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Abstract
This paper proposes a low-cost, easily realizable strategy to
equip a reinforcement learning (RL) agent the capability of
behaving ethically. Our model allows the designers of RL
agents to solely focus on the task to achieve, without having
to worry about the implementation of multiple trivial ethical
patterns to follow. Based on the assumption that the majority of
human behavior, regardless which goals they are achieving, is
ethical, our design integrates human policy with the RL policy
to achieve the target objective with less chance of violating
the ethical code that human beings normally obey.

1 Introduction
As AI systems become part of our lives and sometimes make
decisions related to life-or-death consequences such as clini-
cal decision making (Bennett and Hauser 2013), awareness
should be raised to prevent machines from making not only
incorrect but also unethical decisions. Reinforcement learn-
ing (Sutton and Barto 1998) is designed to tackle intricate
real-world problems in rather short time (Strehl et al. 2006;
Brafman and Tennenholtz 2002) with a performance bound
(Strehl, Li, and Littman 2009); however, it relies heavily on
the quality of the reward functions provided as the inputs.
The problems of unintended and harmful behavior that may
emerge from poor design of AI systems are mentioned in
(Amodei et al. 2016).

Nevertheless, identifying all plausible ethical concerns for
an agent is challenging, not to mention implementing them
into the system. Here we consider a scenario in machine
ethics that objective functions are specifically designed to re-
ward a given goal without considering much ethical violation,
so that penalties are not delivered when the agents attempt
to make unethical decisions. Consequently, even though the
goal or desired performance is achieved, some unethical be-
havior may appear such as robbing a pharmacy to get the
drug or passing by an injured person without offering any
help when minimizing the traveling time.

To address these concerns, we need to design an RL agent
that can not only optimize the cumulative rewards but also
minimize the ethical violation. A straightforward solution is
to design the rewards for ethical moves. However, such strat-
egy suffers at least two drawbacks. First, it is costly, if by all
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means possible, to enumerate all plausible ethical/non-ethical
scenarios or rules, not to mention designing meaningful re-
wards to them. Second, the judgment of ethics is likely to
be dynamic, depending on the present environment or situ-
ation. Thus the hand-crafted ethical patterns might not be
valid given updated situations, making the design of general
ethical RL rewards challenging.

The research question we would like to address here is: Is it
possible to alleviate the burden of RL designers from having
to consider many ethical issues in the design? For instance,
to build a supermarket shopping agent, can an RL designer
simply focus on implementing the shopping capability of
an agent (i.e. seeking and fetching items, checking out in
the counter, etc) instead of worrying about trivial ethical
decisions it may face (e.g., helping elder persons, assisting
lost kids, reporting wet floor, etc) and let our framework take
care of the learning of such behavior? One idea to achieve
such goal is to collect enough ethical behavior data of human
acting toward the given goal, and then apply the inverse
reinforcement learning (IRL) (Amin and Singh 2016; Evans,
Stuhlmüller, and Goodman 2016; Ng, Russell, and others
2000; Sezener 2015) technique to learn an ethical agent that
follows a similar pattern. IRL and apprenticeship learning
(Abbeel and Ng 2004) have been considered as promising
solutions due to their ability to extract rules and policies
of human behaviors. IRL is also admired for the ability to
generalize to unseen states, which greatly saves the effort of
manually enumerating reward.

However, there are several concerns for adopting IRL.
First, collecting a large amount of human data toward maxi-
mizing the reward is costly, and can bias the ethical learning
since it is likely only data from a small number of personnel is
collected. Second, the human data might not be optimal (e.g.,
human not aware of a better solution); thus, learning based
on such imperfect data might lead to sub-optimal outcomes.
Third, IRL is insufficient for agents to infer temporally com-
plex norms (Arnold, Kasenberg, and Scheutz 2017).

