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Abstract

Crowdsourcing technique provides an efficient platform to
employ human skills in sentiment analysis, which is a difficult
task for automatic language models due to the large variations
in context, writing style, view point and so on. However, the
standard crowdsourcing aggregation models are incompetent
when the number of crowd labels per worker is not sufficient
to train parameters, or when it is not feasible to collect labels
for each sample in a large dataset. In this paper, we propose
a novel hybrid model to exploit both crowd and text data for
sentiment analysis, consisting of a generative crowdsourcing
aggregation model and a deep sentimental autoencoder. Com-
bination of these two sub-models is obtained based on a prob-
abilistic framework rather than a heuristic way. We introduce
a unified objective function to incorporate the objectives of
both sub-models, and derive an efficient optimization algo-
rithm to jointly solve the corresponding problem. Experimen-
tal results indicate that our model achieves superior results in
comparison with the state-of-the-art models, especially when
the crowd labels are scarce.

Introduction
Recently rapidly growing use of social media has provided
a huge source of public opinions about different topics. Ef-
ficient mining of these opinions is very valuable for vari-
ous industries and businesses. For instance, hotels, airlines,
lenders, banks and even politicians utilize these data to find
new costumers, target new products, analyze the personality
of clients and make better decisions. However, exploring the
sentiment of public opinions is a very challenging task for
automatic language models due to different variations in the
texts, such as diverse contexts, genders of authors, writing
styles and varied viewpoints.

Crowdsourcing platforms like Amazon Mechanical Turk1

provide an efficient tool to solve this type of the problems
by using the knowledge of crowd workers in different tasks
at low cost and time. Hence, the human skills in language
understanding can be used to interpret the sentiments of
texts with different variations. However, the collected la-
bels via crowdsourcing are often noisy and inaccurate, be-
cause crowd workers are usually inexpert in the assigned
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(a) MV-DeepAE (b) CrowdDeepAE

Figure 1: 2D visualization of CrowdDeepAE (ours) and MV-
DeepAE features on CrowdFlower dataset using PCA, when
only 20% of the crowd data is available.

task. In order to address this issue, it is common to col-
lect multiple crowd labels for each sample to increase the
credibility of the estimated true labels. Several studies have
proposed different models to aggregate the crowd labels
and estimate the potential true labels, which are also called
truths (Dawid and Skene 1979; Chen, Lin, and Zhou 2013;
Whitehill et al. 2009; Zhou et al. 2014; Ghasedi Dizaji,
Yang, and Huang 2017). But these crowdsourcing aggrega-
tion models become drastically incompetent, when the num-
ber of crowd labels per worker is not enough to train the
reliability parameters of workers, or a document dataset is
extremely large that collecting crowd labels for all samples
is not practically feasible. In addition, crowdsourcing aggre-
gation models do not utilize text data, and only use crowd
labels as the source of information (i.e. input data).

In this paper, we propose a new hybrid model for sen-
timent analysis, which utilizes both crowd labels and text
data. In particular, our proposed model, called Crowd-
DeepAE, consists of a generative aggregation model for
crowd labels and a deep autoencoder for text data. These two
sub-models are coupled in a probabilistic framework rather
than a heuristic approach. Using this probabilistic frame-
work, we introduce a unified objective function that incorpo-
rates the interests of both sub-models. We further derive an
efficient optimization algorithm to solve the corresponding
problem via an alternating approach, in which the parame-
ters are updated while the truths are assumed to be known,
and the truths are estimated when the parameters are fixed.

Therefore, CrowdDeepAE exploits the intelligence of
crowd workers and the underlying informations of text data
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to categorize sentiments more accurately. To do so, it em-
ploys a non-linear generative aggregation model to flexibly
aggregate noisy crowd labels, and leverages a deep denois-
ing autoencoder to learn a discriminative embedding for text
data. In particular, the deep autoencoder uses text data to find
similar patterns between text samples and prevent the crowd
aggregation model from overfitting, and the crowd aggrega-
tion model utilizes human language skills to assist the au-
toencoder in differentiating the samples with large (seman-
tic) variations.

