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Abstract

Deep neural networks have proven remarkably effective at
solving many classification problems, but have been criti-
cized recently for two major weaknesses: the reasons be-
hind their predictions are uninterpretable, and the predictions
themselves can often be fooled by small adversarial perturba-
tions. These problems pose major obstacles for the adoption
of neural networks in domains that require security or trans-
parency. In this work, we evaluate the effectiveness of de-
fenses that differentiably penalize the degree to which small
changes in inputs can alter model predictions. Across mul-
tiple attacks, architectures, defenses, and datasets, we find
that neural networks trained with this input gradient regular-
ization exhibit robustness to transferred adversarial examples
generated to fool all of the other models. We also find that
adversarial examples generated to fool gradient-regularized
models fool all other models equally well, and actually lead
to more “legitimate,” interpretable misclassifications as rated
by people (which we confirm in a human subject experi-
ment). Finally, we demonstrate that regularizing input gradi-
ents makes them more naturally interpretable as rationales for
model predictions. We conclude by discussing this relation-
ship between interpretability and robustness in deep neural
networks.

Introduction

Over the past several years, progress in training deep neural
networks (DNNs) has greatly expanded the scope of what
machine learning models can accomplish. However, espe-
cially as they start to be used in settings which are security-
sensitive or have legal ramifications (Kang and Kang 2017),
many in the field have noted important problems that fall
into two major categories.

The first is that DNNs can be easily manipulated into
making incorrect predictions on carefully doctored exam-
ples which, to humans, look indistinguishable from exam-
ples it classifies correctly (Szegedy et al. 2013). Although
many techniques for generating these examples (which we
call “attacks”) require access to model parameters, Paper-
not et al. (2017) have shown that it is possible and even
practical to attack black-box models in the real world, in
large part because of the transferability of adversarial exam-
ples; examples generated to fool one model tend to fool all

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

models trained on the same dataset. Particularly for images,
these adversarial examples can be constructed to fool mod-
els across a variety of scales and perspectives (Athalye and
Sutskever 2017), which poses a problem for the adoption of
deep learning models in systems like self-driving cars.

Although there has recently been a great deal of research
in adversarial defenses, many of these methods have strug-
gled to achieve robustness to transferred adversarial exam-
ples (Tramèr et al. 2017b). Some of the most effective de-
fenses, such as feature squeezing (Xu, Evans, and Qi 2017),
simply detect and reject adversarial examples rather than
making predictions. The most common, “brute force” so-
lution is adversarial training, where we simply include a
mixture of normal and adversarially-generated examples in
the training set (Kurakin, Goodfellow, and Bengio 2016b).
However, Tramèr et al. (2017a) show that the robustness
adversarial training provides can be circumvented by ran-
domizing or transferring perturbations from other models
(though ensembling helps).

In addition to concerns about robustness, domain experts
are also often concerned that DNN predictions are uninter-
pretable. The lack of interpretability is particularly prob-
lematic in domains where algorithmic bias is often a fac-
tor (Angwin et al. 2016) or in medical contexts where safety
risks can arise when there is mismatch between how a model
is trained and used (Caruana et al. 2015). Cases like these
have motivated research in explaining DNN predictions,
which can reveal their implicit biases (Adler et al. 2016)
or alert a domain expert that a prediction was made for the
wrong reasons. The form these explanations often take is
an interpretable local surrogate model, often a linear model,
which simulates how the network will respond to small per-
turbations of its inputs (Ribeiro, Singh, and Guestrin 2016).

One choice for generating these local linear models is
simply to take the model’s gradient with respect to its inputs,
which provides a local linear approximation of the model’s
behavior (Baehrens et al. 2010). However, especially for im-
age classification tasks, few researchers examine the raw in-
put gradients directly because they are noisy and difficult
to interpret. This issue has spurred the development of tech-
niques like integrated gradients (Sundararajan, Taly, and Yan
2016) and SmoothGrad (Smilkov et al. 2017) that generate
smoother, more interpretable saliency maps from noisy gra-
dients. The rationale behind these techniques is that, while
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the local behavior of the model may be noisy, examining the
gradients over larger length scales in input space provides a
better intution about the model’s behavior.