On the other hand, we have observed that although human
behavior data optimizing certain RL goals is costly to obtain,
general human data without targeting at the desired goals is
much easier to gather. For instance, in the previous shopping
bot example, it might not be as easy to gather many people’s
behavior in the supermarket compared to gathering general
shopping or wandering data of people in any commercial
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district. That says, we assume the accessibility to the larger
amount of general human data not necessary aiming at the
target goal of interest. The technical challenge then becomes
how an RL agent can learn to behave ethically given such
imperfect data, while still achieving high cumulative rewards
for the target goal of interests. We believe it is achievable
given the assumption that under normal circumstances the
majority of humans do behave ethically.

Toward this direction, we propose a framework that works
as below: Besides the regular reward function to guide an
RL agent to achieve the specific objective of interests (e.g.,
shopping), we are further given a set of human action data
optimizing diverse objectives (e.g., jogging, walking) or even
without an apparent goal (e.g., wandering). The goal is to
design an RL agent that can not only optimize the target
objective but also minimize the chance of unethical behavior.
If it succeeds, the proposed framework can relieve the burden
for an RL developer to consider various ethical issues, and
focus mainly on designing an adequate reward function to
achieve the target objective. What is needed then becomes a
corpus of normal human behavior toward arbitrary goals.

This paper proposes Ethics Shaping, which leverages hu-
man data and reward shaping to design a more ethical rein-
forcement learner. We argue that as larger amount of human
data are being collected, the decisions that involve ethical
issues become clearer and aligned. Therefore, this paper only
focuses on the ethical decision makings that are indepen-
dent of the RL goals to emphasize on universal guidelines
of ethics that every human beings normally follow, such as
helping injured people or avoid hitting animals while driving.
In our ethics shaping, the human data is not required to be
aligned with the objective functions of the agents as long as it
is from ethical human behavior. Consequently, ethics shaping
is low-cost and applicable to real-world scenarios as we do
not demand high-quality or goal-specific human data.

We demonstrate the effectiveness of ethics shaping by con-
ducting experiments in three scenarios, Grab a Milk, Driving
and Avoiding, and Driving and Rescuing. These schemes
are designed to show how the learner’s behavior could be
altered by ethics shaping while facing matters happening in
our daily lives. We further claim that ethics shaping ought to
overcome or alleviate ethical problems such as side effects
caused by optimizing the original objective functions (Taylor
et al. 2016) and dangerous exploration (Amodei et al. 2016),
which will be confirmed by the experiment results. The main
contributions can be summarized as follows:

• Strategically we propose a high-level framework to train
an ethical RL agent based on a regular reward function
together with certain human data optimizing diverse ob-
jectives. It is of much lower cost compared to IRL since
we do not need human data geared towards optimizing the
target reward function.

• Technically we propose the ethics shaping model to adjust
the reward function through the interaction between the
RL and human policy.

• We coin three scenarios Grab a Milk, Driving and Avoid-
ing, and Driving and Rescuing to show how ethics shaping
balances ethical behavior and performance pursuit.

2 Preliminaries
2.1 Reinforcement Learning
Recently, reinforcement learning has attracted attention for
beating the world champion of Go for the first time (Silver
et al. 2016; Borowiec 2016), since searching for effective
tactical decisions from such enormous states was thought
to be impossible. Reinforcement learning defines a class of
algorithms solving problems modeled as a Markov Decision
Process (MDP).

A Markov Decision Problem is usually denoted by the
tuple (S,A, T ,R, γ), where
• S is a set of possible states
• A is a set of actions
• T is a transition function defined by T (s, a, s′) =

Pr(s′|s, a), where s, s′ ∈ S and a ∈ A
• R : S ×A×S �→ R is a reward function. It can always be

reduced to S ×A �→ R by marginalizing over next state
• γ is a discount factor that specifies how much long term

reward is kept.
To solve a MDP problem, the discounted long term reward

received should be maximized. Usually the infinite-horizon
objective is considered:

max
∞∑
t=0

γtR(st, at) (1)

Solutions come in the form of policies π : S �→ A, which
specify what action the agent will take in any given state
deterministically or stochastically. One way to solve this
problem is through SARSA (Rummery and Niranjan 1994),
where Q-value Q(s, a) is calculated as an estimate of the
expected future discounted reward for taking action a ∈ A in
state s ∈ S. The Q-value of the state-action pair is updated
according to the received value:

Q(st, at)←Q(st, at)+
α[rt + γQ(st+1, at+1)−Q(st, at)], (2)

where α is the learning rate. In this paper, ε-greedy is used
for exploration. The agent’s policy is modeled by Boltzmann
distribution

Pr
Q
(a|s) = eQ(s,a)/τ∑

a′ eQ(s,a′)/τ (3)

when aggregated with human data.

