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Abstract

We study large-scale machine learning problems in changing
environments where a small part of the dataset is modified,
and the effect of the data modification must be monitored in
order to know how much the modification changes the op-
timal model. When the entire dataset is large, even if the
amount of the data modification is fairly small, the compu-
tational cost for re-training the model would be prohibitively
large. In this paper, we propose a novel method, called the
optimal solution bounding (OSB), for monitoring such a data
modification effect on the optimal model by efficiently eval-
uating (without actually re-training) it. The proposed method
provides bounds on the unknown optimal model with the cost
proportional only to the size of the data modification.

1 Introduction

1.1 Problem Overview

In this paper we study the problem of training a classifier
such as support vector machine (SVM) with a large-scale
dataset. When a trained classifier is used in a changing envi-
ronment where small part of the dataset is constantly mod-
ified, we need to update the classifier accordingly in or-
der to incorporate the effect of the data modification. How-
ever, when the entire dataset is large, even if the amount of
the data modification is fairly small, the computational cost
of re-training the classifier, e.g. by an incremental learning
method, would be prohibitively large.

In this paper, we propose a novel method for efficiently
evaluating the effect of the data modification on the classi-
fier without actually re-training it. In this paper, for a class
of problems training binary classifiers such as SVM, we pro-
pose a novel method for efficiently evaluating the effect of
the data modification on the optimal model (e.g. classifier)
without actually re-training it. The proposed method pro-
vides bounds on the new classifier with the cost propor-
tional only to the size of the data modification. This com-
putational advantage is particularly beneficial when the size
of the data modification is much smaller than the size of the
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entire dataset. The bounds obtained by the proposed method
can be used for various tasks in classification problems.

Concretely, consider a linear binary classification problem
with n instances and d features, and write the data matrix as
X ∈ R

n×d. Denoting the set of modified elements in X as
M, we are particularly interested in the situation in which
only a small part of X is modified, i.e., |M| is much smaller
than nd. Let w∗old ∈ R

d and w∗new ∈ R
d be the lin-

ear model parameters of the old and the new classifiers, re-
spectively. The main contribution in this paper is to develop
a method called optimal solution bounding (OSB) method,
which can efficiently compute a lower bound L[w∗new

j ] and
an upper bound U [w∗new

j ] of unknown w∗new
j such that

L[w∗new
j ] ≤ w∗new

j ≤ U [w∗new
j ] for each j ∈ [d] (1)

rather than computing exact w∗new, in the cost proportional
only to the number of modified elements |M|. This is much
smaller than the cost of computing exact w∗new

j , which re-
quires at least O(nd) time since we need to go through the
entire data matrix X at least once.

Figure 1 illustrates the motivation of this study as well as
three scenarios of data modifications considered in this pa-
per. Let us consider a database whose values are frequently
updated by users, for example, a database for evaluating
movies by users (e.g., MovieLens dataset (Harper and Kon-
stan 2015)). Let us regard users as instances, movies as fea-
tures, and the values in X as evaluations for movies by users.
In the figure, scenario (a) illustrates a situation in which
users newly evaluated movies, i.e., the values in X are mod-
ified (spot modifications). Scenario (b) illustrates a situation
in which a user joined the service, i.e., the values in the row
in X representing the user are modified (instance modifi-
cation). Scenario (c) illustrates a situation in which a new
movie is released, i.e., the values in the column representing
the movie are modified (feature modification).

In these scenarios, it is impractical to update the classi-
fier every time there is a modification in X . Therefore, it is
important to identify the degree to which the data modifica-
tion can change the classifier without actually re-training it.
Figure 2 illustrates the problem setup and the difference be-
tween conventional incremental learning approach and the
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Figure 1: Schematic illustration of the three types of data
modifications considered here. When a small part of the data
matrix X is modified, we need to quickly evaluate the ef-
fect of the data modification on the classifier. The proposed
method can compute a lower bound and an upper bound of
the new optimal solution parameter w∗new

j with the cost pro-
portional only to the number of modified elements.

proposed OSB approach.
We also discuss an approach for tightening the bounds

in (1) with a slight increase in computational cost (§4). For
example, when M = {{(i, j′)}ni=1}, i.e., the j′th column
of X is modified (scenario (c) in Figure 1), we conjecture
that the j′th parameter of the optimization problem ((2) in
§2.1) would change significantly. For such a case, we con-
sider solving the optimization problem only for the j′th vari-
able, i.e., we optimize it partially, to obtain a tighter bound.

