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Abstract

Although supervised learning requires a labeled dataset, ob-
taining labels from experts is generally expensive. For this
reason, crowdsourcing services are attracting attention in the
field of machine learning as a way to collect labels at rela-
tively low cost. However, the labels obtained by crowdsourc-
ing, i.e., from non-expert workers, are often noisy. A num-
ber of methods have thus been devised for inferring true la-
bels, and several methods have been proposed for learning
classifiers directly from crowdsourced labels, referred to as
learning from crowds. A more practical problem is learn-
ing from crowdsourced labeled data and unlabeled data, i.e.,
semi-supervised learning from crowds. This paper presents a
novel generative model of the labeling process in crowdsourc-
ing. It leverages unlabeled data effectively by introducing la-
tent features and a data distribution. Because the data distri-
bution can be complicated, we use a deep neural network for
the data distribution. Therefore, our model can be regarded as
a kind of deep generative model. The problems caused by the
intractability of latent variable posteriors is solved by intro-
ducing an inference model. The experiments show that it out-
performs four existing models, including a baseline model,
on the MNIST dataset with simulated workers and the Rot-
ten Tomatoes movie review dataset with Amazon Mechanical
Turk workers.

1 Introduction

Machine learning, especially supervised learning, tech-
niques have achieved excellent performance in many tasks.
However, supervised learning requires a labeled dataset, and
obtaining ground truth labels from experts is costly in terms
of money and time for the machine learning user and te-
dious for the expert. Hence, crowdsourcing services like
Amazon’s Mechanical Turk (AMT) are being used more and
more to obtain labels.

Although one can obtain labels at relatively low cost
by crowdsourcing, the labels collected from crowdsourcing
workers are usually noisy because they are not experts. Fur-
thermore, some workers are simply spammer who provide
random labels to easily earn money. Using these noisy labels
in supervised learning may result in an inaccurate classifier.

A straightforward way to solve this problem is repeated
labeling, i.e., obtaining multiple labels for each data point
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from multiple workers and inferring the true ones by using a
majority voting strategy. Although majority voting is widely
used, it is implicitly based on an unreasonable assumption
that all workers have the same ability for all data points. Sev-
eral methods have been proposed for accurately inferring the
true labels (Dawid and Skene 1979; Welinder et al. 2010;
Whitehill et al. 2009; Oyama et al. 2013). They take into
account the expertise of each worker, the difficulty of each
instance, and so on. Many of the previous studies for infer-
ring the true labels have proposed the use of a generative
model of the labeling process in which the true labels are in-
cluded as latent labels. In such models, the expertise of each
worker, the difficulty of each instance etc. are included as
latent variables or parameters. They also proposed estimat-
ing the true labels and the model parameters by using the
expectation-maximization (EM) algorithm.

One can obtain a classifier by using labels inferred as
described above, i.e., by first obtaining labels through re-
peated labeling and majority voting (or a more sophisti-
cated method) and then applying a general supervised learn-
ing method along with the inferred labels. However, after
the inferring the true labels, several types of additional in-
formation about each instance, e.g., the difficulty of it, are
lost. In a supervised learning scenario, the goal is not to in-
fer the true labels for training data but to obtain an accu-
rate classifier for future unknown data, and additional in-
formation from crowds may be useful for that goal as well
as for training. A number of studies have proposed meth-
ods for obtaining accurate classifiers from crowdsourced
labels, called learning from crowds (Raykar et al. 2010;
Kajino, Tsuboi, and Kashima 2012; Yan et al. 2010b; 2010a;
Bi et al. 2014; Rodrigues, Pereira, and Ribeiro 2013). Many
of these studies also have proposed using a generative
model, which includes the true labels as latent variables gen-
erated from the classifier. Like the above-mentioned meth-
ods for inferring the true labels, the parameters of these mod-
els are usually estimated using an EM algorithm. One can
obtain a classifier after estimating the parameters, including
the parameters of the distribution of true labels.

Although one can obtain labels at relatively low cost by
crowdsourcing, the amount of data that can be accessed is
becoming larger and larger, so it is not realistic to require
labels for all data. Practically, one may be faced with hav-
ing repeatedly labeled data from crowdsourcing and much
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more unlabeled data. This problem setting can be regarded
as a kind of semi-supervised learning, so we call it semi-
supervised learning from crowds. However, there have been
few studies on semi-supervised learning from crowds (Yan
et al. 2010a; Yi et al. 2012).