2.2 Reward Shaping
Without prior knowledge, most value-based reinforcement
learning algorithms are slow because they need to explore
state-action pairs uniformly at random in the early stage.
Only going through enough explorations and then updated by
associated rewards have been observed can the agent start to
exploit the experience by biasing its action selection towards
what it estimates to be good.

Reward shaping, motivated from behavioral psychology
(Skinner 1990), is an efficient way of including prior knowl-
edge in the learning problems so as to speed up the process.
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Extra intermediate rewards are provided to enrich a sparse
base reward signal, providing the agent with useful gradi-
ent information. Reward shaping can be easily incorporated
with a variety of resources such as demonstration (Brys et al.
2015) and verbal feedback (Brys et al. 2015). The shaping
rewardH is usually integrated with the original reward in the
form of addition:

Rs(st, at, st+1) = R(st, at, st+1) +H(st, at, st+1). (4)

3 Ethics Shaping
We propose a method that gives additional penalties and re-
wards according to the Kullback-Leibler divergence between
the policy of the learning agent and the human policy ag-
gregated from human data. The human data D is a set of
state-action pairs recorded from human behaviors. Each pair
in D is treated as a positive human feedback since decisions
made by human beings are usually, from their prospective,
superior to other choices.

We generate the human policy from human data D accord-
ing to (Griffith et al. 2013), which integrates human feedback
to derive a stochastic policy by imposing binomial distri-
bution. The human feedback suggesting if certain action is
optimal is aggregated to be Δs,a, which is defined as the
difference between the number of “right” and “wrong” labels.
Define that the probability an action a in a particular state s is
optimal as PrH(a|s). By assuming that PrH(a|s) is indepen-
dent of feedback to other actions and that there is only one
optimal action in each state, which indicates independence
conditions and the Bayes’ rule are applicable, they formally
derive the integrated stochastic policy of human:

Pr
H
(a|s) ∝ CΔs,a(1− C)

∑
j �=a Δs,j . (5)

The parameter C indicates the confidence level of human
feedback. The detailed derivation of the above result is avail-
able in their appendix section. In our case, since there is only
positive feedback given by each state-action pair in D, we
normalize the set {Δs,a| ∀a} to zero mean with respect to
states in order to approximate feedback scenario.

Inspired by (Raza, Johnston, and Williams 2016), which
utilizes reward shaping with deterministic policy of human
teacher to speed up the learning process, here we design our
shaping reward by imposing the Kullback-Leibler divergence
between two stochastic policies of human and the agent. With
probability distribution of policies defined as equation 3 and
5, the shaping reward becomes:

H(s, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−cn ·DKL(PrQ(a|s)‖PrH(a|s)),
if PrQ(a = 1|s) > PrH(a = 1|s)
and PrH(a = 1|s) < τn

cp ·DKL(PrQ(a|s)‖PrH(a|s)),
if PrQ(a = 1|s) < PrH(a = 1|s)
and PrH(a = 1|s) > τp

0, otherwise
(6)

The K-L divergence term measures whether the current pol-
icy learned by the RL agent (denoted as PrQ(a|s)) is diverse

from the human policy (denoted as PrH(a|s)) induced from
human data given the current state s. If they are indeed sim-
ilar, then this value shall be close to zero (i.e. no shaping
is required). If this value is much larger than zero, meaning
that there is a discrepancy between human and RL policy.
We would then utilize equation 6 to identify if such action is
related to ethical issues. The situations can be grouped into
three categories:

