
A Coverage-Based Utility Model
for Identifying Unknown Unknowns

Gagan Bansal, Daniel S. Weld
Paul G. Allen School of Computer Science and Engineering

University of Washington
Seattle, WA 98195

{bansalg, weld}@cs.washington.edu

Abstract

A classifier’s low confidence in prediction is often indica-
tive of whether its prediction will be wrong; in this case, in-
puts are called known unknowns. In contrast, unknown un-
knowns (UUs) are inputs on which a classifier makes a high
confidence mistake. Identifying UUs is especially impor-
tant in safety-critical domains like medicine (diagnosis) and
law (recidivism prediction). Previous work by Lakkaraju et
al. (2017) on identifying unknown unknowns assumes that
the utility of each revealed UU is independent of the oth-
ers, rather than considering the set holistically. While this
assumption yields an efficient discovery algorithm, we ar-
gue that it produces an incomplete understanding of the clas-
sifier’s limitations. In response, this paper proposes a new
class of utility models that rewards how well the discovered
UUs cover (or “explain”) a sample distribution of expected
queries. Although choosing an optimal cover is intractable,
even if the UUs were known, our utility model is monotone
submodular, affording a greedy discovery strategy. Exper-
imental results on four datasets show that our method out-
performs bandit-based approaches and achieves within 60.9%
utility of an omniscient, tractable upper bound.

Introduction
With the rise of machine learning, pre-trained classifiers
are often available as a Web service accessible via an API,
e.g., Microsoft Cognitive Services, Amazon Rekognition
and IBM Watson. Since users of these services will apply
them to their own data, which likely differs from the service
provider’s training data, the classification performance may
deviate from expectations.

? (2015) found that a classifier may be prone to systemati-
cally making mistakes on inputs, despite being highly confi-
dent of its prediction; they referred to such high-confidence
mistakes as “unknown unknowns.” While many reasons can
account for poor classifier performance, ? (?) discusses an
interesting one: unmodeled aspects of the world. He also
used the term, unknown unknowns, for the resultant errors,
because the system is unaware of its mistake. For a classi-
fier, such situations may arise because of bias in the training
data, a difference in the training and test set distribution, in-
sufficient classifier expressiveness, and others.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2

1

x

y

z

(a)

2

1

x

y

z

(b)

Figure 1: Two payoff sets of seven unknown unknowns
(UUs). The green region denotes the space of true posi-
tives; the straight black line shows the decision boundary;
red regions are false positives. Red areas x, y, and z are
low confidence predictions near the decision boundary. Red
interior regions 1 and 2 contain UUs. The stars indicate the
discovered UUs. (a) Lakkaraju et al.’s utility function yields
a tightly clustered set and does not discover the upper blind
spot. (b) our utility function rewards better coverage.

Identifying a classifier’s UUs is an important task for
many reasons: for understanding the classifier’s limita-
tions, for debugging it (Amershi et al. 2015), for attacking
(Szegedy et al. 2014) or preventing attacks against it (Good-
fellow, Shlens, and Szegedy 2015), or for deploying a high
performing human-machine hybrid system (Werling et al.
2015; ?). Understanding a machine learner’s limitations
is especially important when developing safer AI systems
for use in high-stakes domains, such as health care and
transportation, where errors could be catastrophic (?; ?;
?).

? (2015) found that many UUs, particularly high-
confidence mistakes, may be present as systematic errors
in a specific region of a classifier’s feature space, a kind of
“blind spot.” They developed a novel crowdsourcing work-
flow that provides human workers monetary incentives for
discovering UUs. Subsequently, Lakkaraju et al. (2017)
developed an automatic method to find UUs for black-box
classifiers using an innovative clustering and reinforcement-
learning-based algorithm. However, their method assumes
that discovering a UU results in a fixed reward independent
of any observation that the system might have made pre-
viously. While this independence affords an efficient algo-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1463

rithm for finding UUs, their utility model has an important
limitation — it provides the same reward for finding a novel
UU as it does for finding another UU that is indistinguish-
able from previous finds. For example, consider the two sets
of UUs shown in Figure 1. While these sets are of equal
size, the second set (b) is more informative since it: 1) doc-
uments the presence of multiple blind spots in the feature
space, and 2) better characterizes their extent. However,
Lakkaraju et al.’s utility model assigns the same reward to
both sets. Furthermore, their bandit algorithm is more likely
to return set (a) than (b) because it recognizes that it is more
likely to find additional UUs in the vicinity of the first one it
found (see, e.g., Figure 2). Finally, the utility model rewards
discovery of an unlikely UU in the same way as it does for
one found in a dense area of feature space.

