who – while unable to
perform the desired task (driving in a specific lane) herself
– can provide informative reward signals to the computer-
ized trainee. To this end, we train a reward network, denoted
Rlane

θ , to give a high reward only for states where the car
was in the specified lane. Rlane

θ has an identical architec-
ture to that of the policy network, except for the final fully
connected layer that now has one node instead of three. A
hyperbolic tangent (tanh) activation function is applied on
the last layer to receive output in the range [−1, 1]. The re-
ward network is trained with data recorded from a human
instructor in a supervised learning procedure. The MSE loss
objective is used to train the reward network,

Es,l∼D
[
(l −Rθ (s))

2
]
,

where l ∈ {−1, 1} is the corresponding label given by
the human instructor. Rlane

θ was trained with approximately
30,000 new samples, denoted by Dlane, corresponding to
roughly one driving hour. States in which the car was in the
designated lane were labeled one, and all other states were
labeled minus one. A 97% validation accuracy was achieved
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with early stopping during the training of Rlane
θ . An example

of the output of Rlane
θ in different states is given in Figure 1,

showing very high reward for being in the designated lane.

(a) “Bad” states (b) “Good” states

Figure 1: Rlane
θ outputs high reward for driving in the sec-

ond lane from the right (b), and low reward when in other
lanes (a). The reward is the number located in the lower-
right corner of each frame.

4 RL using DDQN

In this section we assume basic familiarity with reinforce-
ment learning; see, e.g., Sutton and Barto (1998). In the final
RL stage, we utilize the already trained reward network and
apply it within a standard RL method. Performance is mea-
sured in terms of the learned reward model, and the main
goal of this stage is to achieve a significantly better perfor-
mance level than the one achieved in the mimicry stage by
enabling the agent to teach itself. In other words, starting
with a policy π0, we would like to apply an RL algorithm
to learn a policy π∗, which is optimal with respect to the
expected (discounted) reward received from the reward net-
work.

We use a variant of the Q-learning algorithm (Watkins and
Dayan 1992), which aims to find the optimal action-value
function, denoted by Q�(s, a), and defined as the expected
(discounted) reward after taking action a in state s and fol-
lowing the optimal policy π� thereafter. The true value of
taking action a in state s under policy π is

Qπ(s, a)=E
[
rt + γrt+1 +γ2rt+2 +...|st = s, at = a;π

]
,

where γ ∈ [0, 1] is a fixed discount factor and r is the guid-
ance reward signal. Given the optimal action-value function,
which is defined to be Q�(s, a) = max

π
Qπ(s, a), the op-

timal policy π� can be derived simply by taking the action
with the highest action-value function in each state. Deal-
ing with a very large state space of images, we approximate
the optimal action-value function using a deep Q-network
(DQN) with parameters θ:

Qθ(s, a) ≈ Q�(s, a).

A deep Q-network is a neural network, which for a given
state, outputs a vector of action values.

We used the DDQN algorithm with replay memory and
target values calculated from parameters of the previous iter-
ation, as in the work of Mnih et al. (2015). The loss function
we used is, therefore,

L(θ) =

E
s,a,r,s′∼B

[(
r+γQθ̃(s

′, argmax
a′

Qθ(s
′, a′))−Qθ(s, a)

)2
]
,

where (s, a, r, s′) are samples taken from the replay memory
buffer B, and θ̃ are the Q-network’s parameters from the pre-
vious iteration. In our applications, the reward received after
taking action a in state s is the instantaneous reward ob-
tained from the reward network for state s (see Section 3).
We set γ to be 0.9 and used the ADAM (Kingma and Ba
2014) method for stochastic gradient optimization.

We trained a Q-network, denoted Qθ, which has the same
architecture as Pθ except for the final softmax nonlinearity,
which was removed. The Q-network’s parameters were ini-
tialized from those of the policy network except for the final
layer’s parameters, which were initialized from a uniform
distribution [−1 × 10−3, 1 × 103]. We wished, on the one
hand, to maintain the final convolutional layer of the policy
network, which contains an informative state representation.
Yet, on the other hand, we also had to allow the Q-network
to output values compatible with Q-learning temporal differ-
ence targets. Therefore, an initial policy evaluation step was
performed, where we let Pθ drive, and updated the parame-
ters of only the last two fully-connected layers of Qθ while
fixing all its other parameters. This step can be viewed as
learning a critic (and more precisely, only the last two layers
of the critic’s network) to estimate an action-value function
while fixing the acting policy. After this policy evaluation
step, we started the RL algorithm using Qθ, allowing all its
parameters to be updated. We refer to this type of initializa-
tion as IL initialization. Full details of the experiments are
given in Section 5.

