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Abstract

To quickly obtain new labeled data, we can choose crowd-
sourcing as an alternative way at lower cost in a short time.
But as an exchange, crowd annotations from non-experts may
be of lower quality than those from experts. In this paper, we
propose an approach to performing crowd annotation learning
for Chinese Named Entity Recognition (NER) to make full
use of the noisy sequence labels from multiple annotators. In-
spired by adversarial learning, our approach uses a common
Bi-LSTM and a private Bi-LSTM for representing annotator-
generic and -specific information. The annotator-generic in-
formation is the common knowledge for entities easily mas-
tered by the crowd. Finally, we build our Chinese NE tagger
based on the LSTM-CRF model. In our experiments, we cre-
ate two data sets for Chinese NER tasks from two domains.
The experimental results show that our system achieves better
scores than strong baseline systems.

Introduction

There has been significant progress on Named Entity Recog-
nition (NER) in recent years using models based on machine
learning algorithms (Zhao and Kit 2008; Collobert et al.
2011; Lample et al. 2016). As with other Natural Language
Processing (NLP) tasks, building NER systems typically re-
quires a massive amount of labeled training data which are
annotated by experts. In real applications, we often need to
consider new types of entities in new domains where we do
not have existing annotated data. For such new types of en-
tities, however, it is very hard to find experts to annotate the
data within short time limits and hiring experts is costly and
non-scalable, both in terms of time and money.

In order to quickly obtain new training data, we can use
crowdsourcing as one alternative way at lower cost in a
short time. But as an exchange, crowd annotations from non-
experts may be of lower quality than those from experts. It
is one biggest challenge to build a powerful NER system on
such a low quality annotated data. Although we can obtain
high quality annotations for each input sentence by majority
voting, it can be a waste of human labors to achieve such
a goal, especially for some ambiguous sentences which may
require a number of annotations to reach an agreement. Thus
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majority work directly build models on crowd annotations,
trying to model the differences among annotators, for exam-
ple, some of the annotators may be more trustful (Rodrigues,
Pereira, and Ribeiro 2014; Nguyen et al. 2017).

Here we focus mainly on the Chinese NER, which is more
difficult than NER for other languages such as English for
the lack of morphological variations such as capitalization
and in particular the uncertainty in word segmentation. The
Chinese NE taggers trained on news domain often perform
poor in other domains. Although we can alleviate the prob-
lem by using character-level tagging to resolve the problem
of poor word segmentation performances (Peng and Dredze
2015), still there exists a large gap when the target domain
changes, especially for the texts of social media. Thus, in
order to get a good tagger for new domains and also for the
conditions of new entity types, we require large amounts of
labeled data. Therefore, crowdsourcing is a reasonable solu-
tion for these situations.

In this paper, we propose an approach to training a Chi-
nese NER system on the crowd-annotated data. Our goal is
to extract additional annotator independent features by ad-
versarial training, alleviating the annotation noises of non-
experts. The idea of adversarial training in neural networks
has been used successfully in several NLP tasks, such as
cross-lingual POS tagging (Kim et al. 2017) and cross-
domain POS tagging (Gui et al. 2017). They use it to reduce
the negative influences of the input divergences among dif-
ferent domains or languages, while we use adversarial train-
ing to reduce the negative influences brought by different
crowd annotators. To our best knowledge, we are the first to
apply adversarial training for crowd annotation learning.

In the learning framework, we perform adversarial train-
ing between the basic NER and an additional worker dis-
criminator. We have a common Bi-LSTM for representing
annotator-generic information and a private Bi-LSTM for
representing annotator-specific information. We build an-
other label Bi-LSTM by the crowd-annotated NE label se-
quence which reflects the mind of the crowd annotators who
learn entity definitions by reading the annotation guidebook.
The common and private Bi-LSTMs are used for NER,
while the common and label Bi-LSTMs are used as inputs
for the worker discriminator. The parameters of the com-
mon Bi-LSTM are learned by adversarial training, maximiz-
ing the worker discriminator loss and meanwhile minimiz-
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ing the NER loss. Thus the resulting features of the common
Bi-LSTM are worker invariant and NER sensitive.