This paper corrects these problems by offering a more
expressive class of utility models and a new algorithm for
identifying UUs. We assume a setting that has access to a
classifier’s predictions and its confidence in them. At some
expense, the system can query a human oracle to check the
true label for any given input, determining if it is a correct
prediction or yields an error. Since querying the oracle is
expensive, we assume a budget constraint that specifies the
maximum number of oracle calls. The utility model spec-
ifies the usefulness of querying a set of inputs for the task.
The objective is to select a set of inputs from the the test set
that maximizes the achieved utility. In summary, we make
the following contributions:

• We identify three issues with the utility model used by
previous work to identify unknown unknowns that leads
to an incomplete understanding of the machine learning
classifier’s blind spots.

• As a solution, we propose a new class of utility models
for the task that evaluates the coverage of a set of dis-
covered unknown unknowns over a sample distribution of
expected test time queries.

• We show that our coverage-based utility model is mono-
tone submodular; hence, an omniscient greedy strategy
will find a cover within a constant factor of optimal, which
forms a tractable upper bound for evaluating solutions.
We further implement two online approximation algo-
rithms, Greedy-conf and Greedy-uniform, that utilize dif-
ferent probabilistic priors.

• Finally, we present experiments showing that our Greedy-
conf algorithm performs substantially better than several
baselines and within 60.9% of the tractable upper bound.

Previous Work
While Attenberg et al. (2015) experimentally showed the
presence of UUs using human workers to manually craft
these inputs, Lakkaraju et al. proposed an automatic ap-
proach for identifying UUs. Their seminal paper formulated
the task as an optimization problem, where the system seeks
a sequence of queries to an oracle requesting an input’s label
that maximizes a utility function. (We discuss their utility
function later in this paper.)

Lakkaraju et al. presented a two-phase algorithm that re-
lies on clustering and reinforcement learning to maximize
their utility function. The first phase clusters test points so
that inputs in the same cluster have both similar features and
similar prediction-confidence values from the classifier. The
rationale is that the systematic occurrence of a classifier’s
UUs implies that certain clusters will have a higher concen-
tration of UUs than others. In the second phase, a bandit
algorithm, which treats each cluster as an arm, picks inputs
from Dtest; this action includes 1) choosing a cluster, and
then 2) randomly drawing an input from the cluster without
replacement. Lakkaraju et al. showed that their approach
discovered more UUs than simpler methods, such as query-
ing the input on which the classifier made the least confident
prediction.

This paper extends Lakkaraju et al.’s investigation of au-
tomatic methods for identifying UUs by proposing a novel
class of utility models that lead to alternative methods for
solving the resulting optimization problem.

Problem Statement
We now formally describe the task of identifying unknown
unknowns. Let M denote a classifier that maps an input
x into one of the possible classes in Y . Let yx denote the
true label and M(x) denote the predicted label of x. Let
cM,x denote the classifier’s confidence in this prediction. Let
Dtrain denote the data on which the classifier was trained.
We assume that we do not have access to Dtrain. Follow-
ing Lakkaraju et al., we assume, without loss of generality,
that the positive class is the critical class, i.e., false positives
are costly and must be discovered. Let Dtest denote a set
of inputs on which the classifier makes a positive prediction
with confidence greater than a threshold τ . Since the true la-
bels of points in Dtest are not known, the system can query
the oracle for this information. Let B denote the maximum
number of inputs the system may query. Let UM (Q, yQ) de-
note a utility model that describes the usefulness of querying
the oracle for the true label of a set of inputs Q ⊂ Dtest. The
task of identifying UUs can be formulated as an optimization
problem of selecting a set of inputs in Dtest that maximize
the utility model UM subject to the budget constraint. Equa-
tion 1 describes the resulting optimization problem. Here,
Q∗ ⊂ Dtest denotes the optimal set of inputs to query.

