
On the Time and Space Complexity of
Genetic Programming for Evolving Boolean Conjunctions

Andrei Lissovoi, Pietro S. Oliveto
Rigorous Research, Department of Computer Science

University of Sheffield, Sheffield S1 4DP, United Kingdom
{a.lissovoi,p.oliveto}@sheffield.ac.uk

Abstract

Genetic Programming (GP) is a general purpose bio-inspired
meta-heuristic for the evolution of computer programs. In
contrast to the several successful applications, there is little
understanding of the working principles behind GP. In this
paper we present a performance analysis that sheds light on
the behaviour of simple GP systems for evolving conjunc-
tions of n variables (ANDn). The analysis of a random local
search GP system with minimal terminal and function sets
reveals the relationship between the number of iterations and
the expected error of the evolved program on the complete
training set. Afterwards we consider a more realistic GP sys-
tem equipped with a global mutation operator and prove that
it can efficiently solve ANDn by producing programs of lin-
ear size that fit a training set to optimality and with high prob-
ability generalise well. Additionally, we consider more gen-
eral problems which extend the terminal set with undesired
variables or negated variables. In the presence of undesired
variables, we prove that, if non-strict selection is used, then
the algorithm fits the complete training set efficiently while
the strict selection algorithm may fail with high probability
unless the substitution operator is switched off. In the pres-
ence of negations, we show that while the algorithms fail to fit
the complete training set, the constructed solutions generalise
well. Finally, from a problem hardness perspective, we reveal
the existence of small training sets that allow the evolution of
the exact conjunctions even in the presence of negations or of
undesired variables.

1 Introduction

Genetic Programming refers to a class of evolutionary algo-
rithms introduced by (Koza 1992) to evolve computer pro-
grams. Traditionally syntax trees have been used to represent
programs. Their quality is evaluated by executing the trees
on a set of inputs and their output is compared with that of
a target function (the function to be evolved). The set of in-
put/output test cases is usually referred to as the training set.
Typical Genetic Algorithm (GA) variation and selection op-
erators, adapted to work on syntax trees, are used to create
new programs and natural selection principles are used to
evolve a population of programs with the aim of eventually
identifying one with the desired functionality. Although dur-
ing the evolution the quality of programs is measured using

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the training set, the goal is to evolve a program that works
well on all possible inputs. In this case the program is said
to have good generalisation. GP can be applied to problems
for which no efficient problem-specific algorithms are avail-
able, aiming to produce reasonable, if not optimal, solutions
without requiring problem-specific algorithm design.

While there are many examples of successful applications
of GP to practical problems (see e.g. (Koza 2010; Schuh,
Angryk, and Sheppard 2012; Liu and Shao 2013; Al-Sahaf
et al. 2017) for recent ones), there is a limited understanding
of what problem characteristics make GP successful, how
the multiple parameters should be set for optimal results,
and how common failures could be avoided (O’Neill et al.
2010; Poli, Langdon, and McPhee 2008). A solid theoretical
foundation is necessary to answer these questions and could
be used to guide the design of future GP algorithms, as well
as the choice of parameters in their applications.

A performance analysis of GP should focus on two differ-
ent aspects of algorithmic behaviour: 1) the ability of the al-
gorithm to fit a complete training set, and 2) whether the so-
lutions evolved using a smaller training set generalise well.
If the complete training set is not too large, then fitting the
training set is sufficient for efficient optimisation. If, instead,
its size is prohibitively large, then the generalisation capabil-
ities are crucial. In any case, an analysis of the performance
of a GP system using the complete set serves as a best-case
model of its behaviour: if the system is unable to produce a
reasonable solution while working with a complete training
set, it is unlikely to perform well in practice.