For evaluation, we create two Chinese NER datasets in
two domains: dialog and e-commerce. We require the crowd
annotators to label the types of entities, including person,
song, brand, product, and so on. Identifying these entities
is useful for chatbot and e-commerce platforms (Klüwer
2011). Then we conduct experiments on the newly created
datasets to verify the effectiveness of the proposed adversar-
ial neural network model. The results show that our system
outperforms very strong baseline systems. In summary, we
make the following contributions:

• We propose a crowd-annotation learning model based on
adversarial neural networks. The model uses labeled data
created by non-experts to train a NER classifier and simul-
taneously learns the common and private features among
the non-expert annotators.

• We create two data sets in dialog and e-commerce do-
mains by crowd annotations. The experimental results
show that the proposed approach performs the best among
all the comparison systems.

Related Work

Our work is related to three lines of research: Sequence la-
beling, Adversarial training, and Crowdsourcing.
Sequence labeling. NER is widely treated as a sequence la-
beling problem, by assigning a unique label over each sen-
tential word (Ratinov and Roth 2009). Early studies on se-
quence labeling often use the models of HMM, MEMM,
and CRF (Lafferty et al. 2001) based on manually-crafted
discrete features, which can suffer the feature sparsity prob-
lem and require heavy feature engineering. Recently, neural
network models have been successfully applied to sequence
labeling (Collobert et al. 2011; Huang, Xu, and Yu 2015;
Lample et al. 2016). Among these work, the model which
uses Bi-LSTM for feature extraction and CRF for decoding
has achieved state-of-the-art performances (Huang, Xu, and
Yu 2015; Lample et al. 2016), which is exploited as the base-
line model in our work.
Adversarial Training. Adversarial Networks have achieved
great success in computer vision such as image genera-
tion (Denton et al. 2015; Ganin et al. 2016). In the NLP
community, the method is mainly exploited under the set-
tings of domain adaption (Zhang, Barzilay, and Jaakkola
2017; Gui et al. 2017), cross-lingual (Chen et al. 2016;
Kim et al. 2017) and multi-task learning (Chen et al. 2017;
Liu, Qiu, and Huang 2017). All these settings involve the
feature divergences between the training and test examples,
and aim to learn invariant features across the divergences by
an additional adversarial discriminator, such as domain dis-
criminator. Our work is similar to these work but is applies
on crowdsourcing learning, aiming to find invariant features
among different crowdsourcing workers.
Crowdsourcing. Most NLP tasks require a massive amount
of labeled training data which are annotated by experts.
However, hiring experts is costly and non-scalable, both in
terms of time and money. Instead, crowdsourcing is another

solution to obtain labeled data at a lower cost but with rela-
tive lower quality than those from experts. Snow et al. (2008)
collected labeled results for several NLP tasks from Amazon
Mechanical Turk and demonstrated that non-experts annota-
tions were quite useful for training new systems. In recent
years, a series of work have focused on how to use crowd-
sourcing data efficiently in tasks such as classification (Felt
et al. 2015; Bi et al. 2014), and compare quality of crowd
and expert labels (Dumitrache, Aroyo, and Welty 2017).

In sequence labeling tasks, Dredze, Talukdar, and Cram-
mer (2009) viewed this task as a multi-label problem while
Rodrigues, Pereira, and Ribeiro (2014) took workers iden-
tities into account by assuming that each sentential word
was tagged correctly by one of the crowdsourcing workers
and proposed a CRF-based model with multiple annotators.
Nguyen et al. (2017) introduced a crowd representation in
which the crowd vectors were added into the LSTM-CRF
model at train time, but ignored them at test time. In this
paper, we apply adversarial training on crowd annotations
on Chinese NER in new domains, and achieve better perfor-
mances than previous studies on crowdsourcing learning.