Q∗ = argmax
Q⊂Dtest,|Q|<B

UM (Q, yQ) (1)

Following Lakkaraju et al., we consider the sequential de-
cision problem where a solution Q is constructed by choos-
ing the inputs in Dtest to query one by one. The system is
assumed to observe the true label returned by the oracle after
each query and uses this information when deciding the next
query to make. We next discuss utility models appropriate
for identifying UUs.

Utility Models for UUs
Intuitively, a utility model describes the benefit received by
querying a subset of test inputs. Formally, a utility model is

1464

a set function UM : 2Dtest×Y → R that maps a set of queries
and their true labels to a real number indicating the resulting
utility. Queries that are more useful are mapped to a higher
value.

A good utility function depends, of course, on how the
UUs will be used. There are many possible objectives, e.g.,
for attacking (Szegedy et al. 2014) or defending against at-
tacks on the classifier (Goodfellow, Shlens, and Szegedy
2015), or for deploying a high performing human-machine
hybrid system (?). One might also want to directly improve
a classifier’s performance, but here, active learning methods
are likely more appropriate (Settles 2012). We focus on the
case where a user seeks to understand the limitations, specif-
ically high-confidence false positives, of an externally pro-
vided classifier, such as a pre-trained, Web-based ML API.

Let S ⊂ Q indicate the subset of queries that resulted in
the discovery of a UU, i.e., whether the classifier M made a
high confidence mistake.

S := {q | q ∈ Q, yq �= M(q), cM,q > τ} (2)

Equation 3 describes the independent UU utility model
used by Lakkaraju et al.1 Note that each UU produces unit
utility, and all other outcomes yield no value. Since the re-
wards earned by the discovery of each UU are independent
of each other, the total utility simply sums the utilities from
each query.

UM (Q, yQ) =
∑

q∈Q

�S(q) (3)

Here, �S(q) is an indicator function, which denotes
whether element q is a member of the set S. An optimal so-
lution for this utility model is any set where every element is
a UU: the independent utility model assigns the same value
to two set of queries if they have the same number of UUs.
For example, Lakkaraju et al.’s utility model assigns same
value to the UUs in Figures 1a and 1b. The independence
assumption makes their utility model fast to evaluate and
amenable to a multi-armed bandit framework, in which each
UU produces a unit reward.

Weaknesses of the Independent UU Utility Model
We argue that the independent UU utility model suffers from
three major weaknesses (Ws).

W1 First, it assigns the same incremental utility for find-
ing a novel UU as it does for finding a UU that is nearly
indistinguishable from those already discovered. For exam-
ple, suppose we have already observed five UUs in region 2
of Figure 1b, and those are the only UUs we have discov-
ered. Would it be more useful to find another UU in region 2
or to find a novel UU in region 1? It seems clear that finding
a UU in region 1, with the attendant recognition of a new
classifier blind spot, should be preferred with higher utility,
but the independent utility model has no such preference.

1In fact, we have slightly simplified their model. Lakkaraju et
al. also included a term to penalize for the time or monetary cost of
querying the oracle. Since this term is orthogonal to our argument,
we omit it for simplicity.

A

B
Figure 2: Inspection of the first five UUs discovered by the
(A) optimal bandit policy and (B) Greedy-conf on the Kag-
gle13 dataset. Results show that Greedy-conf discovers a
much more diverse set of UUs. The optimal bandit policy
returns images that are very similar — most of the discov-
ered false positives are Mackerel tabbies near a “cage”.

W2 Second, this utility model assigns the same utility to
a set of UUs irrespective of the extent to which these UUs
characterize the extent of a blind spot. For example, con-
sider any set of five UUs identified in region 2 of Figure 1a
and those in region 2 of Figure 1b. Clearly, the second set
of UUs better characterize the extent of the blind spot repre-
sented by region 2, yet this utility model will be indifferent
to these two UU sets.

W3 Third, the utility model assigns the same utility to an
extremely rare UU as it does to a UU that lies in a dense
region of the feature space, signifying a potentially ruinous
classifier error.

Furthermore, since Lakkaraju et al. used a clustering
and bandit-based approach, the optimal policy (after explo-
ration) is to choose the cluster with the highest density of
UUs. As a result, even though the independent utility model
assigns equal utility to the set of UUs in situations (a) and
(b) of Figure 1, their algorithm will more likely return the
set of UUs shown in Figure 1a because it realizes that it’s
more likely to find new UUs in the vicinity of the first one
that it finds.