Most previous theoretical work on the analysis of GP
aimed at understanding the performance of simple GP sys-
tems for evolving trees with significant structures rather
than programs with a given functionality (Langdon and Poli
2002; Durrett, Neumann, and O’Reilly 2011; Kötzing et al.
2014; Wagner, Neumann, and Urli 2015; Doerr et al. 2017).
Only recently (Mambrini and Oliveto 2016) analysed the
same simple GP algorithms for the ANDn and XORn prob-
lems that represent actual logical functions with proper in-
puts and logically-defined outputs. The goal of the problems
is to evolve respectively conjunction and parity functions of
n variables using a function set consisting solely of a binary
AND (XOR, respectively) operator, and n input variables as
terminals. These functions were chosen to highlight the per-
formance and behaviour of the GP system respectively for

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1363



evolving an easy and a hard function since ANDn is known
to be evolvable in the PAC learning framework while XORn

is not (Valiant 2009). Note that there are learnable problems
for which no GP system will be efficient because, compared
to the more general concept of learnability, additional re-
strictions are imposed on the actions the GP is allowed to
perform. In Valiant’s Evolvability Theory, which is a re-
stricted case of PAC-learning, the aim is to evaluate what
functionalities can be acquired by an evolutionary process
that learns from examples. A function is evolvable if there
exists an evolution algorithm that evolves it. The aim of GP
is to evolve a function automatically, without the need of a
human-designed evolution algorithm. The question is what
classes of functions may be evolved efficiently via GP, and
which actually require a human-designed evolution algo-
rithm (given that they are evolvable). (Mambrini and Oliveto
2016) prove that a simple GP system using a random local
search operator which may either add, delete or substitute a
node in the current solution, can efficiently evolve the con-
junctions of n variables while it requires exponential time
with overwhelming probability for the parity functions.

Compared to previous runtime analyses, ANDn and
XORn are indeed proper functions with input/output be-
haviour. However, the settings considered in the paper are
still far from realistic applications of GP. One drawback of
the work is that the random local search operator used by the
GP system is considerably different from the typical mu-
tation operators used in evolutionary computation and GP,
which allow to make larger changes to the current solution
with some positive probability. More importantly, the func-
tion and terminal sets were limited to contain exactly the
“right” ingredients, instead of analysing whether the GP sys-
tem could learn to select the right functions and terminals
from larger sets during the evolution.

In this paper, we analyse the performance and behaviour
of GP for evolving Boolean conjunctions in these more re-
alistic settings. The presented analysis reveals how and why
small changes in the problem setting can hugely affect the
performance of GP. We start by presenting a fixed budget
computation analysis that provides a relationship between
the number of iterations that the GP system is allowed to run
and the expected error of the evolved program for the same
random local search GP system (which we call RLS-GP)
and settings considered by (Mambrini and Oliveto 2016).

Afterwards, we generalise the results to more realistic GP
systems using more sophisticated mutation operations with
larger neighborhoods. Apart from deriving time complexity
results we also perform a space complexity analysis that de-
livers precise asymptotic bounds on the size of the evolved
programs. The size of the produced tree allows us to derive
precise statements on the generalisation ability of the pro-
duced solutions. In particular, for realistic training sets of
polynomial size, the GP systems evolve programs of log-
arithmic size in the number of variables. These solutions,
nevertheless, generalise well with high probability.

We then consider more challenging versions of the con-
junction problem that allow to highlight how slight differ-
ences in the problem structure may lead to great differences
in GP behaviour, hence of GP performance. On one hand, we

extend the function set to not only contain the required AND
operators but also an unnecessary negation operator (i.e.
NOT)1. This setting was already considered in (Mambrini
and Oliveto 2016) to show that by adding an unnecessary
operator the RLS-GP becomes inefficient with overwhelm-
ing probability on ANDn. Our analysis shows that allowing
mutation to insert, delete or substitute multiple variables at
once does not help the GP. Nevertheless, the produced so-
lutions generalise well. On the other hand, we extend the
terminal set such that it also contains unnecessary variables
(i.e., the target conjunction is a subset of the terminal set).
This generalised version of the conjunction problem, which
we call ANDn,m, is an interesting benchmark problem as it
has been proven to be efficiently evolvable according to the
PAC learning framework notion (Valiant 2009). Our results
show that the non-strict selection RLS-GP fits the training
set efficiently while the strict selection algorithm RLS-GP∗
may fail with high probability unless the substitution opera-
tor is switched off.