However, raw input gradients are exactly what many at-
tacks use to generate adversarial examples. Explanation
techniques which smooth out gradients in background pix-
els may be inappropriately hiding the fact that the model is
quite sensitive to them. We consider that perhaps the need
for these smoothing techniques in the first place is indica-
tive of a problem with our models, related to their adversar-
ial vulnerability and capacity to overfit. Perhaps it is funda-
mentally hard for adversarially vulnerable models to be fully
interpretable.

Contrapositively, perhaps it is hard for interpretable mod-
els to be adversarially vulnerable. Our hypothesis is that by
training a model to have smooth input gradients with fewer
extreme values, it will not only be more interpretable but
also more resistant to adversarial examples. In the experi-
ments that follow we confirm this hypothesis using gradient
regularization, which directly optimizes the model to have
smooth input gradients with respect to its predictions dur-
ing training. Using gradient regularization, we demonstrate
robustness to adversarial examples across multiple model
architectures and datasets, and in particular demonstrate
robustness to transferred adversarial examples: gradient-
regularized models maintain significantly higher accuracy
on examples generated to fool other models than baselines.
Furthermore, both qualitatively and in human subject exper-
iments, we find that adversarial examples generated to fool
gradient-regularized models are, in a particular sense, more
“interpretable”: they fool humans as well.

Background

In this section, we will introduce notation, and give a brief
overview of the baseline attacks and defenses against which
we will test and compare our methods. The methods we
will analyze apply to all differentiable classification models
fθ(X), which are functions parameterized by θ that return
predictions ŷ ∈ R

N×K given inputs X ∈ R
N×D. These

predictions indicate the probabilities that each of N inputs
in D dimensions belong to each of K class labels. To train
these models, we try to find sets of parameters θ∗ that min-
imizs the total information distance between the predictions
ŷ and the true labels y (also ∈ R

N×K , one-hot encoded) on
a training set:

θ∗ = argmin
θ

N∑
n=1

K∑
k=1

−ynk log fθ(Xn)k, (1)

which we will sometimes write as

argmin
θ

H(y, ŷ),

with H giving the sum of the cross entropies between the
predictions and the labels.

Attacks

Fast Gradient Sign Method (FGSM) Goodfellow,
Shlens, and Szegedy (2014) introduced this first method of

generating adversarial examples by perturbing inputs in a
manner that increases the local linear approximation of the
loss function:

XFGSM = X + ε sign (∇xH(y, ŷ)) (2)

If ε is small, these adversarial examples are indistinguishable
from normal examples to a human, but the network performs
significantly worse on them.

Kurakin, Goodfellow, and Bengio (2016a) noted that one
can iteratively perform this attack with a small ε to induce
misclassifications with a smaller total perturbation (by fol-
lowing the nonlinear loss function in a series of small linear
steps rather than one large linear step).

Targeted Gradient Sign Method (TGSM) A simple
modification of the Fast Gradient Sign Method is the Tar-
geted Gradient Sign Method, introduced by Kurakin, Good-
fellow, and Bengio (2016a). In this attack, we attempt to de-
crease a modified version of the loss function that encour-
ages the model to misclassify examples in a specific way:

XTGSM = X − ε sign (∇xH(ytarget, ŷ)) , (3)

where ytarget encodes an alternate set of labels we would like
the model to predict instead. In the digit classification ex-
periments below, we often picked targets by incrementing
the labels y by 1 (modulo 10), which we will refer to as y+1.
The TGSM can also be performed iteratively.

Jacobian-based Saliency Map Approach (JSMA) The
final attack we consider, the Jacobian-based Saliency Map
Approach (JSMA), also takes an adversarial target vector
ytarget. It iteratively searches for pixels or pairs of pixels in
X to change such that the probability of the target label
is increased and the probability of all other labels are de-
creased. This method is notable for producing examples that
have only been changed in several dimensions, which can
be hard for humans to detect. For a full description of the
attack, we refer the reader to Papernot et al. (2016b).