In this paper, we propose a novel generative model for
semi-supervised learning from crowds. Our model effec-
tively uses unlabeled data by introducing latent features
and the distribution of data. Unlike the model proposed by
Dawid and Skene (1979), each worker in our model is as-
sumed to label on the basis of not only true labels but also
latent features. This assumption is reasonable and makes
the labeling process model more flexible. Because the dis-
tribution of data can be complicated, we use a deep neural
network for representing the distribution of data. Hence our
model can be regarded as a kind of deep generative model.
To the best of our knowledge, although there have been a few
studies of deep-learning-based methods for inferring true la-
bels (Yin et al. 2017; Gaunt, Borsa, and Bachrach 2016),
our study is the first that focused on a deep-learning-based
method for learning from crowds.

The structure of the rest of this paper is as follows. In
Section 2, we describe our problem settings and notation.
We present our proposed model and the method for obtain-
ing classifiers in Section 3. In section 4, we describe related
work. Experimental results for an actual dataset and a sim-
ulated dataset are shown in Section 5. We summarize our
work and discuss future work in Section 6.

2 Semi-supervised Learning from Crowds

In this section we define the problem of semi-supervised
learning from crowds. Although we focus on a multiclass
classification problem in this paper, it is easy to extend it to
a regression problem.

We assume that there are N i.i.d data points
{x1, . . . ,xN}, where xi ∈ R

d, and each data point
has an unknown true label. We denote the true label of
xi as ti, which is a 1-of-K encoded K dimensional
vector. We also assume that the first Nc data points
Xc = {x1, . . . ,xNc} = {xi | i ∈ Λc} have crowd-
sourced labels and the other Nu = N − Nc data points
Xu = {xNc+1, . . . ,xN} = {xi | i ∈ Λu} do not. Let Tc
and Tu be the sets of true labels of Xc and Xu. Also we
assume that there are J workers and denote a noisy label
of xi given by worker j ∈ {1, . . . , J} as yij , which is also
1-of-K encoded. We denote the set of workers who give
labels to xi as Ji and the set of crowdsourced labels as Yc.

Our goal is to obtain an accurate classifier for predicting
t from new unknown data point x by using Xc,Xu, and Yc.

3 Model and Method

Our generative model of the labeling process in crowdsourc-
ing represents the true labels as latent variables as in pre-
vious studies. Unlike previous studies, each data point has
latent feature zi, and the distribution of data is modeled.
Although Welinder et al. proposed a generative model in-
troducing latent features (Welinder et al. 2010), it is for in-
ferring true labels and it does not use the feature vector of

data, i.e., x, or unlabeled data. By introducing latent features
and the distribution of data, we can take advantage of large
amounts of unlabeled data.

Our model does not explicitly have a classifier unlike
the models proposed in previous studies of learning from
crowds. Moreover, it is difficult to estimate the parameters
by using an EM algorithm because computing the posteriors
of the latent variables is intractable. We thus introduced an
inference model (Dayan et al. 1995) for t and z that is like a
variational autoencoder (VAE) (Kingma and Welling 2014;
Kingma et al. 2014) and estimate the parameters of both the
generative model and the inference model at the same time
by minimizing the negative unbiased estimator of the lower
bound of the marginal log-likelihood, the stochastic gradi-
ent variational Bayes (SGVB) estimator. After the parame-
ters have been estimated, the inference model can be used
for classifying t of unknown data x.