We conclude by presenting a problem hardness analysis
that shows that for all the settings considered in the paper
there exist training sets of linear size which allow the GP
systems to efficiently produce solutions which generalise
perfectly (i.e. are equivalent to the target function).

The rest of the paper is structured as follows. In the next
section, we will introduce the RLS-GP and (1 + 1) GP algo-
rithms and precisely define the learning problems and mea-
sures of generalisation ability. In Section 3, we present the
fixed budget analysis of the RLS-GP for the ANDn problem.
In Section 4 we present the analysis of (1 + 1) GP for the
ANDn problem proving that the algorithms evolve the con-
junctions efficiently and that they generalise well. In Section
5 we present the analysis of the GP systems for the more dif-
ficult problem where also negations of variables are allowed.
In Section 6 we extend the terminal set to also contain un-
necessary terminals. In Section 7 we prove the existence of
a linear training set that allows the GP algorithms to evolve
exact solutions to the ANDn and ANDn,m problems, also
if the negated variables are included in the terminal set. Fi-
nally, we conclude the paper by providing a summary of the
results and discussing directions for future work.

Due to space constraints, the proofs of the theorems are
omitted from this extended abstract. The proofs use stan-
dard randomised algorithm analysis techniques (Feller 1968;
Mitzenmacher and Upfal 2005; Doerr 2011), including Ad-
ditive (He and Yao 2001), Multiplicative (Doerr and Gold-
berg 2010; Doerr, Johannsen, and Winzen 2012), and Nega-
tive (Oliveto and Witt 2011; 2012; Rowe and Sudholt 2014)
Drift Analysis.

2 Preliminaries

The following sections present results for a total of four sim-
ple GP algorithms in various settings. All four algorithms

1More precisely, to simplify technical issues due to the NOT
function being unary, we introduce negated literals into the terminal
set. While the behaviour of this GP system is not equivalent to the
behaviour of a system using a NOT function, both systems share
the same difficulties when optimising the ANDn function.

1364



1: Choose op ∈ {INS,DEL, SUB} uniformly at random
2: if X is an empty tree then
3: Choose a literal l ∈ L uniformly at random
4: Set l to be the root of X .
5: else if op = INS then
6: Choose a node x ∈ X uniformly at random
7: Choose f ∈ F, l ∈ L uniformly at random
8: Replace x with f
9: Set the children of f to be x and l, order chosen u.a.r.

10: else if op = DEL then
11: Choose a leaf node x ∈ X uniformly at random
12: Replace x’s parent in X with x’s sibling in X
13: else if op = SUB then
14: Choose a leaf node x ∈ X uniformly at random
15: Choose a literal l ∈ L uniformly at random
16: Replace x with l.

Figure 1: The HVL-Prime mutation operator on a tree X .

evolve programs using a syntax tree representation, and use
the HVL-Prime mutation operator shown in Figure 1 (first
proposed in (O’Reilly and Oppacher 1996)) to construct off-
spring solutions in each iteration (Durrett, Neumann, and
O’Reilly 2011; Kötzing et al. 2014; Mambrini and Oliveto
2016). Figure 2 shows the general pseudocode for all four
algorithm variants.

The RLS-GP and RLS-GP∗ algorithms maintain a single
solution, and apply a single instance of the HVL-Prime mu-
tation operator to produce an offspring solution in each it-
eration. The performance of these algorithms on ANDn and
XORn problems has been formally analysed in (Mambrini
and Oliveto 2016). We note that previous work has referred
to these algorithms as the (1 + 1) GP; throughout this pa-
per, we use the RLS-GP name to emphasize the local search
nature of the mutation operator, and use (1 + 1) GP to refer
to an algorithm using a global mutation operator, which is
also known as the (1+1) GP-multi. Our notation matches the
conventions of runtime analysis of evolutionary algorithms
(Oliveto and Yao 2011; Jansen 2013).