1.2 Related Works and Our Contributions

In many practical machine learning tasks, we often need
to solve multiple related optimization problems. Incremen-
tal learning methods have been developed for such cases
(Laskov et al. 2006; Tsai, Lin, and Lin 2014). A general
popular approach in incremental learning is the warm-start,
where the optimal solution of a related problem is used as
an initial starting point of the optimization problem (De-
Coste and Wagstaff 2000; Tsai, Lin, and Lin 2014). In the
data modification scenarios considered herein, we can use
the old parameters w∗old as an initial starting point of the
optimization problem in order to obtain the new parame-
ters w∗new. Unfortunately, however, even when one uses the
warm-start approach, the computational cost of re-training
SVM-like classifier is at least O(nd) because one needs
to go through the entire data matrix X at least once for
checking the optimality of the new solution. For SVM or
several variants of SVMs, specific incremental learning al-
gorithms are proposed (Cauwenberghs and Poggio 2001;
Karasuyama and Takeuchi 2010; Zhu et al. 2012; Chitrakar
and Huang 2014; Gu et al. 2015a; 2015b; Gâlmeanu, Sasu,

������������	�	
���� ����������������	�	
����

�����	�����	��������	�	
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Figure 2: Schematic illustration of the problem setup and
the difference between the conventional incremental learn-
ing method and the proposed OSB method for a simple
linear binary classification example. (a) Assume that we
know the optimal classification boundary trained from the
old training set. (b) Then, suppose that a part of the training
set is modified. (c) In the conventional incremental learn-
ing method, the classifier is completely re-trained using the
new training set, which requires a computational cost of at
least O(nd) (i.e., the total size of the training data). (d) The
proposed OSB method computes the bounds of the classi-
fication boundary with a much smaller computational cost
that depends only on the number of modified elementsM.

and Andonie 2016), but their computational cost is still de-
pends at least on O(nd).

The efficiency of the proposed method can be achieved
by computing only intervals of the optimal solutions as in
(1), rather than computing the exact optimal solution, as de-
scribed in Figure 2. The main technical contribution in this
paper is to develop a novel algorithm for computing bounds
of the new optimal solution after data modification by em-
ploying a technique in convex analysis (El Ghaoui, Vial-
lon, and Rabbani 2012; Ogawa, Suzuki, and Takeuchi 2013;
Ndiaye et al. 2015; Shibagaki et al. 2015; 2016; Takada et
al. 2016; Nakagawa et al. 2016).

The proposed method is especially useful for monitoring
the model in changing environment. As in the movie evalua-
tion example in Figure 1, when a small part of the database is
gradually changing, it is impractical to update the classifier
each time. In such a case, it is reasonable to update the clas-
sifier only when the current one is fairly away from the opti-
mality and not useful anymore. The proposed OSB method
is useful for judging when we should update the classifier.
By using the method, we compute the bounds of the opti-
mal solution for checking the goodness of the current clas-
sifier, and update it only when needed. In experiment sec-
tion §5.1, we illustrate the usefulness of the proposed OSB
method. In some specific tasks, efficient monitoring meth-
ods have been studied (Gabel, Keren, and Schuster 2015;
Okumura, Suzuki, and Takeuchi 2015), but none of these
existing methods are not as general as ours.

Although we mainly discuss binary classification prob-
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lems in this paper, the proposed method can be easily ex-
tended to regression problems since all properties are de-
rived without depending on the fact that the outcome is bi-
nary. Detailed formulation is shown in Appendix E.