Defenses

As baseline defenses, we consider defensive distillation and
adversarial training. To simplify comparison, we omit de-
fenses (Xu, Evans, and Qi 2017; Nayebi and Ganguli 2017)
that are not fully architecture-agnostic or which work by de-
tecting and rejecting adversarial examples.

Distillation Distillation, originally introduced by Ba and
Caruana (2014), was first examined as a potential defense
by Papernot et al. (2016c). The main idea is that we train the
model twice, initially using the one-hot ground truth labels
but ultimately using the initial model’s softmax probabil-
ity outputs, which contain additional information about the
problem. Since the normal softmax function tends to con-
verge very quickly to one-hot-ness, we divide all of the logit
network outputs (which we will call ẑk instead of the proba-
bilities ŷk) by a temperature T (during training but not eval-
uation):

fT,θ(Xn)k =
eẑk(Xn)/T∑K
i=1 e

ẑi(Xn)/T
, (4)
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where we use fT,θ to denote a network ending in a softmax
with temperature T . Note that as T approaches ∞, the pre-
dictions converge to 1

K . The full process can be expressed
as

θ0 = argmin
θ

N∑
n=1

K∑
k=1

−ynk log fT,θ(Xn)k,

θ∗ = argmin
θ

N∑
n=1

K∑
k=1

−fT,θ0(Xn)k log fT,θ(Xn)k.

(5)

Distillation is usually used to help small networks achieve
the same accuracy as larger DNNs, but in a defensive con-
text, we use the same model twice. It has been shown to be
an effective defense against white-box FGSM attacks, but
Carlini and Wagner (2016) have shown that it is not robust
to all kinds of attacks. We will see that the precise way
it defends against certain attacks is qualitatively different
than gradient regularization, and that it can actually make
the models more vulnerable to attacks than an undefended
model.

Adversarial Training In adversarial training (Kurakin,
Goodfellow, and Bengio 2016b), we increase robustness
by injecting adversarial examples into the training proce-
dure. We follow the method implemented in Papernot et al.
(2016a), where we augment the network to run the FGSM on
the training batches and compute the model’s loss function
as the average of its loss on normal and adversarial examples
without allowing gradients to propogate so as to weaken the
FGSM attack (which would also make the method second-
order). We compute FGSM perturbations with respect to
predicted rather than true labels to prevent “label leaking,”
where our model learns to classify adversarial examples
more accurately than regular examples.

Input Gradient Regularization

Input gradient regularization is a very old idea. It was first
introduced by Drucker and Le Cun (1992) as “double back-
propagation”, which trains neural networks by minimizing
not just the “energy” of the network but the rate of change
of that energy with respect to the input features. In their for-
mulation the energy is a quadratic loss, but we can formulate
it almost equivalently using the cross-entropy:

θ∗ = argmin
θ

N∑
n=1

K∑
k=1

−ynk log fθ(Xn)k

+ λ

D∑
d=1

N∑
n=1

(
∂

∂xd

K∑
k=1

−ynk log fθ(Xn)k

)2

,

(6)

whose objective we can write a bit more concisely as

argmin
θ

H(y, ŷ) + λ||∇xH(y, ŷ)||22,

where λ is a hyperparameter specifying the penalty strength.
The goal of this approach is to ensure that if any input
changes slightly, the KL divergence between the predictions

and the labels will not change significantly. Double back-
propagation was mentioned as a potential adversarial de-
fense in the same paper which introduced defensive distil-
lation (Papernot et al. 2016c), but to our knowledge, its ef-
fectiveness in this respect has not yet been analyzed in the
literature.