Baseline: LSTM-CRF

We use a neural CRF model as the baseline system (Ratinov
and Roth 2009), treating NER as a sequence labeling prob-
lem over Chinese characters, which has achieved state-of-
the-art performances (Peng and Dredze 2015). To this end,
we explore the BIEO schema to convert NER into sequence
labeling, following Lample et al. (2016), where sentential
character is assigned with one unique tag. Concretely, we tag
the non-entity character by label “O”, the beginning charac-
ter of an entity by “B-XX”, the ending character of an entity
by “E-XX” and the other character of an entity by “I-XX”,
where “XX” denotes the entity type.

We build high-level neural features from the input char-
acter sequence by a bi-directional LSTM (Lample et al.
2016). The resulting features are combined and then are
fed into an output CRF layer for decoding. In summary, the
baseline model has three main components. First, we make
vector representations for sentential characters x1x2 · · ·xn,
transforming the discrete inputs into low-dimensional neu-
ral inputs. Second, feature extraction is performed to obtain
high-level features hner

1 hner
2 · · ·hner

n , by using a bi-directional
LSTM (Bi-LSTM) structure together with a linear trans-
formation over x1x2 · · ·xn. Third, we apply a CRF tag-
ging module over hner

1 hner
2 · · ·hner

n , obtaining the final output
NE labels. The overall framework of the baseline model is
shown by the right part of Figure 1.

Vector Representation of Characters

To represent Chinese characters, we simply exploit a neu-
ral embedding layer to map discrete characters into the low-
dimensional vector representations. The goal is achieved
by a looking-up table EW , which is a model parameter
and will be fine-tuned during training. The looking-up ta-
ble can be initialized either by random or by using a pre-
trained embeddings from large scale raw corpus. For a given
Chinese character sequence c1c2 · · · cn, we obtain the vec-
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Figure 1: The framework of the proposed model, which consists of two parts.

tor representation of each sentential character by: xt =
look-up(ct,EW ), t ∈ [1, n].

Feature Extraction

Based on the vector sequence x1x2 · · ·xn, we extract
higher-level features hner

1 hner
2 · · ·hner

n by using a bidirec-
tional LSTM module and a simple feed-forward neural layer,
which are then used for CRF tagging at the next step.

LSTM is a type of recurrent neural network (RNN),
which is designed for solving the exploding and dimin-
ishing gradients of basic RNNs (Graves and Schmidhu-
ber 2005). It has been widely used in a number of NLP
tasks, including POS-tagging (Huang, Xu, and Yu 2015;
Ma and Hovy 2016), parsing (Dyer et al. 2015) and machine
translation (Wu et al. 2016), because of its strong capabili-
ties of modeling natural language sentences.

By traversing x1x2 · · ·xn by order and reversely, we ob-
tain the output features hprivate

1 hprivate
2 · · ·hprivate

n of the bi-
LSTM, where hprivate

t =
−→
h t ⊕ ←−

h t. Here we refer this Bi-
LSTM as private in order to differentiate it with the com-
mon Bi-LSTM over the same character inputs which will be
introduced in the next section.

Further we make an integration of the output vectors of
bi-directional LSTM by a linear feed-forward neural layer,
resulting in the features hner

1 hner
2 · · ·hner

n by equation:

hner
t = Whprivate

t + b, (1)

where W and b are both model parameters.

CRF Tagging

Finally we feed the resulting features hner
t , t ∈ [1, n] into a

CRF layer directly for NER decoding. CRF tagging is one
globally normalized model, aiming to find the best output
sequence considering the dependencies between successive
labels. In the sequence labeling setting for NER, the output
label of one position has a strong dependency on the label of
the previous position. For example, the label before “I-XX”

must be either “B-XX” or “I-XX”, where “XX” should be
exactly the same.

CRF involves two parts for prediction. First we should
compute the scores for each label based hner

t , resulting in
oner
t , whose dimension is the number of output labels. The

other part is a transition matrix T which defines the scores
of two successive labels. T is also a model parameter. Based
on oner

t and T, we use the Viterbi algorithm to find the best-
scoring label sequence.

We can formalize the CRF tagging process as follows:
oner
t = Wnerhner

t , t ∈ [1, n]

score(X,y) =
n∑

t=1

(ot,yt
+ Tyt−1,yt

)

yner = arg max
y

(
score(X,y))

)
,

(2)

where score(·) is the scoring function for a given output la-
bel sequence y = y1y2 · · · yn based on input X, yner is the
resulting label sequence, Wner is a model parameter.