Proposed Generative Model

In the model proposed by Dawid and Skene (1979), which
is the most well-known model for inferring true labels and
which we call the DS (Dawid-Skene) model, each worker
is assumed to label only on the basis of the (unknown) true
label of the target data point and to make random mistakes.
This means that the labeling error rate does not depend on
the data in the DS model. However, in the real world, the
ease or difficulty of labeling can vary among data points.
For example, in an image labeling task, blurry images are
likely to be labelled incorrectly more often than sharp ones.
Furthermore, there may be data points that are more eas-
ily labeled as belonging to a specific incorrect class than
other data points belong to the same class. Therefore, we
assume that the labeling does not depend on only the true
label. This assumption is the same as one in several previous
studies (Yan et al. 2010b; Welinder et al. 2010; Rodrigues,
Pereira, and Ribeiro 2013). Further when a worker labels a
given data, in many case, he or she does not see data from
corner to corner but rather unconsciously extract prominent
visual features and assign a label on the basis of those fea-
tures. Hence, it is plausible that there are latent features for
each data point and that workers label data on the basis of
these latent features. These latent features may have infor-
mation related to the true label but they can also have other
information that does not depend on the true label. Further-
more, the assumption that a worker’s label strongly depends
on the true label is also reasonable. Hence, we explicitly di-
vide these latent features into the true label ti and other in-
formation zi ∈ R

dz (hereinafter, z is called latent features),
and assume that a worker’s label yij is generated from zi
and ti. This modeling makes parameter learning easier. In
the semi-supervised learning from crowds setting, there is a
large amount of unlabeled dataXu. To utilizeXu in learning,
we introduce the distribution of data (i.e., the distribution of
raw feature vectors). The true label ti and the latent features
zi can be regarded as a summary of xi. Hence, we assume
that the raw feature vector xi is also generated from ti and
zi.

From these assumptions, we can express our model as a
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factorization of the joint distribution:

p(Xc,Yc, Tc,Zc,Xu, Tu,Zu)

= p(Xc,Yc, Tc,Zc)p(Xu, Tu,Zu)

= p(Xc | Tc,Zc)p(Yc | Tc,Zc)p(Tc)p(Zc)

× p(Xu | Tu,Zu)p(Tu)p(Zu)

=
∏
i∈Λc

∏
j∈Ji

p(xi | ti, zi)p(yij | ti, zi)p(ti)p(zi)

×
∏
i∈Λu

p(xi | ti, zi)p(ti)p(zi),
(1)

where Zc and Zu are the sets of the latent features of Xc

andXu, and p(ti) and p(zi) are the prior distributions of true
label ti and latent features zi. We assume that ti is generated
from a categorical distribution and zi is generated from a
Normal distribution:

p(ti) = Cat(ti | π), (2)
p(zi) = N (zi | 0, I), (3)

where π = (1/K, . . . , 1/K)T.
Because the distribution of data points, x, can be com-

plex, we assume that p(xi | ti, zi) is a Normal distribution
and parameterize the model by using a deep neural network
like VAE (Kingma and Welling 2014):

p(xi | ti, zi) = N
(
xi | μθ(ti, zi), diag(σ

2
θ(ti, zi))

)
, (4)

where μθ(ti, zi) and σ2
θ(ti, zi) are two separate outputs

from the top layer in a deep neural network parameterized by
θ, so this deep neural network can be regarded as a decoder.
In the case of xi ∈ {0, 1}d, we assume that p(xi | ti, zi)
is a Bernoulli distribution and that its parameters are output
from the top layer in a deep neural network. Although this
parameterization makes our model flexible, computing pos-
teriors of z and t become intractable, so we cannot estimate
the parameters by using an EM algorithm. We will discuss
the solution to this problem later.

Finally, we assume that the labels of worker j are gener-
ated from the classifier of worker j: fαj

:

p(yij | ti, zi) = Cat(yij | fαj (ti, zi)), (5)

where fαj
is multi-class logistic regression and αj is the set

of its parameters. We use the concatenated vector of ti and
zi as the input vector of fαj

. The graphical model is shown
in Figure 1.

Optimization and Inference Model

Here we describe the labeling process in crowdsourcing and
then describe the method used for estimating the model pa-
rameters. Although our model is very flexible, there are two
main problems:

• Our model has two sets of latent variables, z and t. Be-
cause computing the posteriors of z and t are intractable,
it is impossible to estimate the parameters by using an EM
algorithm.

xiti

ziyij

θ

αj

N

|Ji|J

Figure 1: Graphical model of our generative model of label-
ing process.

• Although our goal is to obtain a classifier, our model does
not explicitly include a classifier, and since computing the
posteriors of z and t is intractable, we cannot obtain a
classifier by simply estimating the parameters of our gen-
erative model.