Note that it is also possible to regularize the input gra-
dients of different cross entropies besides H(y, ŷ). For ex-
ample, if we replace y with a uniform distribution of 1

K for
all classes (which we will abbreviate as H( 1

K , ŷ)), then we
penalize the sensitivity of the divergence between the pre-
dictions and uniform uncertainty; we will call this penalty
“certainty sensitivity.” Certainty sensitivity can also be inter-
preted as the score function of the predictions with respect
to the inputs. Certainty sensitivity penalties have been used
to stabilize the training of Wasserstein GANs (Gulrajani et
al. 2017) and to incorporate domain knowledge-specific reg-
ularization (Ross, Hughes, and Doshi-Velez 2017). We ex-
plore the relative performance of different gradient regular-
ization techniques at different λ in Figure 9.

Experiments

Datasets and Models We evaluated the robustness of dis-
tillation, adversarial training, and gradient regularization to
the FGSM, TGSM, and JSMA on MNIST (LeCun, Cortes,
and Burges 2010), Street-View House Numbers (SVHN)
(Netzer et al. 2011), and notMNIST (Butalov 2011). On all
datasets, we test a simple convolutional neural network with
5x5x32 and 5x5x64 convolutional layers followed by 2x2
max pooling and a 1024-unit fully connected layer, with
batch-normalization after all convolutions and both batch-
normalization and dropout on the fully-connected layer. All
models were implemented in Tensorflow and trained us-
ing Adam (Kingma and Ba 2014) with α = 0.0002 and
ε = 10−4 for 15000 minibatches of size of 256. For SVHN,
we prepare training and validation set as described in Ser-
manet, Chintala, and LeCun (2012), converting the images
to grayscale following Grundland and Dodgson (2007) and
applying both global and local contrast normalization.

Attacks and Defenses For adversarial training and JSMA
example generation, we used the Cleverhans adversarial ex-
ample library (Papernot et al. 2016a). For distillation, we
used a softmax temperature of T = 50, and for adversarial
training, we trained with FGSM perturbations at ε = 0.3,
averaging normal and adversarial losses. For gradient regu-
larized models, we use double backpropagation, which pro-
vided the best robustness, and train over a spread of λ val-
ues. We choose the λ with the highest accuracy against val-
idation black-box FGSM examples but which is still at least
97% as accurate on normal validation examples (though ac-
curacy on normal examples tended not to be significantly
different). We explore the effects of varying λ in Figure 7.
Code for all models and experiments will be made available
at https://github.com/dtak/adversarial-robustness-public.

Evaluation Metrics For the FGSM and TGSM, we test
all models against adversarial examples generated for each
model and report accuracy. Testing this way allows us to
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Figure 1: Accuracy of all CNNs on FGSM examples gener-
ated to fool undefended models, defensively distilled, adver-
sarially trained, and gradient regularized models (from left
to right) on MNIST, SVHN, and notMNIST (from top to bot-
tom). Gradient-regularized models are the most resistant to
other models’ adversarial examples at high ε, while all mod-
els are fooled by gradient-regularized model examples. On
MNIST and notMNIST, distilled model examples are usu-
ally identical to non-adversarial examples (due to gradient
underflow), so they fail to fool any of the other models.

simultaneously measure white- and black-box robustness.
On the JSMA and iterated TGSM, we found that measur-

ing accuracy was no longer a good evaluation metric, since
for our gradient-regularized models, the generated adversar-
ial examples often resembled their targets more than their
original labels. To investigate this, we performed a human
subject experiment to evaluate the legitimacy of adversarial
example misclassifications.

Accuracy Evaluations (FGSM and TGSM)

FGSM Robustness Figure 1 shows the results of our
defenses’ robustness to the FGSM on MNIST, SVHN,
and notMNIST for our CNN at a variety of perturba-
tion strengths ε. Consistently across datasets, we find that
gradient-regularized models exhibit strong robustness to
transferred FGSM attacks (examples produced by attacking
other models). Although adversarial training sometimes per-
forms slightly better at ε ≤ 0.3, the value we used in train-
ing, gradient regularization generally surpasses it at higher
ε.

Interestingly, although gradient-regularized models seem
vulnerable to white-box attacks, they actually fool all other
models equally well. In this respect, gradient regularization
may hold promise not just as a defense but as an attack, if
examples generated to fool them are inherently more trans-
ferable.