Training

To train model parameters, we exploit a negative log-
likelihood objective as the loss function. We apply softmax
over all candidate output label sequences, thus the probabil-
ity of the crowd-annotated label sequence is computed by:

p(ȳ|X) =
exp

(
score(X, ȳ)

)
∑

y∈YX
exp

(
score(X,y)

) , (3)

where ȳ is the crowd-annotated label sequences and YX is
all candidate label sequence of input X.

Based on the above formula, the loss function of our base-
line model is:

loss(Θ,X, ȳ) = − log p(ȳ|X), (4)

where Θ is the set of all model parameters. We use standard
back-propagation method to minimize the loss function of
the baseline CRF model.
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Worker Adversarial

Adversarial learning has been an effective mechanism to re-
solve the problem of the input features between the training
and test examples having large divergences (Goodfellow et
al. 2014; Ganin et al. 2016). It has been successfully applied
on domain adaption (Gui et al. 2017), cross-lingual learn-
ing (Chen et al. 2016) and multi-task learning (Liu, Qiu, and
Huang 2017). All settings involve feature shifting between
the training and testing.

In this paper, our setting is different. We are using the
annotations from non-experts, which are noise and can in-
fluence the final performances if they are not properly pro-
cessed. Directly learning based on the resulting corpus may
adapt the neural feature extraction into the biased annota-
tions. In this work, we assume that individual workers have
their own guidelines in mind after short training. For exam-
ple, a perfect worker can annotate highly consistently with
an expert, while common crowdsourcing workers may be
confused and have different understandings on certain con-
texts. Based on the assumption, we make an adaption for the
original adversarial neural network to our setting.

Our adaption is very simple. Briefly speaking, the original
adversarial learning adds an additional discriminator to clas-
sify the type of source inputs, for example, the domain cate-
gory in the domain adaption setting, while we add a discrim-
inator to classify the annotation workers. Solely the features
from the input sentence is not enough for worker classifi-
cation. The annotation result of the worker is also required.
Thus the inputs of our discriminator are different. Here we
exploit both the source sentences and the crowd-annotated
NE labels as basic inputs for the worker discrimination.

In the following, we describe the proposed adversarial
learning module, including both the submodels and the train-
ing method. As shown by the left part of Figure 1, the
submodel consists of four parts: (1) a common Bi-LSTM
over input characters; (2) an additional Bi-LSTM to en-
code crowd-annotated NE label sequence; (3) a convolu-
tional neural network (CNN) to extract features for worker
discriminator; (4) output and prediction.

Common Bi-LSTM over Characters

To build the adversarial part, first we create a new bi-
directional LSTM, named by the common Bi-LSTM:

hcommon
1 hcommon

2 · · ·hcommon
n = Bi-LSTM(x1x2 · · ·xn). (5)

As shown in Figure 1, this Bi-LSTM is constructed over
the same input character representations of the private Bi-
LSTM, in order to extract worker independent features.

The resulting features of the common Bi-LSTM are used
for both NER and the worker discriminator, different with
the features of private Bi-LSTM which are used for NER
only. As shown in Figure 1, we concatenate the outputs of
the common and private Bi-LSTMs together, and then feed
the results into the feed-forward combination layer of the
NER part. Thus Formula 1 can be rewritten as:

hner
t = W(hcommon

t ⊕ hprivate
t ) + b, (6)

where W is wider than the original combination because the
newly-added hcommon

t .

Noticeably, although the resulting common features are
used for the worker discriminator, they actually have no ca-
pability to distinguish the workers. Because this part is ex-
ploited to maximize the loss of the worker discriminator, it
will be interpreted in the later training subsection. These fea-
tures are invariant among different workers, thus they can
have less noises for NER. This is the goal of adversarial
learning, and we hope the NER being able to find useful
features from these worker independent features.