To overcome these problems, we introduce inference
model q(t, z | x) = q(t | x)q(z | t,x) and parameterize
it by using a deep neural network. We denote the parame-
ters of this deep neural network as φ. We can use q(t | x)
as a classifier after parameter estimation and also can regard
q(z | t,x) (or of course the network of this distribution) as
an encoder. We estimate the parameters of both the genera-
tive model and the inference model by minimizing the neg-
ative unbiased estimator of the lower bound of the marginal
log-likelihood by stochastic gradient descent (Kingma and
Welling 2014; Kingma et al. 2014).

The marginal log-likelihood can be decomposed as
log p(Xc,Yc,Xu) = log p(Xc,Yc) + log p(Xu), where
log p(Xc,Yc) is the marginal log-likelihood of the crowd-
sourced labeled data, and log p(Xu) is that of the unlabeled
data. We first consider the lower bound of log p(Xc,Yc):

log p(Xc,Yc) = log

∫ ∫
p(Xc,Yc, Tc,Zc)dtdz

≥ Eq(Tc,Zc|Xc)

[
log

p(Xc,Yc, Tc,Zc)

q(Tc,Zc | Xc)

]

=
∑
i∈Λc

∑
j∈Ji

Eq(ti,zi|xi)

[
log p(xi,yij | ti, zi)

]

−
∑
i∈Λc

KL[q(ti, zi | xi)||p(ti, zi)]
(6)

:= −C(Xc,Yc),

where the second term of Equation (6) is the KL diver-
gence of q(ti, zi | xi) from prior p(ti, zi). This KL term
can be calculated analytically. The first term cannot be com-
puted analytically, however, so we approximate it by using
the reparameterization trick of Kingma and Welling (2014)
to obtain an unbiased estimator of C(Xc,Yc), which is dif-
ferentiable w.r.t. φ (of course w.r.t. to αj and θ as well).
This bound is tight when q(t, z | x) is the true posterior
p(t, z | x).
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Similarly, we consider the lower bound of log p(Xu):

log p(Xu) = log

∫ ∫
p(Xu, Tu,Zu)dtdz

≥
∑
i∈Λu

Eq(ti,zi|xi)

[
log p(xi | ti, zi)

]

−
∑
i∈Λu

KL[q(ti, zi | xi)||p(ti, zi)]
(7)

:= −U(Xu).

We can also obtain a differentiable unbiased estimator of
U(Xu) by using the reparameterization trick.

We can estimate parameters θ,αj , and φ by minimizing
C(Xc,Yc) + U(Xu) using (mini-batch) stochastic gradient
descent. We can use q(t | x) as a classifier after parame-
ter estimation. However, the output units of the classifier are
exchangeable if without any constraint. Therefore, we define
the prior of t for crowdsouced data as p(ti) = Cat(ti | ȳi),
where ȳi =

1
|Ji|

∑
j∈Ji

yij . For unlabled data, we use uni-
form prior as described in Equation (2). Although the accu-
racy of the classifier can be improved by introducing classi-
fication loss for labeled data as is done in semi-supervised
learning with a VAE (Kingma et al. 2014), the true labels
are unknown with our settings. Hence, we introduce pseudo
classification loss:

−
∑
i∈Λc

log(q(ȳi | xi)). (8)

The result is our final objective function:

J = C(Xc,Yc) + U(Xu)− α ·
∑
i∈Λc

log(q(ȳi | xi)), (9)

where α is a weight hyper parameter between generative loss
C(Xc,Yc) + U(Xu) and pseudo discriminative (classifica-
tion) loss −

∑
i∈Λc

log(q(ȳi | xi)).

4 Related Work

Our work is based on two lines of research: crowdsourc-
ing, especially for inferring the true labels and learning from
crowds, and deep generative models, especially VAEs.

Dawid and Skene (1979) proposed a model for aggregat-
ing diagnoses from multiple doctors, and theirs was the first
work addressing the inference of true labels from multiple
noisy labels. They assumed that a noisy label from a worker
depends on the (unknown) true label and the worker’s abil-
ity. Whitehill et al. (2009) extended this DS model by explic-
itly modeling the difficulty of each instance. Oyama et al.
(2013) extended the DS model further by using self-reported
confidence scores from the workers.