• Negative ethical decisions. It is associated with the top con-
dition in equation 6 representing what machines should
not do but do such as cutting in line or hurting people.
Mathematically, if the probability for the agent to make cer-
tain move a = 1 given the learned policy is higher than that
under human policy PrH(a = 1|s), and the chance for hu-
man to conduct this action is very low PrH(a = 1|s) < a
small threshold τn, we then consider such negative ethical
decision happens and thus have to teach our RL to avoid
such action through providing a penalty shaping value to
the learner. Note that the value of τn should be close to
zero.

• Positive ethical decisions. It is associated with the 2nd con-
dition in equation 6 representing what machines should
do but do not do such as not ignoring severely injured peo-
ple while doing their own tasks. Mathematically, PrQ(a =
1|s) < PrH(a = 1|s) stands for the situation that a human
has a stronger preference than the AI agent for this action a,
and PrH(a = 1|s) > τp indicates that this action is indeed
a very attractive move to the human since we set the thresh-
old τp to a high probability. Given the above conditions
hold, we shall update the RL policy toward performing
action a given s through a positive H(s, a). Note that cn
and cp allow the RL designer to weight the importance of
positive and negative ethical conditions respectively.

• Others. No shaping is required as we do not recognize
either ethical issues or policy discrepancy.

Thanks to its simplicity in reward shaping, our model can
be seamlessly integrated into a variety of types of reinforce-
ment learning methods. However, we would like to mention
that our framework requires the human data to be collected
given diverse objectives, and therefore the non-ethical biases
can be minimized.

We argue that ethics shaping is able to deal with shortcom-
ings of IRL suggested by (Arnold, Kasenberg, and Scheutz
2017): (1) IRL may inherit unethical biases and characteris-
tics of the data of which it is trained and (2) IRL is insufficient
for agents to infer temporally complex norms. For the first
defect, unlike IRL which requires policies to have descent
performance and behave ethically at the same time, in our
model, human data is not required to be optimal or even
aligned with the target objective for reinforcement learning.
The reason is that the integrated human policy from human
data is capable of recognizing which ethical decision making
has happened under our claim that universal ethical code
should be obeyed by most of the people. For the second draw-
back, temporally complex norms can be learned in our model
because in equation 5, we may deploy queue data structure
for each state to maintain the total number of Δs,j and the
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human policy derived from equation 5 will be updated ac-
cording to incoming state-action pairs. Therefore, when such
norms vanish, penalties or rewards will not be given to bias
action choices as well.

4 Experiments
In this section, we will demonstrate that the ethics shaping
algorithm can make the SARSA algorithm perform more eth-
ically. The same concept can be adopted to other RL models
in a similar manner. Instead of considering the two previous
scenarios, Cake or Death (Armstrong 2015) and Burning
Room (Abel, MacGlashan, and Littman 2016), in which the
number of states is fairly small, we propose three tasks Grab
a Milk, Driving and Avoiding, and Driving and Rescuing
which are closely related to our everyday lives. The main
advantage is that the number of states is larger and therefore
can be more closely related to the real-world scenarios.

In the experiments, all human policies are synthesized by
random walk with ethical rules and the confidence level of
human feedback C is set to 0.95 since we would like to focus
on how much ethics shaping can influence reinforcement
learners. For algorithms with and without ethics shaping, the
best performances are reported in terms of learning rate α,
discount factor γ, and the scale parameters cn, cp in shaping
rewardH.

4.1 Grab a Milk
Route planning is a classic task for reinforcement learning
and robotic techniques (Lin 1992). The Grab a Milk scenario
is a basic route planning problem with ethical issues that we
should carefully deal with. In a room with walls, objects and
milk, the robot should manage to reach the milk as soon as
possible. The robot will receive a huge penalty when facing
a wall because it is time-consuming to cross it. In contrast,
the robot may receive no penalty to small objects as long as
the decision results in a faster route. However, what if the
small object is a baby? Ethical human would normally opt
to avoid crossing babies. To show the scenario that includes
both positive and negative ethical decisions, we further ex-
tend the scheme with crying babies. Unlike the case of other
babies, it would be better if crying babies could get helped in-
stead of being neglected, which, in a sense, represents ethical
decisions that need robots voluntarily to make.