Experimental results indicate that our model achieves su-
perior or competitive results compared to the state-of-the-
art models on two large text-crowd datasets. Specifically,
CrowdDeepAE outperforms the alternative models with sig-
nificant margins when the crowd labels are scarce. Figure 1
visualizes the discriminative ability of our model (Crowd-
DeepAE) compared to an alternative hybrid model (MV-
DeepAE), when only 20% of the crowd labels are avail-
able on CrowdFlower dataset. MV-DeepAE contains major-
ity voting aggregation method (MV) and our autoencoder
sub-model (DeepAE). The outcome demonstrates more dis-
criminative features using our model, indicating the impor-
tance of our joint learning framework. The contribution of
this paper can be summarized as follows:
• Proposing a hybrid crowd-text model for sentiment anal-

ysis, consisting of a generative crowd aggregation model
and a deep sentimental autoencoder, which are com-
bined based on a probabilistic framework;

• Defining a unified objective function for the hybrid
model, and deriving an efficient optimization algorithm
to solve the problem;

• Achieving superior or competitive results compared to
alternative models in our experiments, especially when
the crowd labels are scarce.

Related Works

There are several datasets in different applications, which
are labeled using crowdsourcing platforms like Amazon Me-
chanical Turk (Bachrach et al. 2012; Willett et al. 2013;
Sadoughi, Liu, and Busso 2014; Sadoughi and Busso 2017).
However, crowd labels are often noisy and unreliable, since
crowd workers mostly lack expertise in the assigned tasks.
To tackle this issue, each sample is usually labeled by mul-
tiple crowd workers, then these redundant crowd labels are
used to estimate the potential true labels (i.e. truths). There
are several studies, which proposed discriminative and gen-
erative models to efficiently aggregate crowd labels (She-
shadri and Lease 2013; Zheng et al. 2017). The discrimina-
tive aggregation models directly estimate the truths regard-
less of the crowd data distribution. Majority voting (MV) is
the simplest discriminative aggregation model, which con-
siders equal reliability for crowd workers and simply aver-
ages their votes. An intuitive and fast extension of majority
voting, called iterative weighted majority voting (IWMV),
is introduced in (Li and Yu 2014), which improves MV by
considering a reliability parameter for each worker. Tian and
Zhu also enhanced MV model by adopting the notion of
max-margin from support vector machines, and introduced

max-margin mjority voting (M3V) as a new discriminative
aggregation models (Tian and Zhu 2015).

In contrast to the discriminative aggregation models, the
generative models employ a probabilistic model to repre-
sent the distribution of noisy observations (crowd labels)
given the unknown variables (true labels) and model pa-
rameters. Dawid and Skene introduced a well known model
(DS), which considers a confusion matrix as a reliability pa-
rameter for each worker in (Dawid and Skene 1979). Fur-
thermore, several studies extended DS by assuming a prior
distribution for parameters, and used Bayesian approach to
compute their posterior distributions (Raykar et al. 2010;
Chen, Lin, and Zhou 2013). Another generative model,
called GLAD, considers a scalar parameter for the relia-
bility of each worker and the difficulty of each task, and
calculates the probability of truths using the logistic func-
tion of the parameters (Whitehill et al. 2009). Moreover,
GLAD is extended in (Welinder et al. 2010) such that a
vector instead of a scalar is considered as the parameter of
each worker and sample. In addition to a confusion matrix
as the reliability parameter of each worker, Zhou et al. as-
signed a confusion matrix as a difficulty parameter for each
sample, and proposed an aggregation model based on mini-
max conditional entropy of crowd labels (Zhou et al. 2014;
2015). Later, Tian and Zhu regularized a variant of DS with
the discriminative M3V model, and jointly learned the pa-
rameters of both sub-models (Tian and Zhu 2015). In or-
der to tackle the aggregation problem when crowd labels per
worker are scarce, Venanzi et al. proposed CommunityBCC,
which groups crowd workers into a few types (communities)
and learns similar reliability parameters for each community
(Venanzi et al. 2014).

The aforementioned aggregation models only use crowd
labels to estimate the truths, but do not benefit from text data.
There are a few studies on sentiment analysis using both
crowd and text data (Brew, Greene, and Cunningham 2010;
Musat Thisone, Ghasemi, and Faltings 2012; Simpson et al.
2015). In a recent work (Simpson et al. 2015), a Bayesian
model is employed to combine the two modalities by con-
sidering a confusion matrix for each word and worker. Our
proposed model also utilizes both crowd labels and text data;
however, it leverages the power of deep models to provide
a more discriminative language model, despite the shallow
BCCwords model in (Simpson et al. 2015). Our model is
also unique in the way that it combines a generative crowd
aggregation model with a deep sentimental autoencoder us-
ing a probabilistic framework. Moreover, experimental re-
sults show the superiority of our model compared to BCC-
words, especially when crowd labels are scarce.