For example, Figure 2 shows that for an image classifica-
tion task, the optimal bandit policy discovers UUs that look
very similar, whereas our algorithm (described shortly) finds
a more diverse set of UUs.

Together, these issues imply that optimizing the indepen-
dent utility model will neither reward finding novel UUs nor
reward finding UUs that characterize the extent of a system-
atic blind spot. However, doing both seems crucial for gain-

1465

ing a complete understanding of the spectrum of UUs. We
next discuss a new utility model to address these issues.

Coverage-Based Utility Model
To remedy the weaknesses just discussed, we propose a util-
ity model that measures not just how many UUs have been
found, but the degree to which discovered UUs “cover” a
sample distribution of inputs expected to be seen at test time.
Inspired by the work on optimal sensor placement (Krause,
Singh, and Guestrin 2008), the main assumption our utility
model makes is that a detected UU “covers” its neighbor-
ing inputs by providing an understanding of the classifier’s
behavior in its neighborhood. Thus, any individual UU ex-
plains only a small part, containing its neighbors, of the
complete space of UUs that must be analyzed. The utility
of a set of UUs can then be evaluated in terms of total ef-
fective coverage. In this model, discovering a UU in close
proximity to an already known UU results in only a small
reward because of a large overlap in the regions being ex-
plained by these two UUs. And, as a result, the reward ob-
tained for detecting a UU is now no longer independent of
the observations made on past queries.

Equation 4 describes the new coverage-based utility
model. Here, P (explainx | Q, yQ) denotes the degree to
which an input x has been explained as a result of query-
ing a set of points Q. The model computes a weighted sum
of this achieved coverage for all inputs in Dtest, where the
weights indicate the classifier’s confidence in the prediction
on that input. This is done to encourage the explaining and
identifying of UUs in regions on which the classifier makes
a higher confidence prediction.

UM (Q, yQ) =
∑

x∈Dtest

cM,x · P (explainx | Q, yQ) (4)

To define the degree to which an individual input x in the
test has been explained, we assume access to a similarity
function sim(·, ·). Further, we assume that if Q contains no
UUs, then this value is zero. However, when at least one
UU has been identified, we assume that, for an input x, this
value depends only on the most similar UU. The following
equation describes this term after making these assumptions.
Here, S ⊂ Q denotes the subset of queries that are UUs.

P (explainx | Q, yQ) := max
q∈Q

�S(q) · sim(x, q) (5)

We now explain how this utility model overcomes the lim-
itations of the independent utility model used by Lakkaraju
et al. This utility model addresses W1 by preferring the dis-
covery of a novel UU over a UU that is similar to previously
identified ones. This is because a large part of the region ex-
plained by the second UU will overlap with the previously
identified UUs. For example, if we have already identified
the UUs in region 2 of Figure 1b, and these are the only
UUs we have discovered, then this utility model will assign
a higher reward for identifying a UU in region 1 over another
UU in region 2.

Further, this utility model corrects W2 by assigning a
higher utility to a diverse set of UUs, which may better char-

acterize a blind spot than a set of very similar UUs. For ex-
ample, it will assign a higher utility to the five UUs in region
2 of Figure 1b than to the same number of closely clustered
UUs in region 2 of Figure 1a.

Additionally, it may be more important to determine UUs
in regions with a higher density of inputs. Since this utility
model takes into account the coverage of neighboring inputs
and hence the density of the distribution, it rewards finding
UUs in such a region, addressing W3.

It is important to note that the coverage-based utility
model produces rewards that are very different from those
assumed in the classical, multi-armed bandit literature. The
rewards associated with arms (clusters of test points in the
model used by Lakkaraju et al.) decrease over time, dimin-
ishing the value of exploring that arm.2

Proposition 1. Optimizing the coverage-based utility model
defined in Equation 4 is intractable.

Proof. Proof by reduction to set cover.