2 Problem Setup and Background
We denote a vector by bold italic such as v, and its ith
element by a non-bold italic with a subscript such as vi.
For any natural number n, we define [n] := {1, . . . , n}.
The L2 norm of a vector v ∈ R

m is written as ‖v‖2 :=
(
∑

k∈[m] |vk|2)1/2. A lower bound and an upper bound of a
scalar quantity are respectively represented by the notations
L[·] and U [·], e.g., L[wj ] ≤ wj ≤ U [wj ].

We write the subdifferential operator as ∂. For a function
f , its domain is denoted as domf . Moreover, for a convex
function f(v) : Rk → R, we denote its convex conjugate by
f∗(v) := supu∈Rk{v�u−f(u)}. Note that f∗∗(v) = f(v)
if f is a lower-semi-continuous convex function.

A function f(v) : Rk → R is called λ-strongly convex
if the following holds for any a, b ∈ R

k: f(b) − f(a) ≥
∂f(a)�(b − a) + λ

2 ‖b − a‖22. A function f(v) : Rk → R

is called ν-smooth if the following holds for any a, b ∈ R
k:

‖∇f(b)−∇f(a)‖2 ≤ ν‖b− a‖2 (i.e., the gradient∇f(v)
is ν-Lipschitz). It is known that a convex function f(v)
is ν-smooth if and only if f∗(v) is (1/ν)-strongly con-
vex (see, for example, Theorem 4.2.2 in (Hiriart-Urruty and
Lemarechal 1993) for the proof).

2.1 Convex Regularized Learning Problems

In this paper, we study binary classification problems with n
training instances and d features. Throughout the paper we
use the following notations about the dataset:
Definition 2.1. Assume binary classification problems with
n training instances and d features. The entire dataset is
denoted as (X,y), where X ∈ R

n×d is the input matrix and
y ∈ {±1}n is the label vector. The ith row vector, the jth

column vector, and the (i, j)th element of X are respectively
written as xi· ∈ R

d, x·j ∈ R
n, and xij ∈ R.

Furthermore, we define Z := diag(y)X ∈ R
n×d for no-

tational simplicity, and zi· ∈ R
d, z·j ∈ R

n, and zij ∈ R are
also defined similarly.

We consider the following class of convex regularized em-
pirical risk minimization problems:
Definition 2.2. A convex regularized empirical risk mini-
mization problem for binary classification is defined as:

w∗ := argmin
w∈Rd

P(w),

P(w) := 1
n

∑
i∈[n] φ(z

�
i·w) + ψ(w), (2)

where φ : R→ R+ is a convex loss function and ψ : Rd →
R+ is a convex penalty function.

The dual problem of (2) derived by Fenchel’s duality the-
orem (see, e.g., Corollary 31.2.1 in (Rockafellar 1970)) is
written using the convex conjugates φ∗ and ψ∗ as

α∗ = argmax
α∈Rn

D(α),

D(α) := − 1
n

∑
i∈[n] φ

∗(−αi)− ψ∗ ( 1
nZ

�α
)
, (3)

where P(w∗) = D(α∗) holds under certain conditions.

If we know either of the optimal solutions of (2) or (3),
the other can be easily computed: In fact, the following con-
ditions known as the KKT condition must hold ((Rockafellar
1970), Section 31):

w∗
j ∈ −∂ψ∗

j

(
1

n
z·j�α∗

)
, (4)

α∗
i ∈ ∂φ(zi·�w∗). (5)

Example 2.1. As a working example, we study the
smoothed-hinge L2-regularized SVM. For tuning parame-
ters λ, γ > 0, it is obtained by setting φ and ψ as follows:

φ(r) :=

⎧⎪⎨
⎪⎩
0 (r > 1),

1− r − γ
2 (r < 1− γ),

1
2γ (1− r)2 (otherwise),

(6a)

ψ(w) :=
λ

2
‖w‖22. (6b)

φ∗ and ψ∗ are computed as follows:

φ∗(r) =
{
r + γ

2 r
2 (−1 ≤ r ≤ 0),

+∞ (otherwise),
(7a)

ψ∗(w) =
1

2λ
‖w‖22. (7b)

2.2 Small Data Modification

In this study, we consider a situation in which a small portion
of the input matrix X is modified.