Hybrid Sentiment Analysis Model

In this section, we first introduce our hybrid model by show-
ing its architecture and explaining the intuition behind it. We
then formulate its unified objective function based on a prob-
abilistic framework, and derive an optimization algorithm
for updating parameters and estimating truths.
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CrowdDeepAE Architecture

The proposed hybrid model, denoted by CrowdDeepAE,
consists of two main parts, a deep denoising autoencoder for
text data and an aggregation model for crowd labels. Figure
2 demonstrates the architecture of CrowdDeepAE, in which
the deep denoising autoencoder has two tasks, reconstruct-
ing the corrupted text data by noise and estimating the truths
from text data. The crowdsourcing aggregation model is also
supposed to estimate the truths from the noisy crowd la-
bels. Hence, the truths are obtained by contributions of both
crowd and text data.

Coupling the deep autoencoder and crowd aggregation
model in CrowdDeepAE has several advantages: 1) Crowd-
DeepAE exploits two sources of information to estimate
the truths more accurately, text data via the encoder path-
way of the autoencoder and crowd data through the ag-
gregation model; 2) The multi-layer autoencoder provides
powerful discriminative features for the text samples, which
have more capabilities than shallow models in learning the
non-linear embedding space of real-world text data; 3) The
reconstruction loss function in the denoising autoencoder
plays a role of data-dependent regularization term, indi-
rectly preventing the crowdsourcing aggregation model from
overfitting; 4) CrowdDeepAE is able to annotate the entire
dataset, even the samples without any crowd labels, since
the autoencoder can be efficiently trained using the super-
vision of limited number of crowd labels and the unsuper-
vised reconstruction task; 5) The aggregation model assists
training the autoencoder using the semantic knowledge of
crowd workers, which is very beneficial due to the large vari-
ations on text data; 6) The joint learning framework used for
CrowdDeepAE leads to more optimal results compared to
a naive non-joint learning approach, where the textual and
crowd sub-models are trained separately.

CrowdDeepAE Objective Function

Lets consider the crowdsourcing task includes N questions,
each with K possible options. The crowd and text data are
represented by X = {XCr,XTe}, respectively, and Y in-
dicates the unknown true labels. We provide a probabilis-
tic framework to combine our autoencoder and aggrega-
tion sub-models, and consequently define a unified objec-
tive function for our hybrid model. The general likelihood
function of CrowdDeepAE parameters (ψ) given the obser-
vations (XCr,XTe) is:

P (XCr,XTe|ψ) =
N∏
i=1

P (XCr
i ,XTe

i |ψ) (1)

=

N∏
i=1

K∑
c=1

P (XCr
i ,XTe

i , Yi = c|ψ)

=

N∏
i=1

K∑
c=1

P (XCr
i ,XTe

i |Yi = c,ψ)P (Yi = c|ψ)

=

N∏
i=1

K∑
c=1

P (XCr
i |Yi = c,θ)︸ ︷︷ ︸

Crowd Aggregation Model

P (Yi = c|XTe
i ,W)P (XTe

i |W)︸ ︷︷ ︸
Deep Autoencoder

,

Figure 2: CrowdDeepAE architecture, consisting of a deep
denoising autoencoder and a crowd aggregation model.

where i and c are the indices of questions and options, and
W and θ represent the parameters of autoencoder and crowd
aggregation sub-models, respectively. Note that the samples
are assumed independent and identically distributed (i.i.d),
and XCr

i and XTe
i are supposed to be conditionally inde-

pendent given the true labels.
We are now able to decompose the likelihood function

in Eq. (1) into the crowd aggregation and deep autoencoder
objectives. Considering that M crowd workers are hired in
the crowdsourcing task, our generative crowd aggregation
model has the following form.