Models trained with defensive distillation in general per-
form no better and often worse than undefended models. Re-
markably, except on SVHN, attacks against distilled models
actually fail to fool all models. Closer inspection of distilled

Figure 2: Applying both gradient regularization and adver-
sarial training (“both defenses”) allows us to obtain maximal
robustness to white-box and normal black-box attacks on
SVHN (with a very slight label-leaking effect on the FGSM,
perhaps due to the inclusion of the ∇xH(y, ŷ) term). How-
ever, no models are able to maintain robustness to black-box
attacks using gradient regularization.

model gradients and examples themselves reveals that this
occurs because distilled FGSM gradients vanish – so the
examples are not perturbed at all. As soon as we obtain a
nonzero perturbation from a different model, distillation’s
appearance of robustness vanishes as well.

Although adversarial training and gradient regularization
seem comparable in terms of accuracy, they work for differ-
ent reasons and can be applied in concert to increase robust-
ness, which we show in Figure 2. In Figure 10 we also show
that, on normal and adversarially trained black-box FGSM
attacks, models trained with these two defenses are fooled
by different sets of adversarial examples.

Figure 3: CNN accuracy on y+1 TGSM examples gener-
ated to fool the four models on three datasets (see Figure
1 for more explanation). Gradient-regularized models again
exhibit robustness to other models’ adversarial examples.
Distilled model adversarial perturbations fool other models
again since their input gradients no longer underflow.
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TGSM Robustness Against the TGSM attack (Figure 3),
defensively distilled model gradients no longer vanish, and
accordingly these models start to show the same vulnera-
bility to adversarial attacks as others. Gradient-regularized
models still exhibit the same robustness even at large pertur-
bations ε, and again, examples generated to fool them fool
other models equally well.

Figure 4: Distributions of (L2 norm) magnitudes of FGSM
input gradients (top), TGSM input gradients (middle),
and predicted log probabilities across all classes (bottom)
for each defense. Note the logarithmic scales. Gradient-
regularized models tend to assign non-predicted classes
higher probabilities, and the L2 norms of the input gradients
of their FGSM and TGSM loss function terms have similar
orders of magnitude. Distilled models (evaluated at T = 0)
assign extremely small probabilities to all but the predicted
class, and their TGSM gradients explode while their FGSM
gradients vanish (we set a minimum value of 10−20 to pre-
vent underflow). Normal and adversarially trained models
lie somewhere in the middle.

One way to better understand the differences between
gradient-regularized, normal, and distilled models is to ex-
amine the log probabilities they output and the norms of
their loss function input gradients, whose distributions we
show in Figure 4 for MNIST. We can see that the differ-
ent defenses have very different statistics. Probabilities of
non-predicted classes tend to be small but remain nonzero
for gradient-regularized models, while they vanish on de-
fensively distilled models evaluated at T = 0 (despite dis-
tillation’s stated purpose of discouraging certainty). Per-
haps because∇ log p(x) = 1

p(x)∇p(x), defensively distilled
models’ non-predicted log probability input gradients are
the largest by many orders of magnitude, while gradient-
regularized models’ remain controlled, with much smaller
means and variances (see Figure 7 for a visualization of
how this behavior changes with λ). The other models lie be-

tween these two extremes. While we do not have a strong
theoretical argument about what input gradient magnitudes
should be, we believe it makes intuitive sense that having
less variable, well-behaved, and non-vanishing input gradi-
ents should be associated with robustness to attacks that con-
sist of small perturbations in input space.

Figure 5: Results of applying the JSMA to MNIST 0 and
1 images with maximum distortion parameter γ = 0.25
for a distilled model (top) and a gradient-regularized model
(bottom). Examples in each row start out as the highlighted
digit but are modified until the model predicts the digit cor-
responding to their column or the maximum distortion is
reached.