Definition 2.3. The set of modified elements in X is denoted
asM⊆ {[n]× [d]} and its size is denoted as |M|. Further-
more, we define Mi := {i ∈ [n] | ∃j ∈ [d] s.t. (i, j) ∈ M}
andMj := {j ∈ [d] | ∃i ∈ [n] s.t. (i, j) ∈M}.

We refer to the problems before and after the data modifi-
cation as the old problem and the new problem, respectively.
Superscripts “old” and “new” indicate variables for the old
and the new problems, respectively. Furthermore, we denote
the primal problem (2) and the dual problem (3) for the data
Zold by Pold and Dold, respectively, and the optimal solu-
tions by w∗old and α∗old, respectively. Pnew, Dnew, w∗new
and α∗new are similarly defined.

The primary contribution of this paper is to present meth-
ods for computing bounds of primal variables L[w∗new

j ],
U [w∗new

j ] (j ∈ [d]) and dual variables L[α∗new
i ], U [α∗new

i ]
(i ∈ [n]) with the computational cost depending only on the
number of modified elements |M|.
2.3 Decision Making Using the Bounds of the

New Solution

Using these bounds, we can perform several decision mak-
ing tasks on the new solution (w∗new,α∗new). First, con-
sider the situation in which we want to classify a test in-
stance x′ ∈ R

d based on the new classifier. In this task, we
compute a lower bound and an upper bound of the classifi-
cation score f(x′) = x′�w∗new. Using the lower and the
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upper bounds, the class label y′ = f(x′) of the test instance
x′ can be determined as

U [x′�w∗new] < 0 ⇒ y′ = −1; (8a)

L[x′�w∗new] ≥ 0 ⇒ y′ = +1. (8b)
(If neither of them holds, y′ is not determined by the bound.)
Equation (8) suggests that, even if the new optimal solution
w∗new is not available, if its bounds are sufficiently tight,
then the classification task can be completed for some in-
stances.

Next, consider the situation in which the data matrix X
is constantly changing. In such a situation, an important de-
cision making task is to determine when we should actu-
ally re-train the classifier. Suppose that we have a tolerance
threshold θ > 0 for the degree to which the classifier can be
different from the optimal classifier. If we quantify the dif-
ference by L2 norm ‖w∗new −w∗old‖2, we can re-train the
classifier only when

U [‖w∗new −w∗old‖2] ≥ θ. (9)
Equations (8) and (9) indicate that, even if the optimal solu-
tion w∗new is not available, we can make sure that these re-
lationships about w∗new hold using L[w∗new

j ] and U [w∗new
j ]

(j ∈ [d]).

2.4 Performance Measure for Bounds

Given a bound for w∗new and a test data set
{(ytesti ,xtest

i )}i∈[m], we measure the performance of
the bound by
|T−1|+ |T+1|

m
, where

T−1 := {i | i ∈ [m], U [xtest�
i w∗new] < 0w∗new] ≥ 0},

T+1 := {i | i ∈ [m], L[xtest�
i w∗new] ≥ 0},

(i.e. the ratio of test samples that satisfies either of (8)),
which we call the label determination rate. The rate ex-
presses the availability of the bound as a classifier. More-
over, we can interpret the bound is closer to the true training
result if the rate is higher, because in such a case the region
that the bound cannot determine the true classification result
(green region in Figure 2(d)) becomes smaller and therefore
closer to the true training result (Figure 2(c)).