Welinder et al. (2010) assumed that each data point has
latent features and that the workers observe the noisy ver-
sion of latent features. They proposed a model for inferring
the true labels. Their model and ours are similar in that they
introduce the use of latent features but different in that (i)
our model is for (semi-supervised) learning from crowds;
(ii) the latent features do not depend on the true label in
our model but do so in their model; (iii) the inputs to each

x

t z

(a)

x

t z

y

(b)

Figure 2: (a) M2 generative model and (b) proposed genera-
tive model.

worker’s classifier are the latent features and the true label
in our model but only the latent features are input in their
model. Therefore, our model reflects the assumption that a
worker’s label strongly depends on the true label and not
only on the true label. (iv) We model the distribution of the
raw feature vector x, which improves the quality of the la-
tent features; (v) Welinder et al. explicitly modeled the com-
petency of each worker while explicitly modeling the diffi-
culty of each instance and worker competency remains for
future work in our model.

Raykar et al. (2010) also extended the DS model for learn-
ing from crowds. In their model, true labels are generated
from the classifier, and this approach has been commonly
used in most studies on learning from crowds (Bi et al. 2014;
Kajino, Tsuboi, and Kashima 2012; Rodrigues, Pereira, and
Ribeiro 2013; Yan et al. 2010a; 2010b). On the other hand,
the true labels generates data x in our generative model. Yan
et al. (2010b) assumed that the workers error rates depend
on the data. Kajino, Tsuboi, and Kashima (2012) proposed
a model in which workers provide the labels on the basis of
their personal classifier (we call this the PC model). There
is a base classifier and the parameters of the personal clas-
sifiers are generated from a Normal distribution for which
the mean is the parameter of the base classifier. As in our
model, workers provide the labels in accordance with their
personal classifier. However, in the PC model, the input to
the personal classifiers is raw feature x while in our model
latent features z and (unknown) true label t are input.

The study by Yan et al. (2010a) was the first to address
semi-supervised learning from crowds. They used unlabeled
data for the prior distribution of the classifier parameters by
using a method based on the graph Laplacian. Although the
proposed prior distribution can be used in many other mod-
els for learning from crowds, the suitable similarity function
between data points depends on data and task and design-
ing it may be difficult. The advantage of our model is that
it leverages unlabeled data not only for learning a classifier
but also for estimating the latent features and data distribu-
tion while the Yan et al. method can leverage unlabeled data
only for learning a classifier.

Kingma and Welling (2014) proposed a stochastic infer-
ence and learning algorithm that scales to large datasets
and that works even for a generative model with intractable
posteriors of latent variables. In their algorithm, an infer-
ence model, which approximates the true posteriors, is in-
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troduced, and the parameters of the generative and inference
models are estimated simultaneously by minimizing a neg-
ative differentiable unbiased estimator of the lower bound.
They also proposed a VAE that is a generative model for
data. The joint distribution of the VAE is p(x, z) = p(x |
z)p(z), and the parameters of p(x | z) and the inference
model q(z | x) are computed from z and x by using deep
neural networks.

Kingma et al. (2014) extended the VAE for semi-
supervised learning (they called the original version VAE
M1 and the extended version VAE M2). Figure 2 shows sim-
plified diagrams of the M2 generative model and our pro-
posed generative model. Because p(z), p(t), and p(x | t, z)
in our model are the same as in the M2 model, our model can
be regarded as an extension of the M2 model to include the
labeling process. Several extensions of the VAE have been
studied (Maaløe et al. 2016; Sønderby et al. 2016) that can
be applied to our model.

A few studies investigated deep learning methods for in-
ferring true labels. Yin et al. (2017) proposed a VAE-based
model in which the distributions of noisy labels and true
labels p(t, y) are modeled like a VAE. They called their
model a Label-Aware Autoencoder (LAA). They extended
the basic version (LAA-B) by introducing object ambiguity
(LAA-O) and latent aspects as latent variables (LAA-L). Al-
though the LAA-L version is similar to our model, there are
several differences: (i) our model is for (semi-supervised)
learning from crowds; (ii) our model uses the raw feature x,
which improves the quality of the learned latent features (or
aspects).