Additional Bi-LSTM over Annotated NER Labels

In order to incorporate the annotated NE labels to predict the
exact worker, we build another bi-directional LSTM (named
by label Bi-LSTM) based on the crowd-annotated NE label
sequence. This Bi-LSTM is used for worker discriminator
only. During the decoding of the testing phase, we will never
have this Bi-LSTM, because the worker discriminator is no
longer required.

Assuming the crowd-annotated NE label sequence an-
notated by one worker is ȳ = ȳ1ȳ2 · · · ȳn, we exploit a
looking-up table EL to obtain the corresponding sequence
of their vector representations x′1x′2 · · ·x′n, similar to the
method that maps characters into their neural representa-
tions. Concretely, for one NE label ȳt (t ∈ [1, n]), we obtain
its neural vector by: x′t = look-up(ȳt,EL).

Next step we apply bi-directional LSTM over the se-
quence x′1x′2 · · ·x′n, which can be formalized as:

hlabel
1 hlabel

2 · · ·hlabel
n = Bi-LSTM(x′1x′2 · · ·x′n). (7)

The resulting feature sequence is concatenated with the out-
puts of the common Bi-LSTM, and further be used for
worker classification.

CNN

Following, we add a convolutional neural network (CNN)
module based on the concatenated outputs of the common
Bi-LSTM and the label Bi-LSTM, to produce the final fea-
tures for worker discriminator. A convolutional operator
with window size 5 is used, and then max pooling strategy
is applied over the convolution sequence to obtain the final
fixed-dimensional feature vector. The whole process can be
described by the following equations:

hworker
t = hcommon

t ⊕ hlabel
t

h̃worker
t = tanh(Wcnn[hworker

t−2 ,hworker
t−1 , · · · ,hworker

t+2 ])

hworker = max-pooling(h̃worker
1 h̃worker

2 · · · h̃worker
n )

(8)

where t ∈ [1, n] and Wcnn is one model parameter. We ex-
ploit zero vector to paddle the out-of-index vectors.

Output and Prediction

After obtaining the final feature vector for the worker dis-
criminator, we use it to compute the output vector, which
scores all the annotation workers. The score function is de-
fined by:

oworker = Wworkerhworker, (9)
where Wworker is one model parameter and the output di-
mension equals the number of total non-expert annotators.
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The prediction is to find the worker which is responsible for
this annotation.

Adversarial Training

The training objective with adversarial neural network is
different from the baseline model, as it includes the ex-
tra worker discriminator. Thus the new objective includes
two parts, one being the negative log-likelihood from NER
which is the same as the baseline, and the other being the
negative the log-likelihood from the worker discriminator.

In order to obtain the negative log-likelihood of the
worker discriminator, we use softmax to compute the prob-
ability of the actual worker z̄ as well, which is defined by:

p(z̄|X, ȳ) =
exp(oworker

z̄ )∑
z exp(o

worker
z )

, (10)

where z should enumerate all workers.
Based on the above definition of probability, our new ob-

jective is defined as follows:

R(Θ,Θ′,X, ȳ, z̄) = loss(Θ,X, ȳ)− loss(Θ,Θ′,X)

= − log p(ȳ|X) + log p(z̄|X, ȳ),
(11)

where Θ is the set of all model parameters related to NER,
and Θ′ is the set of the remaining parameters which are only
related to the worker discriminator, X, ȳ and z̄ are the in-
put sentence, the crowd-annotated NE labels and the cor-
responding annotator for this annotation, respectively. It is
worth noting that the parameters of the common Bi-LSTM
are included in the set of Θ by definition.

In particular, our goal is not to simply minimize the new
objective. Actually, we aim for a saddle point, finding the
parameters Θ and Θ′ satisfying the following conditions:

Θ̂ = arg min
Θ

R(Θ,Θ′,X, ȳ, z̄)

Θ̂′ = arg max
Θ′

R(Θ̂,Θ′,X, ȳ, z̄)
(12)

where the first equation aims to find one Θ that minimizes
our new objective R(·), and the second equation aims to find
one Θ′ maximizing the same objective.