Safety Network for Safe RL

We incorporate the notion of safety into the RL process us-
ing a safety module that is composed of: (i) a safety network,
denoted Sθ, whose purpose is to classify the state space into
two classes: safe and unsafe; (ii) a safe driving policy, de-
noted P safety

θ , which takes control of the agent’s controller
when it is in an unsafe state. Sθ maps a game state into a real
number in the range [−1, 1], corresponding to the amount of
risk in that state, where the value 1 is assigned to the safest
possible state and the value −1 is assigned to the riskiest
possible state. States are classified as “safe” and “unsafe”
according to the safety network’s output; if it is above a
predefined threshold, the state is labeled “safe.” Otherwise
it is labeled “unsafe.” When unsafe states are encountered,
P safety
θ takes control of the car until it is out of danger.

Specifically,

driving policy =

{
P safety
θ , if Sθ < threshold

Qθ, if Sθ > threshold .

Sθ has the same architecture as Rlane
θ , and is trained the

same, but with a different dataset (including labeling). Train-
ing data for Sθ were gathered in the following manner. A
human instructor drove the car while intentionally alternat-
ing between edge conditions (i.e., driving on, or even outside
road boundaries) and safe driving; examples are provided in
a supplementary video. “Safe” states, where the car is on the
road facing the correct direction, as demonstrated by the hu-
man instructor, are labeled one. All other states are labeled
minus one. The training of Sθ continues until a statistical test
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indicates that this network provides accurate results over test
data. The safe driving policy is the learned policy from the
IL stage, Pθ. We note that the decision to use the IL policy
as a safe policy is specific to our application and very plau-
sibly, it may not be the best choice in the general case. For
example, it is conceivable that in a physical environment, a
safe policy will consist of a predefined sequence of actions
that cause the car to come to a complete stop, then disen-
gage and yield control to a human driver or to an automaton
that will return the car to a safe position or action. By us-
ing the proposed safety module, we were able to train our
agent faster and with fewer accidents, as can be seen in Fig-
ures 3 and 6, and Table 1. An example of the output of Sθ

in different states is given in Figure 2. We also note that it is
possible to train a single reward network to predict a graded
reward, which includes both our standard reward as well as
extremely low values corresponding to unsafe states. Since
in our setting, however, the reward labeling is given by the
human instructor in real-time (while the agent is driving the
car), we found it easier to provide binary labels than graded
reward feedback.

(a) “Unsafe” states (b) “Safe” states

Figure 2: Sθ outputs a high score for “safe” states according
to the instructor (b), and a low score for “unsafe” states (a).
The output of the safety network is the number located in
the lower-right corner of each frame.

5 Experiments and results
RL experiments. For the RL experiments we used Rlane

θ
on the “Black Cat County” track (see supplementary ma-
terial). The Q-network’s parameters were initialized in two
different ways: (i) from the policy network’s parameters, as
explained in Section 4; and (ii) with random initialization
for a baseline. The agent operated with an ε-greedy policy
(ε = 0.05). The agent was trained for a total of 3.5 million
frames (that is, around 4 days of game experience) with a
replay memory of the 5, 000 most recent frames. Figure 3
and Table 1 show that initializing the Q-network’s parame-
ters with those learned in the IL stage increased the learning
rate at the beginning of the RL, and significantly reduced
the number of critical driving mistakes made by the agent
(compared to randomly initializing the Q-network).

By incorporating the safety module into the RL pro-
cess, we could further expedite the agent’s learning rate and

Table 1: Averaged number of accidents per epoch through-
out the agent’s RL training. The training is divided into
four different episodes as follows: epochs 0–3, epochs 3–
12, epochs 12–39 and epochs 39–120. An epoch is defined
as 15, 000 sample frames. The first row corresponds to a
random initialization of the Q-network. In the second and
third rows, the Q-network is initialized with the IL policy pa-
rameters. In the third row, the safety module is incorporated
into the reinforcement learning. The number of accidents in
the last episode is averaged over 81 epochs, but in the final
epochs, both the IL and IL + Safety agents can complete
tracks without accidents.

0-3 3-12 12-39 39-120

RANDOM 116.6 104.7 68.5 41
IL 67 65.3 68.1 44.5
IL + SAFETY 47 46.1 36.1 23.3

better circumvent critical driving mistakes. This is evident
in Figure 3, where the reward and action-value curves of
IL + Safety consistently dominates the corresponding IL
curves. Figure 6 further emphasizes the advantage of the
safety module, now comparing randomly initialized RL with
and without the safety module. Figure 4 presents the number
of safe policy takeovers during the RL process; as time goes
by, the agent’s driving skills improve and it is less likely
to enter dangerous states. Even though the following com-
parison is not exactly “apples to apples”, we note that the
final RL agent outperformed the human instructor’s initial
demonstration; namely, it received higher rewards than the
imitation policy Pθ (reminder: the RL agent was trained to
drive in a designated lane, as opposed to the imitation pol-
icy).