P (XCr
i |Yi = c,θ) =

M∏
j=1

K∏
k=1

[ exp(θjck)∑
k′

exp(θjck′)

]1(xCr
ij =k)

=
M∏
j=1

K∏
k=1

[pijck]
1(xCr

ij =k) , (2)

where XCr
i = {xCr

i1 , ...,xCr
iM} is the set of crowd labels

for the i-th question. Also pijck shows the probability of a
crowd label such that the j-th worker selects the k-th op-
tion for the i-th question, when c is the true label. There-
fore, the joint probability of crowd data for each question
is based on the probability of each conditionally indepen-
dent crowd label. The aggregation model considers a confu-
sion matrix θj as the reliability parameter of each worker, in
which higher diagonal elements θjkk indicate more reliabil-
ity for the worker. Moreover, the exponential non-linearity
increases the flexibility of our crowdsourcing aggregation
model in dealing with the noisy crowd labels.

The direct optimization of log-likelihood function
L(ψ|X) = logP (XCr,XTe|ψ) is difficult, hence we use
Expectation-Maximization (EM) learning approach to solve
this problem. Following, we present Proposition 1 to allevi-
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ate the optimization problem, and provide its proof in Ap-
pendix A. For the sake of simpler notations, hereafter we
denote P (Yi = c|XTe

i ,W) = eic and P (XTe
i |W) = di

as the probability of encoder and decoder pathways, respec-
tively, and 1(xCr

ij = k) = 1ijk.
Proposition 1: Iteratively improving the following auxil-

iary function Q is sufficient to maximize the log-likelihood
function L(ψ|X).

Q(ψ|ψ(t)) =
∑
ijck

q
(t)
ic log

(
dieic[pijck]

1ijk

)
(3)

where q
(t)
ic =

∏
jk

eic[pijck]
1ijk

∑
c′

∏
jk

eic′ [pijc′k]1ijk

where q
(t)
ic shows the probability distribution of a truth.

Technically, it is the expectation of an unknown true label
with respect to the current parameters. Thus, we can itera-
tively improve the auxiliary function Q instead of the log-
likelihood function L.

In the Q function, the autoencoder and crowd workers
have similar effects in the objective function and calculat-
ing the truths. However, it is expected that the deep autoen-
coder has more accurate predictions than the inexpert crowd
workers due to the learned knowledge from all of ques-
tions. Hence, we control the influence of each factor in our
objective function using adjustable weights. Following, we
present the updated objective function, which can be derived
similar to proposition 1.

max
θ,W,1Tα=M+1,α≥0

∑
ijck

q
(t)
ic log

(
[di]

λd [eic]
α0 [pijck]

αj1ijk

)

where q
(t)
ic ∝

∏
jk

(eic)
α0(pijck)

αj1ijk (4)

where α and λd are the adjustable weights and the hyperpa-
rameter for the reconstruction loss of autoencoder, respec-
tively. Note that α can be seen as the gating parameters (see
Figure 2), which adjust the contribution of each worker and
also the autoencoder in estimating the truths. In other words,
α gives one more degree of freedom to our hybrid model
about the credibility of crowd workers and autoencoder. For
example, when there are several (non-expert) crowd workers
labeling a question with (very noisy) crowd labels, a high
weight for (discriminative) autoencoder can help estimating
the truth accurately. Note that we define the weight for prob-
ability of decoder pathway by λd, since di does not affect
the truths, and only regulates the autoencoder objective func-
tion. Furthermore, we add two more regularization penalty
terms for the parameters to avoid overfitting.

min
θ,W,1Tα=M+1,α≥0

−
∑
ijck

q
(t)
ic log

(
[di]

λd [eic]
α0 [pijck]

αj1ijk

)

+ λθ

∑
j

‖θj‖F + λα‖α‖2 , (5)

where λθ and λα are the hyperparameters of regularization
terms. Also adding two constraints for α (under min opera-

tion) is beneficial in our objective function for having com-
petitive learning and avoiding the trivial solution α = 0.

CrowdDeepAE Optimization Algorithm

In order to efficiently solve problem (5), we employ an
alternating learning strategy to update the parameters and
estimate the truths. In particular, each one of the param-
eters ψ = {θ,α,W} is updated while the other param-
eters and truths are fixed, and the probability of truths
Q = {q1, ...,qN} are estimated when the parameters are
assumed to be known.