We simplify the problem to a 10 by 10 grid room with a
robot starts at (0, 0) and a milk is positioned at (9, 9). There
are 16 babies in the room and five of them are crying for
attention. The goals of this task can be stated as follows.
• Primary goal: minimize steps to the milk
• Sub-goals: (1) soothe as many crying babies as possible,

(2) avoid crossing non-crying babies.
The MDP has four actions which allow the robot to move to
neighboring grids. If the robot moves to grids with babies,
crying babies will be comforted but other babies will get hurt.
A state is represented by the coordinate where the robot is
currently at. The defective reward function is:

R(s, a) =
{
20, if the robot get the milk
−1, otherwise

(7)

where the reward from soothing crying babies and the penalty
from hurting babies are not provided and need to be learned
through ethics shaping from human data. Human trajectories
are generated from random walk while obeying rules that
quiet babies should not be crossed and human beings will
choose to comfort crying babies when they are adjacent to
those babies both with 0.95 probability.

There are 48,620 optimal solutions (18 steps to the milk)
for the defective reward function and ideally there exist some
routes that both avoid non-crying babies and comfort cry-
ing babies as many as possible. Figure 2 and 3 display how
the agent improves at the two sub-goals through ethics shap-
ing. Note that the agent actually helps more babies than
human beings because the reward propagation mechanism
in reinforcement learning makes the learner come up with
more thorough plans. Unlike apprenticeship learning which
directly imitates human behaviors, ethics shaping enables re-
inforcement learner not to be biased by inadequate decisions
of human beings. Additionally, Figure 1 suggests that the
extra tasks do not significantly affect the convergence.

Figure 1: SARSA algorithm with and without ethics shap-
ing in Grab a Milk. The first 4,000 episodes are plotted to
show detailed information. Average over 150 runs, with 1 s.e.
errorbars.

4.2 Driving and Avoiding
Since autonomous cars have attracted attention for ideally
being able to dramatically reduce the number of traffic acci-
dents, some ethical issues (Bonnefon, Shariff, and Rahwan
2015; Goodall 2014) have been claimed for security. We
would like to deploy this toy example to demonstrate that
ethics shaping is capable of dealing with driving issues when
the reward function is incomplete.

Our car driving simulation is similar to the second
experiment in (Abbeel and Ng 2004) except that cars
could be driving in all of the lanes and sometimes there
are seriously wounded cats lying in certain lanes which
we should avoid so as not to make them worse. We are
driving faster than all of the other cars and the cats relatively
approach us the fastest since they are unable to move. Even
though dying cats may not directly relate to machine ethics
which usually indicates human-machine interactions, we
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Figure 2: Number of babies crossed vs. number of episodes.
Average over 1000 runs are plotted with 1 s.e. errorbars.

Figure 3: Number of babies getting helped vs. number of
episodes. Average over 1000 runs with 1 s.e. errorbars.

use dying cats to represent other objects such as humans
injured in car accidents or elderly people with dementia.
To be a good driver, it is also encouraged to drive straight
when switching lanes is not needed. The problem definition
without considering ethics is as follows:

Objective (Driving and Avoiding)

min
A={a1,a2,··· ,an|ai∈A}

L(A),

where

L(A) =
∑
ai∈A

p1 · [[a ∈ Collision]]−

p2 · [[a = straight]],

A is all possible actions, Collision is the set of actions that
might collide with one of the cars, and straight is the action
to drive straight. p1 and p2 are set to 20 and 0.5 respectively
in our experiment.

By this experiment, we would like to test whether the
ethics shaping technique is capable of making reinforcement

learners dodge dying cats as well as be good drivers. The
goals of this task can be stated as follows.