Intuitively, the first equation of Formula 12 tries to min-
imize the NER loss, but at the same time maximize the
worker discriminator loss by the shared parameters of the
common Bi-LSTM. Thus the resulting features of common
Bi-LSTM actually attempt to hurt the worker discrimina-
tor, which makes these features worker independent since
they are unable to distinguish different workers. The second
equation tries to minimize the worker discriminator loss by
its own parameter Θ′.

We use the standard back-propagation method to train the
model parameters, the same as the baseline model. In order
to incorporate the term of the argmax part of Formula 12 ,
we follow the previous work of adversarial training (Ganin
et al. 2016; Chen et al. 2016; Liu, Qiu, and Huang 2017),
by introducing a gradient reverse layer between the com-
mon Bi-LSTM and the CNN module, whose forward does
nothing but the backward simply negates the gradients.

#Sent AvgLen Kappa
DL-PS 16,948 9.21 0.6033
UC-MT 2,337 34.97 0.7437
UC-UQ 2,300 7.69 0.7529

Table 1: Statistics of labeled datasets.

Experiments

Data Sets

With the purpose of obtaining evaluation datasets from
crowd annotators, we collect the sentences from two do-
mains: Dialog and E-commerce domain. We hire undergrad-
uate students to annotate the sentences. They are required to
identify the predefined types of entities in the sentences. To-
gether with the guideline document, the annotators are edu-
cated some tips in fifteen minutes and also provided with 20
exemplifying sentences.
Labeled Data: DL-PS. In Dialog domain (DL), we collect
raw sentences from a chatbot application. And then we ran-
domly select 20K sentences as our pool and hire 43 students
to annotate the sentences. We ask the annotators to label two
types of entities: Person-Name and Song-Name. The anno-
tators label the sentences independently. In particular, each
sentence is assigned to three annotators for this data. Al-
though the setting can be wasteful of labor, we can use the
resulting dataset to test several well-known baselines such
as majority voting.

After annotation, we remove some illegal sentences re-
ported by the annotators. Finally, we have 16,948 sentences
annotated by the students. Table 1 shows the information of
annotated data. The average Kappa value among the anno-
tators is 0.6033, indicating that the crowd annotators have
moderate agreement on identifying entities on this data.

In order to evaluate the system performances, we create
a set of corpus with gold annotations. Concretely, we ran-
domly select 1,000 sentences from the final dataset and let
two experts generate the gold annotations. Among them, we
use 300 sentences as the development set and the remain-
ing 700 as the test set. The rest sentences with only student
annotations are used as the training set.
Labeled data: EC-MT and EC-UQ. In E-commerce do-
main (EC), we collect raw sentences from two types of texts:
one is titles of merchandise entries (EC-MT) and another
is user queries (EC-UQ). The annotators label five types
of entities: Brand, Product, Model, Material, and Specifica-
tion. These five types of entities are very important for E-
commerce platform, for example building knowledge graph
of merchandises. Five students participate the annotations
for this domain since the number of sentences is small. We
use the similar strategy as DL-PS to annotate the sentences,
except that only two annotators are assigned for each sen-
tence, because we aim to test the system performances under
very small duplicated annotations.

Finally, we obtain 2,337 sentences for EC-MT and 2,300
for EC-UQ. Table 1 shows the information of annotated
results. Similarly, we produce the development and test
datasets for system evaluation, by randomly selecting 400
sentences and letting two experts to generate the groundtruth
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annotations. Among them, we use 100 sentences as the de-
velopment set and the remaining 300 as the test set. The rest
sentences with only crowdsourcing annotations are used as
the training set.
Unlabeled data. The vector representations of characters
are basic inputs of our baseline and proposed models, which
are obtained by the looking-up table EW . As introduced be-
fore, we can use pretrained embeddings from large-scale
raw corpus to initialize the table. In order to pretrain the
character embeddings, we use one large-scale unlabeled data
from the user-generated content in Internet. Totally, we ob-
tain a number of 5M sentences. Finally, we use the tool
word2vec1 to pretrain the character embeddings based on
the unlabeled dataset in our experiments.

Settings

For evaluation, we use the entity-level metrics of Precision
(P), Recall (R), and their F1 value in our experiments, treat-
ing one tagged entity as correct only when it matches the
gold entity exactly.