Human Subject Study (JSMA and Iterated TGSM)

Need for a Study Reporting accuracy numbers for the
JSMA can be misleading, since without a maximum distor-
tion constraint it necessarily runs until the model predicts
the target. Even with such a constraint, the perturbations it
creates sometimes alter the examples so much that they no
longer resemble their original labels, and in some cases bear
a greater resemblance to their targets. Figure 5 shows JSMA
examples on MNIST for gradient-regularized and distilled
models which attempt to convert 0s and 1s into every other
digit. Although all of the perturbations “succeed” in chang-
ing the model’s prediction, we can see that in the gradient-
regularized case, many of the JSMA examples strongly re-
semble their targets.

The same issues occur for other attack methods, partic-
ularly the iterated TGSM, for which we show confusion
matrices for different models and datasets in the Appendix
in Figure 11. For the gradient-regularized models, these
psuedo-adversarial examples often represent intuitive trans-
formations of one digit into another, which is not reflected
in accuracies with respect to the original labels.

To test these intuitions more rigorously, we ran a small pi-
lot study with 11 subjects to measure whether they found ex-
amples generated by these methods to be more or less plau-
sible instances of their targets.

Study Protocol The pilot study consisted of a quantitative
and qualitative portion. In the quantitative portion, subjects
were shown 30 images of MNIST JSMA or SVHN iterated
TGSM examples. Each of the 30 images corresponded to
one original digit (from 0 to 9) and one model (distilled,
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MNIST (JSMA) SVHN (TGSM)
Model human

fooled
mistake
reasonable

human
fooled

mistake
reasonable

normal 2.0% 26.0% 40.0% 63.3%
distilled 0.0% 23.5% 1.7% 25.4%

grad. reg. 16.4% 41.8% 46.3% 81.5%

Table 1: Quantitative feedback from the human subject ex-
periment. “human fooled” columns record what percentage
of examples were classified by humans as most plausibly
their adversarial targets, and “mistake reasonable” records
how often humans either rated the target plausible or marked
the image unrecognizable as any label (N/A).

gradient-regularized, or undefended). Note that for this ex-
periment, we used ∇xH( 1

K , ŷ) gradient regularization and
trained models for 4 epochs at a learning rate of 0.001, which
was sufficient to produce examples with explanations simi-
lar to the longer training procedure used in our earlier ex-
periments, and actually increased the robustness of the un-
defended models (adversarial accuracy tends to fall with
training iteration). Images were chosen uniformly at ran-
dom from a larger set of 45 examples that corresponded to
the first 5 images of the original digit in the test set trans-
formed using the JSMA or iterated TGSM to each of the
other 9 digits (we ensured that all models misclassified all
examples as their target). Subjects were not given the origi-
nal label, but were asked to input what they considered the
most and second-most plausible predictions for the image
that they thought a reasonable classifier would make (enter-
ing N/A if they thought no label was a plausible choice).
In the qualitative portion that came afterwards, users were
shown three 10x10 confusion matrices for the different de-
fenses on MNIST (Figure 5 shows the first two rows) and
were asked to write comments about the differences between
the examples. Afterwards, there was a short group discus-
sion. This study was performed in compliance with the in-
stitution’s IRB.

Study Results Table 1 shows quantitative results from the
human subject experiment. Overall, subjects found gradient-
regularized model adversarial examples most convincing.
On SVHN and especially MNIST, humans were most likely
to think that gradient-regularized (rather than distilled or
normal) adversarial examples were best classified as their
target rather than their original digit. Additionally, when
they did not consider the target the most plausible label, they
were most likely to consider gradient-regularized model
mispredictions “reasonable” (which we define in Table 1),
and more likely to consider distilled model mispredictions
unreasonable. p-values for the differences between normal
and gradient regularized unreasonable error rates were 0.07
for MNIST and 0.08 for SVHN.