3 Efficient Bound Computation after a Small

Data Modification
Our main results are presented in this section. The goal of
the study is to efficiently compute lower and upper bounds
of the new optimal solutions (w∗new,α∗new) using the old
optimal solutions (w∗old,α∗old) inO(|M|) time. When the
number of modified elements is much smaller than the total
number of the elements nd, it is quite beneficial to be able
to compute the bounds of the new optimal solution in such
an efficient manner.
Theorem 3.1. Assume that the following quantities

zold
i·

�
w∗old, ‖xold

i· ‖2, zold
·j

�
α∗old, ‖xold

·j ‖2,
inf

α∈domDnew
n−1zold

·j
�
α, sup

α∈domDnew

n−1zold
·j

�
α, (10)

for all i ∈ [n] and j ∈ [d], are stored in the memory with the
size O(n + d), and the penalty function ψ is decomposable
in the sense that there exists d convex functions ψj : R→ R,
j ∈ [d], such that ψ(w) =

∑
j∈[d] ψj(wj) for all w ∈ R

d.
Then, in each of the following four cases (a1), (a2), (b1)
and (b2), the lower and the upper bounds of {w∗new

j }j∈[d]
and {α∗new

i }i∈[n] can be evaluated with time complexity
O(|M|).
(a1) If the penalty function ψ is λ-strongly convex, (11)
and (12) can be computed in O(|M|) time:

‖w∗new −w∗old‖2 ≤ rP , (11)

w∗old
j − rP ≤ w∗new

j ≤ w∗old
j + rP , (12)

where rP :=
√

(2/λ)[Pnew(w∗old)−Dnew(α∗old)]. In ad-
dition, (13) can be computed in O(d+ |M|) time:

For any η ∈ R
d :

η�w∗old − rP ‖η‖2 ≤ η�w∗new ≤ η�w∗old + rP ‖η‖2.
(13)

(a2) In addition to the condition in (a1), if the loss function
φ is subdifferentiable and bounded in its domain, then
(14) can be computed in O(|M|) time:

inf −∂φ
(
znew
i·

�w∗old + rP ‖znew
i· ‖2

)
≤ α∗new

i

≤ sup−∂φ
(
znew
i·

�w∗old − rP ‖znew
i· ‖2

)
. (14)

(b1) If the loss function φ is (1/μ)-smooth, (15) and (16)
can be computed in O(|M|) time:

‖α∗new −α∗old‖2 ≤ rD, (15)

α∗old
i − rD ≤ α∗new

i ≤ α∗old
i + rD, (16)

where rD :=
√
(2n/μ)[Pnew(w∗old)−Dnew(α∗old)]. In

addition, (17) can be computed in O(n+ |M|) time:

For any ζ ∈ R
n :

ζ�α∗old − rD‖ζ‖2 ≤ ζ�α∗new ≤ ζ�α∗old + rD‖ζ‖2.
(17)

(b2) In addition to the condition in (b1), if the convex con-
jugate of the penalty function ψ∗ is subdifferentiable
and bounded in its domain, then (18) can be computed in
O(|M|) time:

inf ∂ψ∗
j

(
F
(
1
n [z

new
·j

�α∗old − rD‖znew
·j ‖2]

)) ≤ w∗new
j

≤ sup ∂ψ∗
j

(
F
(
1
n [z

new
·j

�α∗old + rD‖znew
·j ‖2]

))
, (18)

where

F (t) :=

⎧⎨
⎩
L := infα∈domDnew

1
nz

new
·j

�α, (if t ≤ L)
U := supα∈domDnew

1
nz

new
·j

�α, (if t ≥ U )
t. (otherwise)

(19)

F (t) assures that the argument for ∂ψ∗ does not take infea-
sible values.

1317



The proof of Theorem 3.1 is presented in Appendix A.
Remark 3.1. The assumption that all of the quantities in
(10) are available in the memory is reasonable because they
can be computed when the old problem was solved for ob-
taining w∗old and α∗old.