There are several hyper-parameters in the baseline LSTM-
CRF and our final models. We set them empirically by the
development performances. Concretely, we set the dimen-
sion size of the character embeddings by 100, the dimension
size of the NE label embeddings by 50, and the dimension
sizes of all the other hidden features by 200.

We exploit online training with a mini-batch size 128 to
learn model parameters. The max-epoch iteration is set by
200, and the best-epoch model is chosen according to the de-
velopment performances. We use RMSprop (Tieleman and
Hinton 2012) with a learning rate 10−3 to update model pa-
rameters, and use l2-regularization by a parameter 10−5. We
adopt the dropout technique to avoid overfitting by a drop
value of 0.2.

Comparison Systems

The proposed approach (henceforward referred to as AL-
Crowd) is compared with the following systems:

• CRF: We use the Crfsuite2 tool to train a model on the
crowdsourcing labeled data. As for the feature settings,
we use the supervised version of Zhao and Kit (2008).

• CRF-VT: We use the same settings of the CRF system,
except that the training data is the voted version, whose
groundtruths are produced by majority voting at the char-
acter level for each annotated sentence.

• CRF-MA: The CRF model proposed by Rodrigues,
Pereira, and Ribeiro (2014), which uses a prior distributa-
tion to model multiple crowdsourcing annotators. We use
the source code provided by the authors.

• LSTM-CRF: Our baseline system trained on the crowd-
sourcing labeled data.

• LSTM-CRF-VT: Our baseline system trained on the voted
corpus, which is the same as CRF-VT.

1https://code.google.com/archive/p/word2vec
2http://www.chokkan.org/software/crfsuite/

Model P R F1
CRF 89.48 70.38 78.79
CRF-VT 85.16 65.07 73.77
CRF-MA 72.83 90.79 80.82
LSTM-CRF 90.50 79.97 84.91
LSTM-CRF-VT 88.68 75.51 81.57
LSTM-Crowd 86.40 83.43 84.89
ALCrowd 89.56 82.70 85.99

Table 2: Main results on the DL-PS data.

Model Data: EC-MT
P R F1

CRF 75.12 66.67 70.64
LSTM-CRF 75.02 72.84 73.91

LSTM-Crowd 73.81 75.18 74.49
ALCrowd 76.33 74.00 75.15

Data: EC-UQ
CRF 65.45 55.33 59.96

LSTM-CRF 71.96 66.55 69.15
LSTM-Crowd 67.51 71.10 69.26

ALCrowd 74.72 68.60 71.53

Table 3: Main results on the EC-MT and EC-UQ datasets.

• LSTM-Crowd: The LSTM-CRF model with crowd anno-
tation learning proposed by Nguyen et al. (2017). We use
the source code provided by the authors.

The first three systems are based on the CRF model using
traditional handcrafted features, and the last three systems
are based on the neural LSTM-CRF model. Among them,
CRF-MA, LSTM-Crowd and our system with adversarial
learning (ALCrowd) are based on crowd annotation learning
that directly trains the model on the crowd-annotations. Five
systems, including CRF, CRF-MA, LSTM-CRF, LSTM-
Crowd, and ALCrowd, are trained on the original version of
labeled data, while CRF-VT and LSTM-CRF-VT are trained
on the voted version. Since CRF-VT, CRF-MA and LSTM-
CRF-VT all require ground-truth answers for each training
sentence, which are difficult to be produced with only two
annotations, we do not apply the three models on the two
EC datasets.

Main Results

In this section, we show the model performances of our
proposed crowdsourcing learning system (ALCrowd), and
meanwhile compare it with the other systems mentioned
above. Table 2 shows the experimental results on the DL-
PS datasets and Table 3 shows the experiment results on the
EC-MT and EC-UQ datasets, respectively.