Update θ: The problem for updating the parameters of
crowd aggregation model is reduced to:

min
θ

−
∑
ijck

q
(t)
ic log

(
[pijck]

αj1ijk

)
+ λθ

∑
j

‖θj‖F (6)

There are several first-order optimization algorithms that
can be used to solve this problem. Using the following gradi-
ent of the objective function wrt the parameter θ, we employ
L-BFGS algorithm to iteratively update the parameters.

∂Q

∂θjck
=

∑
i

q
(t)
ic αj [1ijk − pijck] (7)

Update α: The problem to update the gating parameters
boils down to:

min
1Tα=M+1,α≥0

λαα
Tα−αTβ (8)

where β0 =
∑

ic q
(t)
ic log eic, βj =

∑
ick q

(t)
ic 1ijk log pijck.

We efficiently solve this problem using the Lagrangian mul-
tiplier method as shown in Appendix B.

Update W: The problem to update the parameters of
deep denoising autoencoder has the following form.

min
W

−
∑
ic

q
(t)
ic logPW (Yi = c|XTe

i )− λd

α0
logPW (XTe

i ) ,

where the first term is the standard cross entropy loss func-
tion for classification problems. But for the second probabil-
ity term, we use a theorem in (Bengio et al. 2013) in order to
change the term to reconstruction loss function in the stan-
dard denoising autoencoder.

The general idea is that if the observation variable X is
corrupted into X̃ by a noise with conditional distribution
C(X̃|X), training a denoising autoencoder actually esti-
mates the reverse conditional distribution P (X|X̃). It has
been shown that a consistent estimator of P (X) can be esti-
mated using a Markov chain that alternates between sam-
pling from P (X|X̃) and sampling from C(X̃|X) as fol-
lows.

Xt ∼ PW (X|X̃t−1) X̃t ∼ C(X̃|Xt)

The theorem proves that PW (X|X̃) of conventional de-
noising autoencoder (Vincent et al. 2008; Bengio et al. 2013;
Ghasedi Dizaji et al. 2017) is a consistent estimator of the
true conditional distribution. Also as the number of sam-
ples N → ∞, the asymptotic distribution of the generated
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Algorithm 1: CrowdDeepAE Algorithm
Initialize qi by majority voting ∀i ∈ {1, ..., N}
while not converged do

Solve problem (6) to update θ
Solve problem (8) to update α
Solve problem (9) to update W
qic ∝ ∏

jk

(eic)
α0(pijck)

αj1ijk

end

samples by the denoising autoencoder converges to original
data-generating distribution. Hence, we reformulate the ob-
jective function of the text model as follows:

min
W

−
∑
ic

q
(t)
ic logPW (Yi = c|XTe

i )− λd

α0
logPW (XTe

i |X̃D
i ) ,

(9)

where X̃D
i is a sample corrupted by a random noise. Now

it is clear how we can use the denoising autoencoder as our
text-based sub-model.

Interestingly, our learning approach does not have mem-
ory exhaustion problems when handling very large datasets.
In order to learn the reliability parameters θ for large number
of crowd workers, we can split the crowd data into several
mini-batches, each one only including the crowd labels of a
few workers. Dealing with a large set of text samples, we are
able to distribute the text samples into a set of mini-batches
and train the autoencoder parameters with stochastic opti-
mization algorithms. Therefore, the computation and space
complexities can be managed using stochastic and parallel
learning approaches.

Algorithm 1 shows the CrowdDeepAE algorithm, in
which the truths are first initialized by majority voting. It
then alternates between updating the model parameters and
estimating the truths until convergence. It is worth mention-
ing that we compute the truths using the clean text samples
in E-step. But the classification loss function with noisy text
inputs in Eq. (9) has the regularization effect in training the
parameters W, and results in to the more robust and gener-
alized autoencoder model.

Experiments and Discussions

In this section, we first evaluate the performance of our hy-
brid model in the crowd aggregation task, and then examine
the quality of the learned language models. In order to com-
pare the proposed model with the state-of-the-art aggrega-
tion models, we use two large-scale crowdsourcing datasets,
which have text data along with crowd labels for sentiment
analysis.