We now state an important property satisfied by the cover-
age based utility model. This property motivates the greedy
algorithm used for solving the resultant optimization prob-
lem presented in the next section.
Proposition 2. The coverage-based utility model satisfies
the diminishing returns property. If Δ(x | Q) denotes an
increment in utility as result of querying a new input x when
a set Q has already been queried, then Δ(x | Q1) ≤ Δ(x |
Q2) for all Q1, Q2 ⊂ Dtest whenever Q2 ⊂ Q1.

Proposition 2 (proved in the Appendix) implies that the
coverage-based utility model is submodular, which guaran-
tees that an omniscient, linear-time, greedy algorithm with
access to the locations of all the UUs will find a solution
within a constant factor of the optimum.

Optimization Algorithm
Since our proposed coverage-based utility model is submod-
ular, it is natural to consider a greedy algorithm for choosing
data points to query. The idea is to greedily pick the input
with the highest expected reward while conditioning on the
observations made thus far. For example, starting with a
uniform prior over the likelihood of an input being a UU, a
greedy solution will first pick the input with the highest ex-
pected gain in coverage of the test set. It would then observe
the true label of this input and pick the next input from the
test set with the highest expected reward taking into account
the previous observation. As noted previously, since this
utility model is submodular; if the complete set of UUs were
known, then such an omniscient greedy strategy would find
a solution within constant factor approximation of the opti-
mal solution. However, in practice, the complete set of UUs
will not be known. Instead, an alternative is a greedy strat-
egy that starts with a prior (e.g., a uniform prior, one based
on classifier confidence, or one based on clustering) over the
likelihood of an input being a UU. The system would then

2This also implies that cumulative regret is an inappropriate
measure of performance; as the number of queries goes to |Dtest|,
all algorithms have the same regret.

1466

Algorithm 1 Greedy Search
Input: Test set Dtest, prior φ and budget B
Q = {} {inputs that have been queried}
yQ = {} {true label acquired from the oracle}
t = 1
while t ≤ B do
q′ = argmaxq∈Dtest−Q φ(q) · E[Δ(q | Q)]

yq′ = Query oracle(q′)
Q ← Q+ q′
yQ ← yQ + yq′
t ← t+ 1
φ ← Update prior(Q, yQ)

end while
return S

update its belief as it makes observations and use the current
prior to greedily pick the next input. It is important to note,
however, that this strategy does not guarantee a solution with
a worst case bound: the algorithm may query an input that
results in zero reward at any point.

Algorithm 1 defines the greedy algorithm for optimiz-
ing the coverage-based utility model. Here, E[Δ(x | Q)]
denotes the expected increment in utility, using the prob-
ability measure φ, as a result of querying x when the la-
bels of points in Q have been observed. The term φ(x)
specifies a prior probability of an input x being a UU, i.e.,
φ(x) = P (M(x) �= yx | Q). While many strategies could
be used for updating the prior, we associate probabilities
with clusters of examples, revising the cluster’s estimate af-
ter querying any point inside it. As Equation 6 shows, we
compute the new probability by smoothing between the ob-
served frequency and the previous prior.

.

φt+1(x) ← λ · φ0(x) +Nt(UU, kx)

λ+Nt(kx)
(6)

Here, kx denotes the cluster to which x belongs, Nt(kx)
denotes the number of times a point from this cluster has
been queried, and Nt(UU, kx) denotes the number of times
a UU has been discovered in this cluster.

Experiments
We evaluate our methods on the same four classification
datasets used by previous work (Lakkaraju et al. 2017).3

• Pang05 (Pang and Lee 2005): This dataset contains 10k
sentences from movie reviews on Rotten Tomatoes. The
objective is to classify whether an input sentence has pos-
itive or negative sentiment.

• Pang04 (Pang and Lee 2004): This dataset contains 10k
sentences from IMDb plot summaries and Rotten Toma-
toes movie reviews. The objective is to classify whether
an input sentence is subjective or objective (positive
class).
3Since Lakkaraju et al. did not release the code or datasets asso-

ciated with their paper these datasets and the procedure for creating
bias in the training sets are our reimplementation of their methods.

Figure 3: A confidence based prior performs better than
using a uniform prior on the Kaggle13 dataset. Relative per-
formance is similar in the other datasets (not shown).

• McAuley15 (McAuley, Pandey, and Leskovec 2015):
This dataset contains Amazon reviews for books and elec-
tronic items. The objective is to classify whether an input
review has positive or negative sentiment. We trained on
50k randomly-selected electronics reviews and tested on
reviews of books.