Gaunt, Borsa, and Bachrach (2016) proposed a method
that uses two neural networks. The first one takes the fea-
tures of the worker and data point and predicts the probabil-
ity that the workers label is correct. The second one takes
the soft answers computed using the output of the first net-
work and infers the true label. The inputs to the first network
are computed using the outputs of the second network. The
advantage of this method is that true labels can be inferred
using completely different sets of labels for the workers and
data once the network is trained. The disadvantages are that
the true labels are required for training the networks and that
it is difficult to handle the case in which all workers do not
label all data.

5 Experiments

To assess the effectiveness of the proposed model, we com-
pared with four existing models, including a baseline model,
on the MNIST dataset with simulated workers and the Rot-
ten Tomatoes movie review dataset with multiple AMT
workers.

Datasets

MNIST. We used MNIST (LeCun et al. 1998) as a bench-
mark dataset. For semi-supervised learning from crowds,
we split the 50,000 training data points between a crowd-
sourced labeled set Xc, Nc = 100 and an unlabeled set
Xu, Nu = 49, 900. In MNIST, x ∈ [0, 1]784 and K = 10.
We tested using two types of labeling processes:

1. PC labeling
Each worker had a personal classifier (a logistic regres-
sion model) and used it for labeling. The classifier was
learned using 100 data points randomly sampled from Xu

(in this phase, we used Xu as the labeled dataset). Al-
though each worker had a personal classifier, this labeling
process is not exactly the same as in the PC model because
we did not assume that there is a base classifier.

2. DS labeling
Each worker had a conditional probability of produc-
ing a label given a (an unknown) true label. If the con-
ditional probabilities were randomly set, a non-realistic
probability can be generated. Hence, the personal clas-
sifiers (logistic regression models) were first introduced
and learned, and then the conditional probabilities were
calculated using the personal classifiers and a validation
set with true labels.

There were 20 workers, and all workers labeled ∀x ∈ Xc

in both the PC and the DS labeling. For evaluation, we used
10,000 test data points. .
Rotten Tomatoes. For sentiment polarity classification,
Pang and Lee (2005) introduced a sentence polarity dataset
consisting of 10,428 movie review snippets from Rotten
Tomatoes. Each snippet was labeled with its source reviews
label: positive or negative. Rodrigues, Pereira, and Ribeiro
(2013) provided a crowdsourced labeled version of this
dataset, for which 203 workers labeled 4,999 snippets on the
AMT platform, and there were 27,746 crowdsourced labels.
We used these 4,999 snippets as Xc. Rodrigues, Pereira,
and Ribeiro also provided feature vectors x ∈ R

1200 that
were obtained by applying latent semantic analysis to bag-
of-words feature vectors, and we used these feature vectors.
We split the remaining 5429 snippets into 5 folds, and com-
pared the accuracies using 5-fold cross-validation. Unlike
general cross-validation, we used folds for training as unla-
beled data.

Methods Compared

We compared our model with four other models.
Baseline Model

• Majority Voting Method
A majority voting model was used as the baseline model.
First the true labels were estimated by majority vot-
ing, and then a general supervised learning method was
trained using these estimated labels. We used a logistic
regression (MV-LR) model and a multi-layer perceptron
(MV-MLP) model.

Remaining Models

• Personal Classifier (PC)
This is the model proposed by Kajino, Tsuboi, and
Kashima (2012). We used the limited-memory BFGS
(Broyden-Fletcher-Goldfarb-Shanno) algorithm to opti-
mize the personal classifiers.

• Personal Classifier with Graph Prior (PC-GP)
This model combines the PC model with the graph prior
proposed by Yan et al. (2010a). We used the graph prior as
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Table 1: Experimental results for the MNIST dataset.

PC labeling DS labeling
Proposed 0.9646 0.8647

MV-LR 0.7162 0.6705
MV-MLP 0.7128 0.6547

PC 0.7756 0.6063
PC-GP 0.7754 0.6055

M2 0.9421 0.8445

the prior of the parameters of the base classifier. The sim-
ilarity between two data points was defined as the Gaus-
sian kernel: k(xi,xj) = exp(−γ‖xi − xj‖2).