The results of CRF and LSTM-CRF mean that the crowd
annotation is an alternative solution with low cost for la-
beling data that could be used for training a NER system
even there are some inconsistencies. Compared with CRF,
LSTM-CRF achieves much better performances on all the
three data, showing +6.12 F1 improvement on DL-PS, +4.51
on EC-MT, and +9.19 on EC-UQ. This indicates that LSTM-
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Figure 2: Comparisons by using different character embed-
dings, where the Y-axis shows the F1 values

CRF is a very strong baseline system, demonstrating the ef-
fectiveness of neural network.

Interestingly, when compared with CRF and LSTM-CRF,
CRF-VT and LSTM-CRF-VT trained on the voted version
perform worse in the DL-PS dataset. This trend is also men-
tioned in Nguyen et al. (2017). This fact shows that the ma-
jority voting method might be unsuitable for our task. There
are two possible reasons accounting for the observation. On
the one hand, simple character-level voting based on three
annotations for each sentence may be still not enough. In the
DL-PS dataset, even with only two predefined entity types,
one character can have nine NE labels. Thus the majority-
voting may be incapable of handling some cases. While the
cost by adding more annotations for each sentence would
be greatly increased. On the other hand, the lost informa-
tion produced by majority-voting may be important, at least
the ambiguous annotations denote that the input sentence is
difficult for NER. The normal CRF and LSTM-CRF mod-
els without discard any annotations can differentiate these
difficult contexts through learning.

Three crowd-annotation learning systems provide bet-
ter performances than their counterpart systems, (CRF-MA
VS CRF) and (LSTM-Crowd/ALCrowd VS LSTM-CRF).
Compared with the strong baseline LSTM-CRF, ALCrowd
shows its advantage with +1.08 F1 improvements on DL-PS,
+1.24 on EC-MT, and +2.38 on EC-UQ, respectively. This
indicates that adding the crowd-annotation learning is quite
useful for building NER systems. In addition, ALCrowd also
outperforms LSTM-Crowd on all the datasets consistently,
demonstrating the high effectiveness of ALCrowd in extract-
ing worker independent features. Among all the systems,
ALCrowd performs the best, and significantly better than
all the other models (the p-value is below 10−5 by using
t-test). The results indicate that with the help of adversarial
training, our system can learn a better feature representation
from crowd annotation.

Discussion

Impact of Character Embeddings. First, we investigate the
effect of the pretrained character embeddings in our pro-
posed crowdsourcing learning model. The comparison re-
sults are shown in Figure 2, where Random refers to the
random initialized character embeddings, and Pretrained
refers to the embeddings pretrained on the unlabeled data.
According to the results, we find that our model with the
pretrained embeddings significantly outperforms that using
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Figure 3: Case studies of different systems, where named
entities are illustrated by square brackets.

the random embeddings, demonstrating that the pretrained
embeddings successfully provide useful information.
Case Studies. Second, we present several case studies in or-
der to study the differences between our baseline and the
worker adversarial models. We conduct a closed test on the
training set, the results of which can be regarded as modifi-
cations of the training corpus, since there exist inconsistent
annotations for each training sentence among the different
workers. Figure 3 shows the two examples from the DL-PS
dataset, which compares the outputs of the baseline and our
final models, as well as the majority-voting strategy.

In the first case, none of the annotations get the cor-
rect NER result, but our proposed model can capture it.
The result of LSTM-CRF is the same as majority-voting.
In the second example, the output of majority-voting is the
worst, which can account for the reason why the same model
trained on the voted corpus performs so badly, as shown in
Table 2. The model of LSTM-CRF fails to recognize the
named entity “Xiexie” because of not trusting the second
annotation, treating it as one noise annotation. Our proposed
model is able to recognize it, because of its ability of extract-
ing worker independent features.

Conclusions

In this paper, we presented an approach to performing crowd
annotation learning based on the idea of adversarial training
for Chinese Named Entity Recognition (NER). In our ap-
proach, we use a common and private Bi-LSTMs for rep-
resenting annotator-generic and -specific information, and
learn a label Bi-LSTM from the crowd-annotated NE label
sequences. Finally, the proposed approach adopts a LSTM-
CRF model to perform tagging. In our experiments, we cre-
ate two data sets for Chinese NER tasks in the dialog and e-
commerce domains. The experimental results show that the
proposed approach outperforms strong baseline systems.
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