• Kaggle134 : This dataset contains 25k images of cats and
dogs in total, which were randomly split into a train and
test set of equal size. The objective is to classify whether
an input image is that of a cat or a dog (positive class).
The training set was biased to ensure that it did not contain
any black cats.

For all datasets, we limited the size of the test set to 5k.
To replicate the bias on Pang05 and Pang04, we trained a
decision tree on the training set and removed all data cor-
responding to a randomly chosen leaf with a the majority
class that was negative. To create the “no black cat” bias for
the Kaggle13 training dataset, we asked Crowdflower work-
ers to rate the “blackness” of the animal on a scale of 1-5,
where 1 refers to an animal with no black patches and 5 to
an animal with patches of no color other than black. We then
converted the labels into binary judgments wherein the ani-
mals with a rating of 5 were considered black. On a sample
of 100 such inputs, we got a Fleiss Kappa score of 0.92. To
encourage follow-on research, all our code and data sets are
available on aiweb.cs.washington.edu/ai/unkunk18.

Systems for Finding Unknown Unknowns
This section describes the algorithms we used to optimize
the coverage-based utility model.

• Upper bound (tractable) is the greedy algorithm with om-
niscience: it knows the location of all UUs.

• Most-uncertain greedily picks the most uncertain example
to query.

4https://www.kaggle.com/c/dogs-vs-cats/data

1467

Pang05 Pang04

McAuley15 Kaggle13

Figure 4: A comparison of the performance of different optimization algorithms for optimizing the coverage based utility
model. The y-axis shows the utility received by an algorithm and the x-axis is the number of queries issued to the oracle.
Unsurprisingly, UUB performs worse than Greedy-conf because it implicitly tries to optimize a different objective.

• UUB is the bandit algorithm proposed by Lakkaraju et
al. Experiments showed that performance was best when
it first picks the cluster (arm) using their UUB algorithm
and then greedily picks the point in the cluster with the
highest expected reward.

• Greedy-conf is a hill-climbing algorithm that uses the
classifier’s confidence as the initial prior and updates
probabilities using the clustering-based procedure de-
scribed previously.

• Greedy-uniform is a greedy algorithm which uses a fixed
uniform prior.

Implementation Details
For the text datasets, we used logistic regression with uni-
gram features. For Kaggle13, we used a CNN (two convo-
lution layers and three linear layers). To cluster the inputs,
we used the kmean-both algorithm used by Lakkaraju et al.
This algorithm first clusters the inputs first by the classifier’s
confidence and then by the input-data features. The num-
ber of clusters were selected using the elbow method. At
test time, to compute pairwise distances, we used unigram
features for text datasets and raw pixels for image dataset.
Note that the representation used at test time does not as-
sume access to the exact representation used by the classi-

Dataset % gain over UUB % of upper bound
Pang04 24.08 63.12
Pang05 42.67 58.75
McAuley15 41.89 73.54
Kaggle13 46.37 48.27

Table 1: A summary of the performance of Greedy-conf on
four datasets. The first column shows the average percent-
age improvement as result of using Greedy-conf over UUB.
The second column shows the percentage of the tractably
achievable utility achieved by Greedy-conf on average.

fier. For example, for text datasets we do not assume access
to the vocabulary used by the logistic regression classifier.
For the image dataset, we rely solely on raw pixel values.
Additionally, we reduce the dimensions of the representa-
tion used at test time to avoid computing pairwise distances
in sparse high dimensional space, which can be inefficient.
We used the following function as the similarity measure:
sim(x, s) := e−

d(x,s)
σ . We used a gaussian function so that

a UU covers only a small neighborhood. Here, d(x, s) de-
notes Euclidean distance between x and s, and σ controls
the width of the gaussian.

1468

Results
To evaluate the effect of priors on the performance of our
greedy algorithm, we compared the utility achieved by
Greedy-conf and Greedy-uniform. On all four datasets, the
confidence-based prior worked better than a uniform prior
(e.g., see Figure 3).

We next compared our Greedy-conf method with previous
work and the tractable upper bound (Figure 4). On all four
datasets, Greedy-conf performed better than both UUB and
Most-uncertain. Table 1 presents a quantitative analysis of
the performance of Greedy-conf. The bandit based approach
performed worse than Most-uncertain, an expected result,
because the coverage-based utility model has decreasing re-
wards; Lakkaraju et al.’s approach was not designed to opti-
mize this type of function.