• M2
This is the model proposed by Kingma et al. (2014). Be-
cause this model is not for learning from crowds and re-
quires true labels, we used ȳi =

1
|Ji|

∑
j∈Ji

yij as labels.

In all experiments, the architectures of our model and the
M2 model were almost the same. We used batch normaliza-
tion (Ioffe and Szegedy 2015) for all hidden layers of the
neural networks except the decoder for the Rotten Toma-
toes dataset. For estimation (optimization) of the parameters,
we used the Adam stochastic optimization method (Kingma
and Ba 2015). The mini-batch size was 200, and half the
data points in each mini-batch were labeled examples. For
the MNIST dataset, we defined the classifier, encoder, and
decoder as MLPs with one hidden layer with 600 units,
and dz was 100. We set the learning rate to 3e-4. Because
x ∈ [0, 1]784 for the MNIST dataset, we binarized the fea-
ture vectors and defined p(x | t, z) as a Bernoulli distri-
bution. For the Rotten Tomatoes dataset, we defined the en-
coder and the decoder as MLPs with two hidden layers and
the classifier as an MLP with one hidden layer with 500
units. dz was also 100. We set the learning rate to 1e-6. We
set the exponential decay rate for the 1st and 2nd moment to
default values. The architecture of the MV-MLP was same
as the architecture of the classifier of the proposed model
and the M2 model. We reparameterized α, which is a weight
hyper parameter between generative loss and pseudo clas-
sification loss of proposed model, as α = β · Nc+Nu

Nc
like

Maaløe et al. (2016). We set β = 1 on the MNIST dataset
and β = 10 on the Rotten Tomatoes dataset.

Results

Table 1 compares the accuracies by different models on the
MNIST dataset. The proposed model archived the best per-
formance in both the PC labeling and the DS labeling. As we
saw in the results of the PC and the PC-GP on the MNIST
dataset, the GP prior based on the Gaussian kernel (Yan et
al. 2010a) were not effective on the MNIST dataset. Appro-
priate similarity functions vary with data, and designing an
appropriate similarity function is difficult in general. On the
other hand, the proposed model and the M2 model, espe-
cially the proposed model, leveraged unlabeled data effec-
tively in all settings as shown in Table 1. Moreover, Figure 3
shows that the proposed model were outperforming the M2
model during 20000 epochs and converged faster than the
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Figure 3: Accuracy for the PC labeling evaluated every 100
epochs between the proposed model and the M2 model.

Table 2: Experimental results for the Rotten Tomatoes
dataset. The accuracies of the MVhard (this model is same
as the MV-LR), the MVsoft, the Raykar, the Rayker w/prior
and the MA-LR are taken from Rodrigues, Pereira, and
Ribeiro (2013).

Model Accuracy Model Accuracy
Proposed 0.7290 MVhard 0.7027
MV-MLP 0.6979 MVsoft 0.7165

PC 0.7261 Raykar 0.4867
PC-GP 0.7263 Raykar w/prior 0.7078

M2 0.7096 MA-LR 0.7240

M2 model. Hence, modeling the labeling process of work-
ers were also effective because the proposed model can be
regarded as the extension of the M2 model by modeling it,
as we have shown in Figure 2. In all models, especially PC
and PC-GP, the accuracies on the DS labeling were lower
than that on the PC labeling. This result is reasonable be-
cause the labeling process of the PC labeling is almost same
as that modeled by the PC. We also evaluated the proposed
model without using unlabeled data Xu in both PC labeling
and DS labeling settings. The accuracies were 0.7023 and
0.5563 respectively, which were lower than the accuracies
using unlabeled data. This shows that the proposed model
effectively used the unlabeled data to improve the accuracy.

Table 2 also compares the accuracies by different mod-
els on the Rotten Tomatoes dataset. We trained the DNN
based models five times using different random seeds and
evaluated them by calculating the mean accuracy. The accu-
racies of the MVhard (this model is same as the MV-LR),
the MVsoft, the Raykar, the Rayker w/prior and the MA-LR
are taken from Rodrigues, Pereira, and Ribeiro (2013). The
MVsoft model is a logistic regression model using ȳi as the
label. The Rayker model is the model proposed by Raykar
et al. (2010), and the Rayker w/prior model is the Raykar
model with the prior for the ability of workers. The MA-
LR model is the model proposed by Rodrigues, Pereira, and
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Figure 4: Estimated ‖α(t)‖1 and ‖α(z)‖1 of 45 DS workers,
45 PC workers and 10 spammers.