Datasets: CrowdFlower (CF) dataset was a part of the
2013 Crowdsourcing at Scale shared task challenge, col-
lected by CrowdFlower2 as a rich source for the senti-
ment analysis of tweets about the weather. The dataset in-
cludes 569,375 crowd labels for 98,980 tweets. But the
gold-standard (true) labels are only provided for 300 tweets,

2www.crowdflower.com

which correspond to 1720 crowd labels collected from 461
workers. In the crowd task, workers are requested to label
the sentiment of tweets related to weather using the follow-
ing options, negative (0), neutral (1), positive (2) and not
related to weather (4). The crowd workers are also able to
skip the questions by the can not tell (5) option.

Sentiment Polarity (SP) dataset includes the sentiment
analysis of crowd workers about the movie reviews across
two categories, “fresh” (positive) and “rotten” (negative).
The dataset consists of 5,000 sentences from the movie re-
views in RottenTomatoes website3, which is extracted by
(Pang and Lee 2004). A task requester hired 203 crowd
workers to label the dataset, resulting in 27,747 crowd la-
bels totally. The gold-standard labels for all the questions
are available in SP dataset.

Implementation details: For both CF and SP datasets,
we first use the stemming approach to parse the texts
(Porter 1980), then remove the common English stop words
and finally extract the top 1000 words according to the
term frequency-inverse document frequency (tf-idf) score
(Baeza-Yates, Ribeiro-Neto, and others 1999).

For the deep autoencoder, we consider three fully con-
nected layers for both encoder and decoder pathways with
512, 256, and 128 neurons as the feature maps, and then add
a softmax layer on top of the encoder pathway. The leaky
rectified activation (leaky RELU) is used as the activation
function for the autoencoder layers, except the reconstruc-
tion layer at the end of decoder pathway, which has rectified
activation (RELU) to reconstruct text samples. Moreover,
we set the learning rate to 10−4 and adopt Adam (Kinga and
Adam 2015) as our optimization method. The weights of all
layers are also initialized by the Xavier or GlorotUniform
initialization approach (Glorot and Bengio 2010).

Since the crowdsourcing task is an unsupervised prob-
lem, we did not use any true labels for setting the hyper-
parameters {λθ, λα, λd} and dropout noise value. We use
a trick in (Tian and Zhu 2015), that employs the non-
related likelihood for selecting the hyper-parameters. In par-
ticular, we utilize the likelihood function p(XCr|Y,θ) to
choose λα, λd and dropout from λset

α = {0.01, 0.1, 1},
λset
d = {0.01, 0.1, 1} and dropoutset = {0.1, 0.2, 0.3},

and adopt p(Y|XTe,W) as a criterion to choose λθ from
λset
θ = {0.01, 0.1, 1}. Thus using this approach, we make

sure to select the hyper-parameters without any knowledge
from the true labels.

Evaluation of Aggregation Models

To evaluate the performance of our model, we run several
experiments using CF and SP datasets to estimate the truths
using crowd labels and text data. For the sake of compari-
son, we use the following alternative models and compari-
son metrics.

Alternative models: We compare our model, Crowd-
DeepAE, with several baseline methods, including major-
ity voting (MV), iterative weighted majority voting (IWMV)
(Li and Yu 2014), vote distribution (VD), Dawid and Skene
model (DS) (Dawid and Skene 1979), Independent Bayesian

3www.rottentomatoes.com
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(a) CrowdFlower (CF) (b) SentimentPolarity (CF)

Figure 3: Accuracy of crowdsourcing aggregation models on CrowdFlower (CF) and SentimentPolarity (SP) datasets, when
increasing the number of crowd labels.

CF (20% labels) SP (20% labels)
Model Accuracy Ave. recall NLPD AUC Accuracy Ave. recall NLPD AUC

C
ro

w
d

MV 0.625 0.550 1.392 0.725 0.710 0.710 1.192 0.704
IWMV 0.630 0.562 1.368 0.735 0.710 0.710 1.167 0.715

VD 0.650 0.585 1.252 0.745 0.710 0.710 1.112 0.728
DS 0.610 0.488 1.285 0.681 0.500 0.500 0.695 0.500

IBCC 0.688 0.545 0.972 0.822 0.740 0.740 0.516 0.835
CBCC 0.635 0.532 1.052 0.800 0.726 0.726 0.540 0.818

Entropy 0.688 0.545 1.014 0.818 0.745 0.745 0.508 0.842

C
ro

w
d-

Te
xt MV-BW 0.665 0.602 2.133 0.749 0.722 0.722 0.648 0.784

MV-DeepAE 0.682 0.611 1.372 0.792 0.738 0.738 0.615 0.800
BCCwords 0.715 0.578 0.918 0.830 0.750 0.750 0.516 0.840