As mentioned previously, our coverage-based utility func-
tion rewards an algorithm that finds a diverse set of UUs.
The bandit algorithm, in contrast, keeps probing the vicinity
of the first UUs that it finds. Figure 2 illustrates this behav-
ior by showing the first 5 UUs returned by each approach
on the Kaggle13 dataset. The bandit algorithm returns pho-
tos of three similar-looking cats, while our greedy algorithm
returns a more diverse set of classifier failures.

While Greedy-conf achieves a higher utility than UUB,
both algorithms have the same time complexity: O(B2N2).
Most-uncertain, in contrast, is faster and has time complex-
ity of O(Nlog(N)). All approaches have the same space
complexity: O(N).

Other Related Work
Recently, ? (2017) argued for development of robust
AI systems, listing a variety of approaches for handling
both known and unknown unknowns. While we (and
Lakkaraju et al.) focus on high-confidence unknown un-
knowns, ? (2017) also considers two related problems. First,
open category recognition submits a query that belongs to
a previously unseen class to the system at test time (?;
?). Second, change-point detection, detects changes in the
query distribution over time (?; ?). Our work on coverage-
based utility model differs by rewarding detection of a di-
verse set of failure modes of a classifier in order to charac-
terize the classifier’s limitations in different regions of the
feature space. This complements traditional characteriza-
tions in terms of (say) precision and recall.

Related to our problem is the task of evaluating in a cost-
effective manner the performance of a large-scale machine
learning system (?). Here, the objective is to estimate the
system performance on a test set without having to annotate
every test input. While at a high level the objective is similar,
i.e., evaluating the performance of a classifier, this work as-
sumes that the precision function is monotonic with respect
to the classifier’s confidence-based ranking of inputs. This
assumption does not hold for UUs by definition.

In data mining, outlier detection identifies inputs that are
anomalous with respect to a set of inputs (?; Eskin 2000).
However, unlike our approach, this work assumes access to
the training data.

Once a UU has been found, a user may want to better

understand why the classifier made its prediction. Ribeiro
et al. (2016) and others have proposed algorithms for gener-
ating explanations of black-box classifiers. In the future, we
intend to integrate these with UU discovery.

Conclusions
Finding a classifier’s unknown unknowns—its high-
confidence false positives—is important for understanding
the learner’s limitations and useful for attacking the clas-
sifier, preventing such attacks, and deploying a high per-
forming human-machine hybrid system (?). This task is es-
pecially timely given the growing popularity of pre-trained
(and hence opaque) models, such as Microsoft Cognitive
Services. This paper identifies three issues with Lakkaraju et
al.’s approach to identifying UUs that cause it to produce an
incomplete understanding of a classifier’s blind spots. These
include W1) the failure to reward discovery of novel UUs,
W2) inability to prefer UUs that together characterize the
extent of a systematic blind spot, and W3) not distinguish-
ing between rare UUs and those in dense regions of feature
space. We observed that their bandit-based approach was
especially likely to produce a set of very similar UUs.

To overcome the weaknesses, we define a new, “coverage-
based” utility model, which prefers a diverse set of UUs that
together “explain” the classifier’s blind spots relative to a
test distribution. Unfortunately, our coverage-based model
sacrifices independence and is, hence, difficult to optimize.
However, the model is monotone submodular, which guar-
antees that an omniscient greedy algorithm with access to
the location of the UUs can find a solution within a con-
stant factor of the optimal. Since the location of the UUs
is not known a priori, we implement versions of the greedy
algorithm that use a probabilistic prior. Experimental re-
sults show that Greedy-conf outperforms both simple base-
lines and Lakkaraju et al.’s bandit-based approach on the
coverage-based utility, and achieves within 60.9% of the
omniscient, tractable upper bound.

We envision several avenues for future work. First, we
intend to combine discovery with explanation, perhaps us-
ing a system such as LIME (Ribeiro, Singh, and Guestrin
2016). Second, our utility model assumes that discovering
a non-UU results in zero utility; however, in practice, non-
UUs may also help to define the boundary of a blind spot.
Finally, it would be useful to develop strategies that can em-
ploy multiple representations and clustering algorithms to
better isolate UUs.