• Primary goal: avoid collisions

• Sub-goals: (1) drive straight, (2) dodge dying cats.

Manually generated human trajectories aim at avoiding run-
ning over dying cats and averting car collisions. Some ran-
domness is added to give variety. The MDP has three actions,
which allow the agent to steer smoothly to one of the neigh-
boring lanes and go straight. There are five features indicating
what lane the car is currently at and the other twelve features
indicating the discretized distance of the closest car and the
closest cat in the left, current and the right lane respectively.
The incomplete reward function is defined as the negative
loss function as described above.

This scenario is more difficult than Grab a Milk since
sometimes it is required to make decisions between collision
with cars and hitting wounded cats. Collisions are occasion-
ally unavoidable due to the limited horizon of the agent. In
this experiment, the human trajectories are generated with
a rule that avoiding hurting cats first and then avoiding col-
lisions by switching to the other lanes. The performance is
evaluated by cumulative reward through one episode. It is
shown that ethics shaping is able to acquire descent perfor-
mance and still preserve ethical behavior. As Figure 4 and
5 suggest, in the reinforcement learning process, there is no
significant difference between two algorithms with respect to
cumulative rewards and number of collisions. Additionally,
the significant reduction in the number of cats getting hit
is shown in Figure 6, which provides an insight that ethics
shaping is able to resolve the conflicts between performances
and ethical decisions.

Figure 4: SARSA with and without ethics shaping in the
Driving and Avoiding experiment on cumulative rewards.
Average over 150 runs with 1 s.e. errorbars.

4.3 Driving and Rescuing
Driving and Rescuing is similar to Driving and Avoiding in
terms of environments. However, in this scenario, instead of
avoiding running over dying cats, the sub-task for the agent is
to rescue the dementia elderly trapped in the traffic by taking
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Figure 5: Number of collisions vs. number of episodes. Aver-
age over 150 runs with 1 s.e. errorbars.

Figure 6: Number of cats getting hit within one episode.
Average over 150 runs with 1 s.e. errorbars.

them into the car. We simplify the problem by considering
that to rescue the elderly it is required to drive through their
positions and the process takes no time. Consequently, it is
the opposite problem of Driving and Avoiding in which the
agent should avoid crossing cats.

The problem is more challenging than Driving and Avoid-
ing since there are more choices to stay away from a cat; how-
ever, to rescue the elderly, the action toward them is the only
option. As Figure 7 and 8 suggest, to rescue more elders, it
is inevitable for human beings to experience more collisions
than in Driving and Avoiding. Even though SARSA algo-
rithm with ethics shaping seems to perform slightly worse, it
is reasonable since sacrifice (i.e. switching lanes) is needed to
rescue elders. A piece of supporting evidence is that Figure 8
reveals there is no much difference between two approaches
in terms of the number of collisions. With regard to the num-
ber of elders getting rescued, a significant change is shown
in Figure 9, which verifies the ability of ethics shaping to
make the learner behave ethically while pursuing better per-
formance. Another conclusion can be made in the three exper-
iments that the problem of dangerous exploration (Amodei

et al. 2016) is alleviated since in the learning process, penal-
ties are given while the agents making unethical decisions.
Consequently, the total number of unethical decision mak-
ing is greatly reduced compared with original reinforcement
learners.

Figure 7: SARSA algorithm with and without ethics shaping
in Driving and Rescuing on cumulative rewards. Average
over 150 runs are plotted with 1 s.e. errorbars.

Figure 8: Number of collisions vs. number of episodes. Aver-
age over 150 runs, with 1 s.e. errorbars.

5 Related Work
Machine ethics (Anderson and Anderson 2011), a project
that aims to make an AI system’s decision-making procedure
obey some norms and ethics, has drawn attention since the
AI systems have become part of the lives of modern people.
Some proactive issues (Ring and Orseau 2011; Bostrom and
Yudkowsky 2014; Bostrom 2014) have been proposed to
discuss possible situations that might harm the interactions
between human and machines. Several issues are resulted
from ill-designed objective functions (Amodei et al. 2016),
which our work aims to solve. To the best of our knowledge,
the idea that employs ordinary human data to learn ethical
behaviors has not been proposed. We provide a brief survey
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Figure 9: Number of elders getting rescued within one
episode. Average over 150 runs with 1 s.e. errorbars.

of existing approaches that relate to ethical decision making
and learning.