CrowdDeepAE 0.790 0.642 0.889 0.876 0.816 0.816 0.500 0.875

Table 1: Comparison of crowdsourcing aggregation models on CrowdFlower (CF) and SentimentPolarity (SP) datasets, When
20% of crowd labels are available. The comparison metrics are accuracy, ave. recall, AUC (the higher the better), and NLPD
(the lower the better).

Classifier Combination model (IBCC) (Simpson et al. 2013),
Community-Based Bayesian Classifier Combination model
(CBCC) (Venanzi et al. 2014), multi-class minimax entropy
model (Entropy) (Zhou et al. 2014), combination of major-
ity voting aggregation model and bag-of-words text classi-
fier (MV-BW), combination of majority voting aggregation
model and a deep sentimental autoencoder similar to our au-
toencoder (MV-DeepAE), and Bayesian classifier combina-
tion with words model (BCCwords) (Simpson et al. 2015).

It should be noted that VD can be considered as a prob-
abilistic version of MV, since it computes the probability
of each option, while assuming equal reliability for all the
workers. Moreover, the MV-BW model trains a classical bag-
of-words classifier for text data using the target label in-
duced by majority voting aggregation model. Similarly, MV-
DeepAE uses the predicted labels of majority voting aggre-
gation model to train the deep autoencoder model for text
data. The results of alternative models are reported from ref-
erence papers, except MV-DeepAE that is implemented by
us with the similar autoencoder network to CrowdDeepAE.

Comparison metrics: Following (Simpson et al. 2015),
we measure the performance of models using accuracy, av-
erage recall, negative log-probability density (NLPD) (Ve-
nanzi et al. 2014), and area under curve (AUC) (Simpson et

al. 2013). For CF dataset, we use mean AUC over pair of
classes as shown in (Hand and Till 2001).

Performance comparison: In order to examine the effec-
tiveness of the aforementioned aggregation models, we run
several experiments with different subsets (number of crowd
labels) of CF and SP datasets. Following (Simpson et al.
2013), we estimate the truths using the aggregation models
when only 2% randomly-chosen crowd labels are available.
Then, we increase the number of crowd labels by adding an
extra 2% randomly-chosen crowd labels, and rerun all the
models. This process is repeated until all of the crowd labels
are used for training.

Figure 3 shows the accuracy of aggregation models on
both CF and SP datasets. As it is shown, CrowdDeepAE
consistently outperforms the other models with significant
margins, especially when a small number of crowd labels
are available. Interestingly in CF dataset, our model only re-
quires 16% of the crowd labels to have a better accuracy than
the all of other models, which are using 30% of the crowd
labels. CrowdDeepAE also achieves a higher accuracy with
8% of the crowd labels in CF dataset versus MV model
with 30% of the crowd labels. Furthermore, CrowdDeepAE
consistently improves the performance of MV-DeepAE, and
consequently confirms the importance of our joint learning
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CF (all labels) SP (all labels)
Model Accuracy Ave. recall NLPD AUC Accuracy Ave. recall NLPD AUC

C
ro

w
d

MV 0.840 0.764 0.921 0.852 0.852 0.852 0.797 0.885
IWMV 0.860 0.764 0.912 0.041 0.885 0.885 0.752 0.891

VD 0.883 0.779 0.458 0.942 0.887 0.887 0.338 0.947
DS 0.830 0.745 0.459 0.897 0.914 0.914 0.340 0.957

IBCC 0.860 0.763 0.437 0.935 0.915 0.915 0.374 0.957
CBCC 0.886 0.746 0.526 0.942 0.915 0.915 0.383 0.957

Entropy 0.886 0.746 0.551 0.938 0.914 0.914 0.391 0.957

C
ro

w
d-

Te
xt MV-BW 0.867 0.764 0.921 0.859 0.885 0.885 0.797 0.891

MV-DeepAE 0.880 0.768 0.571 0.922 0.885 0.885 0.752 0.891
BCCwords 0.890 0.807 0.591 0.877 0.915 0.915 0.389 0.957

CrowdDeepAE 0.912 0.825 0.479 0.948 0.915 0.915 0.389 0.957

Table 2: Comparison of crowdsourcing aggregation models on CrowdFlower (CF) and SentimentPolarity (SP) datasets, When
all crowd labels are available. The comparison metrics are accuracy, ave. recall, AUC (the higher the better), and NLPD (the
lower the better).