The assumption on decomposability is satisfied in many
penalty functions including the Lq

q-norm with q ≥ 1.
Remark 3.2. If both of the conditions in (a1) and (b2) hold,
then the bounds of w∗new

j can be computed in two ways.
In this case, we can use their intersection as the bounds
of w∗new

j . Similarly, if both of the conditions in (a2) and
(b1) hold, then the bounds of α∗new

i can be computed in two
ways.
Remark 3.3. If the conditions in (a1) hold, then (8) and
(9) in §2.3 are directly computed with (13) and (11), respec-
tively. If the conditions in (b2) hold, then (8) and (9) can be
computed as follows:

L[x′�w∗new]

=
∑

j|x′
ij≥0

x′ijL[w
∗new
j ] +

∑
j|x′

ij<0

x′ijU [w∗new
j ],

U [x′�w∗new]

=
∑

j|x′
ij≥0

x′ijU [w∗new
j ] +

∑
j|x′

ij<0

x′ijL[w
∗new
j ],

U [‖w∗new −w∗old‖2]
=

√∑
j∈[d]

max{w∗old
j − L[w∗new

j ], U [w∗new
j ]− w∗old

j }2.

Example 3.1. Both the L2 penalty ψ(w) := (λ/2)‖w‖22
and the elastic-net penalty ψ(w) := (λ/2)‖w‖22 + κ‖w‖1
satisfy the conditions of both (a1) and (b2). However, the L1

penalty ψ(w) := κ‖w‖1 does not satisfy the conditions of
either (a1) or (b2).

The smoothed hinge loss (φ(r) in (6a)), the squared hinge
loss φ(r) := max{0, 1−r}2 and the logistic regression loss
φ(r) := log(1 + e−r) all satisfy the conditions of both (b1)
and (a2). The vanilla hinge loss φ(r) := max{0, 1 − r}
satisfies only the conditions of (a2).

In Appendix B, we present the bounds in Theorem 3.1 for
the smoothed-hinge SVM as an example.

4 Partial Optimization for Obtaining Tighter

Bounds
Thus far, we considered computing the bounds of w∗new

j and
α∗new
i in O(|M|) time in Theorem 3.1. In this section, we

consider obtaining tighter bounds by partially solving the
optimization problem, which is more costly than O(|M|)
but much less than solving the full optimization problem (2)
or (3). As stated in Theorem 3.1, the bounds of w∗new

j and
α∗new
j becomes tighter if rP and rD becomes smaller. To

make them smaller with a small computational cost, instead
of just computing Pnew(w∗old), we consider optimizing it
for the subset of their variables J ⊂ [d]. We can take a
similar approach for Dnew. This fact is formally stated as
follows.

Theorem 4.1. Assume that the penalty function is decom-
posable as in Theorem 3.1. Consider partially optimizing
the primal problem (2) (resp. dual problem (3)) only w.r.t. a
subset of the primal variables {wj}j∈J⊆[d] (resp. dual vari-
ables {αi}i∈I⊆[n]) while other variables are replaced with
w∗old (resp. α∗old).

Let w̌∗ ∈ R
d (resp. α̌∗ ∈ R

n) be a vector for which the
elements corresponding to J (resp. I) are the solution of
the partial problem, while the other elements are the old so-
lutions {w∗old

j }j∈[d]\J (resp. {α∗old
i }i∈[n]\I). Then, unless

w̌∗ = w∗old (resp. α̌∗ = α∗old), all of the bounds in The-
orem 3.1 is strictly tightened by replacing w∗old with w̌∗
(resp. α∗old with α̌∗).

The proof is shown in Appendix C. We show examples
for |J | = 1 and |I| = 1 in Appendix D.

Finally, for each of the three scenarios depicted in Fig-
ure 1, we consider specific partial optimization strategy.
First, for the spot modification scenario, we set J := Mj

and I :=Mi; i.e., we optimize the primal (resp. dual) vari-
ables if there is at least one modification at the correspond-
ing columns (resp. rows) of X . For the instance modification
scenario, we set J := ∅ and I := Mi; i.e., we optimize
only the dual variables corresponding to the modified rows
of X . Similarly, for the feature modification scenario, we
set J :=Mj and I := ∅; i.e., we optimize only the primal
variables corresponding to the modified columns of X .