5.1 Rule-Based Approaches
(Briggs and Scheutz 2015) proposes a mechanism to deter-
mine when and how it is best to reject directives from human
interlocutors. Under their architecture, ‘fecility conditions’
are reasoned to ensure matters such as the agent know how
to accomplish the task and accomplishing the task does not
violate normative principles. Those conditions are formulated
as a logical expression along with inference rules.

Horty logic (Horty 2001) is a deontic logic (Clarke 1975)
that allows reasoning about multiple agents and their ac-
tions. (Arkoudas, Bringsjord, and Bello 2005; Bringsjord,
Arkoudas, and Bello 2006) propose similar approaches that
utilize Horty logic to compose ethical semantics. However,
this formalism suffers from similar limitations as Briggs and
Scheutz’s approach: ethical uncertainty is not allowed for
decision making, active learning of the ethical rules is not
permitted, and all rules should be rendered in advance. With
the aid of ethics shaping, there is no need to enumerate all
possible ethical rules since the integrated policy from human
data is able to suggest ethical moves with our claim that most
of the people would obey ethical code.

5.2 Learning-Based Approaches
Richer kinds of materials have been explored to achieve value
alignment (Russell, Dewey, and Tegmark 2015), which is a
property of an agent indicating that it can only pursue goals
beneficial to humans (Russell, Dewey, and Tegmark 2015;
Soares and Fallenstein 2014). (Riedl and Harrison 2016)
claims that stories are necessarily reflections of the culture
and society; consequently, stories are a wealth of data where
cultural values tacitly hold. They first generate a plot graph
from crowdsourced stories using the technique described by
(Li et al. 2013). However, stories may not be detailed enough
to describe sophisticated behavior such as driving cars.

It is a challenging problem for agents to derive their ob-
jective functions while making decisions. (Armstrong 2015)

uses Bayesian learning to update beliefs about the utility func-
tions that best match ethical behaviors. Adopting the concept
of utility functions as well, (Abel, MacGlashan, and Littman
2016) considers the problem of ethical learning as learning
an ethical utility function that is a part of hidden state of
Partially Observable Markov Decision Process (POMDP).
The difference with Armstrong’s work is that the agent is
not maximizing a changing meta-utility function. Instead, the
uncertainty of the ethical utility function is coupled with the
uncertainty in the rest of the world. (Arnold, Kasenberg, and
Scheutz 2017) claims that IRL by itself is insufficient for
agents to infer norms that are temporally complex, unless
each state contains sufficient information to characterize the
history of the agent with respect to norms. To combine the
strength of RL and logical representations, they propose a
hybrid approach that agent would prioritize adherence. The
agents would maximize the reward function over only those
state-action pairs that maximally satisfy the norms.

6 Conclusion
Ethics shaping is proposed to make reinforcement learners
not only achieve the expected performance and the goals but
also comply with ethical rules. It utilizes reward shaping and
stochastic policy from human data to balance ethical behavior
and performance pursuit by providing additional reward. The
reward is given if the move is related to ethics identified
by integrated human policy. It can be incorporated with a
variety of reinforcement learning algorithms since most of the
reinforcement learning frameworks rely on reward functions.

We coin three scenarios Grab a Milk, Driving and Avoid-
ing, and Driving and Rescuing to simulate real-life matters
that everybody would possibly experience. In the three ex-
periments, we show the capability of ethics shaping that it
could outperform human policies with respect to positive
ethical decisions (e.g., saving people) since reinforcement
learners provide thorough plans even only local information
is given. Additionally, although under more constraints than
original problems, ethics shaping still achieves competitive
performances with RL algorithms without ethics shaping.
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