In the qualitative portion of the study (comparing MNIST
JSMA examples), all of the written responses described sig-
nificant differences between the insensitive model’s JSMA
examples and those of the other two methods. Many of the
examples for the gradient-regularized model were described

as “actually fairly convincing,” and that the normal and dis-
tilled models “seem to be most easily fooled by adding spu-
rious noise.” Few commentators indicated any differences
between the normal and distilled examples, with several say-
ing that “there doesn’t seem to be [a] stark difference” or
that they “couldn’t describe the difference” between them.
In the group discussion one subject remarked on how the
perturbations to the gradient-regularized model felt “more
intentional”, and others commented on how certain transi-
tions between digits led to very plausible fakes while oth-
ers seemed inherently harder. Although the study was small,
both its quantitative and qualitative results support the claim
that gradient regularization, at least for the two CNNs on
MNIST and SVHN, is a credible defense against the JSMA
and the iterated TGSM, and that distillation is not.

Connections to Interpretability

Finally, we present a qualitative evaluation suggesting a con-
nection between adversarial robustness and interpretability.
In the literature on explanations, input gradients are fre-
quently used as explanations (Baehrens et al. 2010), but
sometimes they are noisy and not interpretable on their own.
In those cases, smoothing techniques have been developed
(Smilkov et al. 2017; Sundararajan, Taly, and Yan 2016) to
generate more interpretable explanations, but we have al-
ready argued that these techniques may obscure information
about the model’s sensitivity to background features.

We hypothesized that if the models had more interpretable
input gradients without the need for smoothing, then perhaps
their adversarial examples, which are generated directly
from their input gradients, would be more interpretable as
well. That is, the adversarial example would be more obvi-
ously transformative away from the original class label and
towards another. The results of the user study show that our
gradient-regularized models have this property; here we ask
if the gradients more interpretable as explanations.

In Figure 6 we visualize input gradients across mod-
els and datasets, and while we cannot make any quantita-
tive claims, there does appear to be a qualitative difference
in the interpretability of the input gradients between the
gradient-regularized models (which were relatively robust
to adversarial examples) and the normal and distilled mod-
els (which were vulnerable to them). Adversarially trained
models seem to exhibit slightly more interpretable gradients,
but not nearly to the same degree as gradient-regularized
models. When we repeatedly apply input gradient-based
perturbations using the iterated TGSM (Figure 11), this dif-
ference in interpretability between models is greatly mag-
nified, and the results for gradient-regularized models seem
to provide insight into what the model has learned. When
gradients are interpretable, we may actually be able to use
adversarial attacks as explanations.

Discussion

In this paper, we have analyzed the performance of gradient
regularization, a novel way of training differentiable models
that penalizes the degree to which infinitesimal changes to X
affect predictions ŷ. We have shown that training with gradi-
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Figure 6: Input gradients of the model’s score function∇xH( 1
K , ŷ) that provide a local linear approximation of normal models

(top), distilled models at T = 50 (second from top), adversarially trained models (middle), and models trained with∇xH( 1
K , ŷ)

and ∇xH(y, ŷ) gradient regularization (bottom two). Whitening black pixels or darkening white pixels makes the model more
certain of its prediction. In general, regularized model gradients appear smoother and make more intuitive sense as local linear
approximations.

ent regularization increases robustness to adversarial pertur-
bations as much or more than adversarial training, and that
the two methods can be combined to achieve even greater ro-
bustness. We also showed that input gradient regularization
increases the interpretability of adversarial perturbations as
rated by human subjects. Although a larger study that also
tests adversarial training would be necessary to verify this,
our results strongly suggest that the way distillation and
adversarial training increase robustness is qualitatively dif-
ferent than gradient regularization, and not associated with
greater interpretability.

There is ample opportunity to improve gradient regular-
ization. Although we explored performance for several vari-
ants in Figure 9, there are many alternative formulations we
could explore, including gradient penalties on logits rather
than log probabilities, or a wider variety of example-specific
cross-entropies. It may also be the case that network hyper-
parameters should be different when training networks with
gradient regularization. Future work should explore this av-
enue, as well as testing on larger, more state-of-the-art net-
works.