Appendix
Proof of Proposition 2. Let Q1 and Q2 be two subsets of
Dtest where Q2 ⊂ Q1. Let s denote an input in Dtest that
is not in Q1. Let Δ(s | Q) denote the increment in utility
obtained as a result of querying s and when Q ⊂ Dtest has
already been queried. In order to prove the utility model is
submodular we need to show that Δ(s | Q1) ≤ Δ(s | Q2)
for all Q1, Q2 ⊂ Dtest.

In the case where s is not an UU Δ(s | Q) = 0 for all
Q ⊂ Dtest. In this case Δ(s | Q1) − Δ(s | Q2) = 0.
Now consider the case where s is an UU. Let S1 ⊂ Q1 and

1469

S2 ⊂ Q2 denote the subset of queries that resulted in an UU.

Δ(s | Q2)−Δ(s | Q1)

=
∑

x∈Dtest

cM,x · ((P (explainx | Q2 ∪ {s}, yQ2∪{s})

− P (explainx | Q2, yQ2))

− (P (explainx | Q1 ∪ {s}, yQ1∪{s})

− P (explainx | Q1, yQ1
)))

=
∑

x∈Dtest

cM,x · ((max
s′∈S2∪{s}

sim(x, s′)− max
s′∈S2

sim(x, s′))

− (max
s′∈S1∪{s}

sim(x, s′)− max
s′∈S1

sim(x, s′)))

≥
∑

x∈Dtest

cM,x · (max(0, sim(x, s)− max
s′∈S1

sim(x, s′))

−max(0, sim(x, s)− max
s′∈S1

sim(x, s′)) = 0

The last inequality is obtained using the fact that S2 ⊆ S1.

Acknowledgements
We appreciate helpful comments and discussions with
Himabindu Lakkaraju, Mausam, Jonathan Bragg, Eric
Horvitz, Ece Kamar, Rao Kambhampati, Chris Lin, Jim
Chen, Marco Tulio Riberio, Mandar Joshi, Eunsol Choi,
Phoebe Mulcaire, Sandy Kaplan, and anonymous reviewers.
This research was supported as part of the Future of Life In-
stitute (futureoflife.org) FLI-RFP-AI1 program, grant 2015-
144577 (5388) with additional support from NSF grant IIS-
1420667, ONR grant N00014-15-1-2774, the WRF/Cable
Professorship, and a gift from Google.

References
Amershi, S.; Chickering, M.; Drucker, S. M.; Lee, B.;
Simard, P.; and Suh, J. 2015. ModelTracker: Redesigning
performance analysis tools for machine learning. In Proc. of
CHI.
Eskin, E. 2000. Anomaly detection over noisy data using
learned probability distributions. In Proc. of ICML.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Ex-
plaining and harnessing adversarial examples. In Proc. of
ICLR.
Krause, A.; Singh, A.; and Guestrin, C. 2008. Near-optimal
sensor placements in gaussian processes: Theory, efficient
algorithms and empirical studies. JMLR 9:235–284.
Lakkaraju, H.; Kamar, E.; Caruana, R.; and Horvitz, E.
2017. Identifying unknown unknowns in the open world:
Representations and policies for guided exploration. In
Proc. of AAAI.
McAuley, J.; Pandey, R.; and Leskovec, J. 2015. Inferring
networks of substitutable and complementary products. In
Proc. of KDD.
Pang, B., and Lee, L. 2004. A sentimental education: Sen-
timent analysis using subjectivity summarization based on
minimum cuts. In Proc. of ACL.

Pang, B., and Lee, L. 2005. Seeing stars: Exploiting class
relationships for sentiment categorization with respect to rat-
ing scales. In Proc. of ACL.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”Why
should I trust you?”: Explaining the predictions of any clas-
sifier. In Proc. of KDD.
Settles, B. 2012. Active Learning. Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning. Morgan & Clay-
pool Publishers.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2014. Intriguing proper-
ties of neural networks. ArXiv.
Werling, K.; Chaganty, A.; Liang, P.; and Manning, C. D.
2015. On-the-job learning with Bayesian decision theory.
In Proc. of NIPS.

1470