(a) Pos-docStatistic (b) Neg-docStatistic (c) Pos-CrowdDeepAE (d) Neg-CrowdDeepAE

Figure 4: Word clouds of the positive (Pos) and negative (Neg) sentiments in SP dataset. The extracted word clouds using the
statistics of documents (docStatistic) and our language model (CrowdDeepAE) are shown in the left and right, respectively. The
colors are only for legibility.

framework and our crowd aggregation sub-model. Note that
we only show a limited portion of the results (approximately
150,000 and 10,000 crowd labels in CF and SP datasets) in
Figure 3 for the sake of a clear visualization.

Furthermore, Table 1 and 2 report the mentioned com-
parison metrics for the aggregation models on CF and SP
datasets, when 20% and 100% of crowd labels are available,
respectively. We divide the models in the tables into two
groups of single and hybrid models, where the first ones only
employ crowd labels to estimate the truths, and the second
ones utilize both crowd labels and text data for the prediction
task. Using only 20% of crowd labels, approximately 70% of
the text samples have at least one crowd label. In this case,
using text data is more crucial, since enough crowd labels
are not available for training the crowd parameters. The hy-
brid crowd-text models have relatively better performances
than the crowd models, because the hybrid models are able
to employ language model to classify the samples with no
crowd labels. But the crowd models suffer from insufficient
crowd labels for training, and assign a default category for
the unlabeled samples based on their prior distribution. Our
proposed model, CrowdDeepAE, benefits from the deep au-
toencoder trained by a small subset of crowd data, and is able
to efficiently label the samples with no crowd labels. When
only 20% of crowd labels are available, our model outper-
forms the alternative models on both SP and CF datasets
according to all metrics. In addition, CrowdDeepAE still
achieves superior or competitive results in comparison with
the state-of-the-art models on both datasets using all crowd

labels. It indicates that CrowdDeepAE leverages the power-
ful deep language model along with the efficient crowd ag-
gregation model to provide accurate predictions using crowd
and text data.

Evaluation of Language Models

In order to visualize the learned language model in Crowd-
DeepAE, we show the word clouds for both CF and SP
datasets. In particular, the word cloud represents the impor-
tance (probability) of each word in a document with its font
size. Using this visual representation, a viewer can quickly
identify the dominant words in a document using their rel-
ative sizes. For each word in the datasets, we generate an
auxiliary variable by setting the corresponding element in
XTe

i equal to 1 and the remaining ones to zero, and then
compute the probability of the word for every class. Fig-
ure 4 demonstrates the word clouds of CrowdDeepAE in CF
dataset for the positive and negative classes. We also show
the word cloud of CF dataset using the probability (fre-
quency) of each word in every sentiment class. The world
clouds extracted from the documents statistic (docStatis-
tic) mostly assign greater importance to the highly repeated
words like “movie”, “film”, and “stori”, which do not differ-
entiate the two classes. However, the word clouds of Crowd-
DeepAE discriminantly represent the positive sentiments us-
ing the words with roots like “refresh”, “deft”, “delight” and
“gentl”; and the negative class with the words like “lose”,
“hasn”, “tedious”, and “unfunni”. The word clouds for CF
dataset are shown in Appendix C.
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Conclusion

In this paper, we proposed a new crowdsourcing aggrega-
tion model that is augmented by a deep sentimental autoen-
coder. The crowd aggregation and autoencoder sub-models
are combined in a probabilistic framework rather than a
heuristic way. We introduced a unified objective function,
and then derived an efficient optimization algorithm to al-
ternatingly solve the corresponding problem. Experimental
results showed that our model outperforms the alternative
models, especially when the crowd labels are scarce. Al-
though the proposed model was applied only in sentiment
analysis, it can be used as the general hybrid model for dif-
ferent applications in future works.
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