A high quality reward signal is critical to the agent’s suc-
cess during the RL stage. In the proposed scheme, the re-
ward signal is learned from human instructions. Therefore,
the learned reward network must be able to generalize the
human instructions for unseen states. To investigate the ef-
fect of the reward signal’s quality on the agent’s overall
performance during the RL stage, we conducted the fol-
lowing experiment. An additional reward network, denoted
R 0.2 lane

θ , was trained using only 20% of the dataset Dlane,
and achieved 66% validation accuracy. We then trained an
RL agent with a reward signal given by R 0.2 lane

θ and com-
pared its performance to the RL agent trained using Rlane

θ .
The results, presented in Figure 5, emphasize the necessity
of a reward function that is able to correctly generalize the
human instructor’s knowledge to unseen states.

Technical implications of not having access to the sim-
ulator’s internal state. While performing the RL algorithm,
the following operations are executed online: image captur-
ing, image pre-processing, reward prediction by the reward
network, action prediction by the Q-network, Q-network pa-
rameter updates, and others. On average, the serial execu-
tion of these operations takes 70 ms. Therefore, the agent
must always act under 70 ms latency (from the time the im-
age is captured to the time the corresponding steering key
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(a) Average reward

(b) Average action-value

Figure 3: Agent’s training curves. An epoch is defined to be
15, 000 sample frames. The Q-network’s parameters were
initialized as follows: Blue: Random initialization. Green:
IL initialization. Red: IL initialization + safety module. (a)
Average reward per epoch. (b) Average action-value per
epoch. The average reward achieved by the imitation policy,
Pθ, was −0.45.

is pressed). During this gap, the previous key continues to
be pressed until a new one is received. This added difficulty
can be avoided when using a simulator. Most importantly,
our inability to apply the RL stage at a super-fast simulation
speed limits the number of training epochs we can afford to
conduct.

Image preprocessing. The images were resized from
1024 × 768 to 192 × 144 and were not converted to gray
scale. The pixel values were scaled to be in the range [0, 1].
Pixels corresponding to the speed indicator were set to zero
in order to guarantee that the agent does not use the speed
information during the learning process. In all our experi-
ments, each input instance consisted of two sequential im-
ages with a 0.5-second gap between them.

Work environment. We used the Theano-based Lasagne
library for implementing the neural networks. Two GeForce
GTX TITAN X GPUs were utilized during the RL experi-
ments; one was used to run the racing game and the other to

Figure 4: Fraction of safety policy takeovers per decision in
each epoch during the RL. An epoch is defined to be 15, 000
sample frames. Each point in the graphs is the relative num-
ber of sample frames per epoch in which the safety policy
took control (i.e., the fraction of sample frames for which the
output of the safety network was ’unsafe’.) The Q-network
was initialized with the IL policy network parameters (IL
initialization).

train the networks and predict the rewards and actions.
Data generation and network training technicalities.

The human demonstrator played the game using a “racing”
strategy: driving as fast as possible while ignoring the lane
marks and trying to avoid accidents. Training data for the
policy and reward networks was collected from the tracks:
’Black Cat County’, ’Imola’ and ’Nürburgring gp’. The
“Black Cat County” track is the only one with lane marks,
and it was used for the RL experiments. Sample images
of the tracks are given in the supplementary material. Us-
ing a Python environment, screen images were recorded ev-
ery 0.1 seconds while the human demonstrator played the
game. Keyboard keys pressed by the demonstrator were also
recorded. The same sampling rate was used when gather-
ing data for the reward induction stage. 80% of the recorded
samples were used as training data and the remaining 20%
as validation data. We used the ADAM stochastic optimiza-
tion method with dropout for regularization (Srivastava et al.
2014). The network parameters that achieved the best vali-
dation accuracy were chosen.

Performance evaluation. Without a natural performance
evaluation measure for driving skills and without access to
the internal state of the game, our performance evaluation
procedure is based mainly on the accumulated average re-
ward achieved by the agent. Better driving means higher
(discounted) accumulated average reward and vice versa.
Moreover, we also use the agent’s number of car accidents
as a performance evaluation measure. Car accidents are de-
tected in the following manner: if the difference between two
sequential speed frames exceeds a predefined threshold, the
event is considered as an accident.