Ribeiro (2013). Proposed model also outperformed other
models on the Rotten Tomatoes dataset. The accuracy of the
proposed model without using unlabeled data was 0.7262
and this shows that the proposed model utilized the unla-
beled data. We used same dataset in this paper for compar-
ison but the size of the dataset was not very large and we
could not use many unlabeled data, which may resulted in
small difference in accuracy among different models. Hence,
we would like to make larger dataset for semi-supervised
learning from crowds and experiment in the future.

The parameters of each worker’s multi-class logistic re-
gression, αj , have the information about each worker. αj

consists of the weights for the true label and for latent fea-
tures. We denote them as α(t)

j ∈ R
K×K and α

(z)
j ∈ R

K×dz .
Because labels given by workers in DS labeling (DS work-
ers) depend on only the true labels, ‖α(z)‖1 of DS workers
is expected to be lower than that of PC workers. We trained
the proposed model on the MNIST dataset with 100 sim-
ulated workers consisting of 45 DS workers, 45 PC work-
ers, and 10 spammers who labeled randomly (we set Nc =
10, 000, Nu = 40, 000, and each worker labeled 2000 data
points), and then we compared ‖α(t)‖1 and ‖α(z)‖1 among
workers. The results are shown in Figure 4. DS workers, PC
workers, and spammers are respectively clustered. ‖α(z)‖1
of DS workers were lower than that of PC workers although
that of a few (three) DS workers were high. Both ‖α(t)‖1
and ‖α(z)‖1 of spammers were lower than that of DS work-
ers and PC workers because spammers’ labels depend nether
true labels nor latent features. This result indicates that the
proposed model can learn the characteristic of workers.

Diagonal elements of α(t), diag(α(t)), can be regarded as
the weights for the probability of labeling correctly. Hence,
diag(α(t)) of accurate workers is expected to be higher
than that of inaccurate workers. We trained the proposed
model on the Rotten Tomatoes dataset and then calculated
the tr(α(t)) of each worker. We also calculated the accu-
racy of each worker because Rodrigues, Pereira, and Ribeiro
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Figure 5: Estimated diag(α(t)) and the accuracy of each
worker who labels more than 100 data.

(2013) provided the true labels of 4,999 crowdsoureced la-
beled data, and then compared tr(α(t)) and the accuracy
among workers. Figure 5 shows the result for 73 workers
who labeled more than 100 data. The accuracy and tr(α(t))
showed positive correlation (the Pearson correlation coeffi-
cient = 0.704). This result also indicates that the proposed
model can learn the characteristic of workers. However, we
cannot completely predict the accuracy of the worker only
from diag(α(t)) because the worker’s labels depend not
only on the true labels but also on the latent features in the
proposed model. Therefore, our future work includes pre-
dicting the accuracy of workers accurately by taking into ac-
count the latent features.

6 Conclusion and Future Work

In this paper, we proposed a novel generative model for
semi-supervised learning from crowds. In our model, latent
features are introduced, and the workers’ labels depend on
the true labels and the latent features. We also introduced
the distribution of data for leveraging unlabeled data. Be-
cause the distribution of data can be complicated, we use a
deep neural network for representing the distribution of data.
Our model can thus be regarded as a kind of deep generative
model, especially as an extension of the M2 model (Kingma
et al. 2014). Our experimental results showed that the pro-
posed model outperformed other existing models including
a baseline model.

The Rotten Tomatoes dataset we used is not very large,
so future work includes using a larger dataset. While sev-
eral previous studies on inferring the true labels and learning
from crowds have explicitly modeled the difficulty of each
instance, we have not. Hence, future work also includes ex-
tending our model to include modeling the difficulty of each
instance. Although we used crowdsourced labeled data and
unlabeled data in semi-supervised learning from crowds, a
smaller amount of data labeled by experts may also be avail-
able in some cases. Therefore, we plan to extend our model
to handle this situation.
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