One weakness of gradient regularization is that it is a
second-order method; including input gradients in parameter
gradient descent requires taking second derivatives, which
in our experiments increased training time per batch by a
factor of slightly more than 2. Figures 7 and 8 also suggest
they may take longer to converge. Distillation, of course, re-
quires twice as much training time by definition, and ad-
versarial training increased train time by closer to a fac-
tor of 3 (since we had to evaluate, differentiate, and re-
evaluate each batch). However, input gradient regularization
increases the size of the computational graph in a way that
the other methods do not, and second derivatives are not al-
ways supported for all operations in all autodifferentiation
frameworks. Overall, we feel that the increase in training
time for gradient regularization is manageable, but it still

comes at a cost.
What we find most promising about gradient regulariza-

tion, though, is that it significantly changes the shape of
the models’ decision boundaries, which suggests that they
make predictions for qualitatively different (and perhaps bet-
ter) reasons. It is unlikely that regularizing for this kind
of smoothness will be a panacea for all manifestations of
the “Clever Hans” effect (Sturm 2014) in deep neural net-
works, but in this case the prior it represents – that predic-
tions should not be sensitive to small perturbations in input
space – helps us find models that make more robust and in-
terpretable predictions. No matter what method proves most
effective in the general case, we suspect that any progress to-
wards ensuring either interpretability or adversarial robust-
ness in deep neural networks will likely represent progress
towards both.
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Figure 7: Variation in several important training quantities by gradient regularization penalty strength λ. In general, less reg-
ularized models tend to have larger input gradients (left two plots) and lower FGSM validation accuracy (second from right),
while more regularized models have smaller input gradients and better FGSM accuracy. However, they take longer to reach
high normal accuracy (right), and it is possible to over-regularize them (bottom two curves). Over-regularized models tend to
have equal gradients with respect to all log probabilities (as well as equal normal and adversarial accuracy).

Figure 8: Variation in training quantities across defense method. Although distillation in general causes true-label input gradi-
ents ∇xH(y, ŷ) to vanish for most examples, enough other examples’ gradients explode to ensure the average value remains
highest. Adversarially trained model input gradients are similar in magnitude to normal model input gradients, suggesting they
are more similar to normal than gradient-regularized models.

Figure 9: Left:∇xH( 1
K , ŷ) input gradients of a double backpropagation-trained model on SVHN examples as we vary λ. Gra-

dient interpretability tends to track FGSM accuracy. Right: Accuracies of different gradient regularization methods as we vary
λ. In general, we find that double backpropagation (penalizing predicted log probabilities ∇xH(y, ŷ)) obtains slightly better
FGSM accuracy than certainty insensitivity (penalizing the sum of log probabilities ∇xH( 1

K , ŷ)), though it was sometimes
more sensitive to the value of λ. We also noticed the certainty sensitivity penalty sometimes destabilized our training procedure
(see the blip at λ = 101). To see if we could combine distillation and gradient regularization, we also tried using distilled
probabilities ŷdistilled obtained from a normal CNN trained and evaluated at T = 50, which was comparable to but no beterr
than double backpropagation. Using the model’s own probability outputs ŷ (i.e. its entropy) seemed to have no effect.
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Figure 10: Venn diagrams showing overlap in which MNIST ε = 0.4 FGSM examples, generated for normal, adversarially
trained, and gradient regularized models, fool all three. Undefended models tend to be fooled by examples from all models,
while the sets of adversarially trained model FGSM examples that fool the two defended models are closer to disjoint. Gradient-
regularized model FGSM examples fool all models. These results suggest that ensembling different forms of defense may be
effective in defending against black box attacks (unless those black box attacks use a gradient-regularized proxy).

Figure 11: Partial confusion matrices showing results of applying the iterated TGSM for 15 iterations at ε = 0.1. Each row is
generated from the same example but modified to make the model to predict every other class. TGSM examples generated for
gradient-regularized models (right) resemble their targets more than their original labels and may provide insight into what the
model has learned. Animated versions of these examples can be seen at http://goo.gl/q8ZM1T, and code to generate
them is available at http://github.com/dtak/adversarial-robustness-public.
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