Other technicalities. Game restarts were performed
when the agent had zero speed (e.g., stuck against some ob-
stacle) or when it drove in the wrong direction (both of these
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Figure 5: Agent’s RL training curves. An epoch is defined
to be 30, 000 sample frames. Each point in the graphs is the
average reward achieved per epoch from the reward network
Rlane

θ . Green: reward signal is received from Rlane
θ . Blue:

reward signal is received from R 0.2 lane
θ .

Figure 6: Agent’s training curves. An epoch is defined to be
15, 000 sample frames. Each point in the graph is the aver-
age reward per epoch. The Q-network was initialized with
random parameters in both cases. Blue: no safety module.
Green: with safety module.

situations were detected through simple image processing).
All the experiments were conducted without any other vehi-
cles on the road. We used the ’Lotus Elise SC’ car model in
all of our experiments. Focusing only on the steering control
problem, we eliminated accelerator/brake control variabil-
ity by using a “cruise control” behavior whereby the car’s
speed was set to 50 kmh. This was achieved by extracting
the car’s speed from the game image and applying a simple
handcrafted controller.

6 Concluding remarks

We presented a generic learning framework consisting of
three supervised elements that facilitate RL training of a
computerized agent, which should perform a complex task
based on raw perception. In our setting, the agent uses raw
image pixels without any image processing or other hand-

crafted features. We expect the proposed framework to be
useful in various application domains, and have demon-
strated its strength on an autonomous highway steering
problem. Our solution relies on recent deep representational
methods (CNNs) to successfully implement all elements
of the proposed framework. We successfully demonstrated
the advantage of all four elements, and we note that the
proposed implementation is scalable to any computerized
(black-box) driving game where the steering is controlled
via the keyboard.

A typical real-world RL application often relies on a accu-
rate simulator of the environment, which enables super-fast
applications of RL algorithms by accelerating the real-world
clock. In our setting, it is impossible to accelerate the real-
world clock (as in many other real-world tasks for which
constructing an accurate simulator is extremely difficult).
This limitation is hard to overcome and requires appropri-
ate and extremely effective RL, as we aim to achieve here.
In contrast, in the work of Mnih et al. (2015), where RL
is used to predict desired control actions in the Atari 2600
domain, it is possible to train the RL agent (using the open
source ALE simulator) 100 times faster than in our setting.

The main strength of our scheme lies in leveraging the
weak supervision abilities of a (human) instructor who –
while unable to perform the required task well herself – can
provide coherent and learnable instantaneous reward signals
to the computerized trainee. In other words, the instructor
should be able to perform the task herself only at a very ba-
sic level (and demonstrate it to the agent), and should be
able to provide helpful feedback to the agent if actions taken
by the agent are advancing the task or not. This leveraging
effect clearly occurred in our self-steering example, where
single-lane driving demonstrations (by the instructor) were
not included in the imitation stage (and moreover, most of
the training tracks do not even include lane marks). Nonethe-
less, the agent quite easily learned to drive in a single desig-
nated lane after a one-hour instruction session followed by
self-reinforcement learning (without the instructor).

Many directions have been left open for future research.
First, our self-steering example can be improved in vari-
ous ways. It would be very interesting to extend our so-
lution to include acceleration and breaking control. Then,
it would be challenging to train a reward function to pro-
mote fast racing style driving. While the proposed safety
module proved itself as an extremely effective technique
to expedite the RL in our setting, our supervised approach
to construct this module was dependent on the particular
task we considered. In general, it would be very interest-
ing to develop effective approaches to constructing such
modules for arbitrary tasks, perhaps using semi-supervised,
single-class classification or even unsupervised techniques
(El-Yaniv and Nisenson 2007). Other useful techniques that
can be used in learning to detect unsafe states are selective
prediction, and concept drift detection (Harel et al. 2014;
Wiener and El-Yaniv 2015; Geifman and El-Yaniv 2017).

Whether the proposed approach can be used to train real-
world robotic agents in the absence of a realistic simulator
is a major open question. To successfully apply our scheme,
both effective acquisition of instantaneous rewards from an
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instructor and accurate modeling of the reward function are
required. While in our driving example, the reward mod-
els were easily constructed, creating these models for highly
complex tasks is expected to be challenging in terms of both
model capacity and the development of effective methodolo-
gies for interaction with the instructor. Furthermore, to han-
dle more complex tasks (e.g., cooking, dishwasher loading),
the policies must operate a number of controllers (or more
complicated controllers with many degrees of freedom). An
interesting question in this regard is how to construct appro-
priate network architectures and training methodologies to
jointly handle many related controllers. We anticipate that
harnessing the supervision abilities of a (human) instructor,
for the purpose of learning an effective reward model will
become a critical building block in creating complex robotic
agents.
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