5 Experiment

In this section, we demonstrate the performance of the pro-
posed OSB through numerical experiments. In all of the ex-
periments, we used the smoothed-hinge SVM ((6) and (7))
with γ = 1.

5.1 An Illustrative Example on MovieLens
Dataset

We first illustrate how to use the proposed OSB in practice
by considering the scenario in Figure 1. We used a part of the
MovieLens dataset (Harper and Konstan 2015) converted to
a binary classification problem (see Appendix F) to predict
whether a user would evaluate a movie (ID 356) as inter-
esting. The goal of this illustrative study is to demonstrate
how the proposed OSB can be used to maintain the quality
of the classifier when the data matrix X is gradually chang-
ing. Here, the quality of the classifier is measured by the
label determination rate (§2.4). Following the data prepa-
ration process in Appendix F, the training data matrix has
69,260 instances (users) and 38,187 features (movies) with
13,810,969 non-zero values (evaluations for movies; spar-
sity is 13,810,969/(69,260 × 38,187) = 0.52%). We also
prepared a separate validation dataset of 17,315 instances.

We assume that some elements, rows, and columns of
the training data matrix X are initially missing and are
constantly being filled in, as indicated by cases (a), (b)
and (c) in Figure 1. To implement this situation, we first
remove approximately 3% of the evaluations (approxi-
mately 1% each for of (a), (b) and (c), and approximately
13,810,969×3%≈414,329 evaluations are removed). Then
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Threshold of the rate: 80% Threshold of the rate: 90% Threshold of the rate: 95%

Figure 3: Changes of label determination rates for the first 3000 new added evaluations in MovieLens dataset experiment (two
examples for each threshold of the label determination rate). Here, the goal is to keep the rate to be higher than 80%, 90% or
95% by re-computing the classifier when necessary. The proposed OSB method determines the degree to which the current
classifier can be changed by adding a sequence of new evaluations, and determines when we should re-compute the classifier.

Threshold of the rate: 80% Threshold of the rate: 90% Threshold of the rate: 95%
Average: 707.39 (±520.76) Average: 213.24 (±180.50) Average: 68.41 (±67.33)

Figure 4: Number of evaluations added until the label determination rates become lower than the threshold. (“±”: standard
deviations)

we add these evaluations back in a random order by one of
the following three operations: (spot addition) adding new
spot evaluations in X , (instance addition) adding a new row
of X , or (feature addition) adding a new column of X . See
Appendix F for additional details.

First, we train w∗ by solving (2). Then, whenever 10 eval-
uations are added to X in the order described above, we
compute the label determination rate. If the rate is lower
than the threshold (80%, 90% or 95%), then we discard the
current w∗ and re-compute w∗ by solving (2) again (note
that the rate becomes 100% just after re-computation). Since
solving (2) is much more costly than computing the label
determination rate by the proposed OSB, the frequency of
re-computation of the classifier w∗ would be the dominat-
ing cost. For each of the thresholds, we run the experiment
with 15 different random seeds. We conducted the experi-
ment with λ = 1 and no partial optimization.

The results are shown in Figures 3 and 4. The results sug-
gest that, in this illustrative study, for a movie evaluation
database with approximately 13 million evaluations, if we
want to maintain the label determination rate to be higher
than 80%, we only need to recompute the classifier after
an average of 707 new evaluations have been added to the
database. It is also interesting to note that there are varia-
tions in the interval between re-computations as shown in
Figure 3. We conjecture that this occurs because the amount
of the possible change of the classifier w∗ depends on which
evaluations are newly added to the database. An advantage
of OSB is that it can provide a quantitative assurance con-

cerning the degree to which the classifier can change. Such
an assurance is difficult to obtain if we re-compute the clas-
sifier in a fixed interval.

5.2 Performance Evaluations

Next, we demonstrate the performances of OSB with larger
datasets. In this section, first we show the tightness of the
bounds measured by the label determination rate. Then we
show comparisons of the computation times for the three
settings: the warm-start method as an existing incremental
learning method, the proposed bounds in §3 and the pro-
posed bounds using the partial optimization (§4). Due to
space limitations, we present a portion of our results in the
main text. The complete experimental results are presented
in Appendix G, including the results for five datasets, other
λ’s and evaluations for the difference of the model (9) as
well as the label determination rate.

We used two benchmark datasets: kdd-a (n =8,407,752,
d =20,216,830) and url (n =2,396,130, d =3,231,961)
obtained from libsvm data repository (Chang and Lin 2011),
where 80% of the instances are used as the training set
and the rest are used as the test set. We considered three
scenarios in Figure 1. In the spot modification scenario,
we modified randomly chosen |M| elements in X for
|M| ∈ {1, 100, 10000}. In the instance modification sce-
nario, we modified randomly chosen Δn rows of X for
Δn ∈ {1, 10, 100}. In the feature modification scenario,
we modified randomly chosen Δd columns of X for Δd ∈
{1, 10, 100}. We set λ = 0.001 (results with other λ’s are
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(a) Spot modification (b) Instance modification (c) Feature modification
kdd-a dataset (n = 8, 407, 752, d = 20, 216, 830)
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url dataset (n = 2, 396, 130, d = 3, 231, 961)
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Figure 5: Label determination rates (%) for various data matrix modifications.

Figure 6: Ratio of the computation time of the proposed OSB to that of incremental learning (warm-start), on a log-scale for
the feature modification scenario. (“PO”: partial optimization)

presented in Appendix G). For each condition, we run the
experiment with 10 different random seeds.

Tightness of the Bounds The red points in Figure 5 indi-
cate the performances of the bounds computed by the pro-
posed method in §3. For kdd-a dataset, more than 99.9%
of the test labels were determined using the bounds.We con-
jecture that, since this dataset is huge (n > 8 million and
d > 20 million), a small data modification did not change
the solution significantly, and these bounds could nicely cap-
ture this phenomenon. For url dataset, the label determi-
nation rates were slightly worse especially when 100 rows
were modified in the instance modification scenario. We
conjecture that this performance deterioration might happen
when several influential row vectors were modified and the
change in the solution was relatively large.

The blue points in Figure 5 show the performances of the
bounds lifted by the partial optimization approach discussed
in §4. The black lines connecting the red and blue points in-

dicate the correspondence in 10 random trials. As described
in Theorem 4.1, the bounds in blue points are always tighter
than those in red points (higher values in the label determi-
nation rate indicate tighter bounds). For kdd-a dataset, the
performances of the red and blue points are approximately
the same because the original bounds (red points) were al-
ready sufficiently tight. For url dataset, partial optimiza-
tions seemed to work well. In particular, when the perfor-
mances of the original bounds in red points were relatively
poor (e.g., the Δn = 100 case), the improvements by partial
optimization were significant.

Computation Times Figure 6 shows the computa-
tional costs of the proposed bound computation methods
(with/without partial optimization) along with those of re-
training with warm-start (an existing incremental learning)
for feature modifications Δd ∈ {1, 10, 100}. The results for
other settings are shown in Appendix G. The cost of the pro-
posed bound computation without partial optimization is al-

1320



most negligible, as compared to that for the warm-start. Us-
ing partial optimization, the cost is still much smaller. Sim-
ilar results were obtained for the spot/instance modification
scenarios.

6 Conclusions

In this paper, we present a method for quickly evaluating
the data modification effect on the classifier. The proposed
method provides bounds on the optimal solution with a cost
proportional to the size of the data modification. The exper-
imental results indicate that the bound computation method
proposed in §3 is highly effective when the number of mod-
ified elements is much smaller than the total dataset size. In
addition, the partial optimization approach is also effective,
especially when the bounds in Theorem 3.1 are not good
enough.
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