We also consider the (1 + 1) GP and (1 + 1) GP∗ algo-
rithms, which perform k = 1 + Poisson(1) iterative HVL-
Prime mutations to produce an offspring solution in each
iteration. The extended mutation operator has been previ-
ously considered on other problems in (Kötzing et al. 2014;
Durrett, Neumann, and O’Reilly 2011), leading to the so-
called (1 + 1) GP-multi algorithms (in this paper, we will
omit the “-multi” suffix).

Recall that the probability density function of a
Poisson(1)-distributed variable is:

P (X = x) = λxe−λ/(x!) = 1/(e x!),

while the (1 + 1) GP and (1 + 1) GP∗ algorithms perform
x+ 1 HVL-Prime sub-operations. In each iteration, they
perform a single HVL-Prime sub-operation with probabil-
ity 1/e, two sub-operations with probability 1/e, three with
probability 1/(2e), and so on. In expectation, two HVL-
Prime sub-operations are performed in each iteration.

In the following sections we will consider problem in-

1: Initialise an empty tree X
2: for t ← 1, 2, . . . do
3: X ′ ← X
4: k ← 1 + Poisson(1) � k ← 1 in RLS-GP
5: for i ← 1, . . . , k do
6: X ′ ← HVL-Prime(X ′)
7: if f(X ′) ≤ f(X) then � Strict < in ∗ variants
8: X ← X ′

Figure 2: The (1 + 1) GP and RLS-GP algorithms (in RLS-
GP and RLS-GP∗, k is always set to 1). In (1 + 1) GP∗ and
RLS-GP∗, line 7 instead uses a strict comparison.

stances based on the AND function: the objective of the GP
systems will be to evolve a tree which computes the con-
junction x1 ∧ . . . ∧ xn (i.e., ANDn), or a conjunction of a
subset of m < n available variables (i.e., ANDn,m). For
Boolean functions of n variables, the complete training set
is a truth table with 2n rows. Solution quality is measured
by the number of rows on which the output of the current
solution and the target function is different.

Definition 1. The error ε of a solution h compared to ĥ is
defined as the probability that h and ĥ differ on a truth table
row r selected uniformly at random:

error(h) = P (h(r) �= ĥ(r)) = ε.

For ANDn and ANDn,m, it is possible to quickly calcu-
late error(h) without evaluating the full 2n rows of the truth
table. This might not be possible when using GP for more
practical problems. To model this difficulty, we also present
analyses for GP algorithms using incomplete training sets,
where the fitness function does not provide an accurate value
of error(h), but is instead based on a small sample of truth
table rows. In such settings, we consider the generalisation
ability of GP systems in terms of the expected error of the
solution over the complete truth table, i.e. based on samples
taken uniformly at random from the complete truth table,
without using any problem-specific information.

We consider two ways of randomly selecting the training
set of size s from the complete truth table of the target func-
tion: 1) it could be chosen at the beginning of the optimisa-
tion process and used for all fitness evaluations, or 2) a new
sample could be taken at every iteration of the GP algorithm,
and used for fitness evaluations within that iteration only.
This reflects the scenarios where only a limited amount of
information about the target function is available (such as in
medical applications, e.g., (Archetti et al. 2007)), and where
a prohibitively large amount of information is available to be
used in every fitness evaluation (such as problems involving
large data sets, e.g., (Song, Heywood, and Zincir-Heywood
2005)).

Note that the class of AND functions (in particular,
ANDn,m) is evolvable under uniform distribution (Valiant
2009). However, it is not distribution-free evolvable using
a Boolean loss function (Feldman 2008). This is of little
concern to our aims, since all rows of the truth table are
of equal importance for evaluating the correctness of the

1365



evolved function. Furthermore, the GP is allowed to choose
which rows to sample in order to evaluate the fitness of a
solution. Our problem, instead, is that it is not possible to
efficiently sample all the 2n truth table rows to evaluate the
exact quality of a candidate solution.

For our analysis, we will rely on the following observation
concerning the fitness values of solutions of ANDn: as the
number of distinct variables used by a candidate solution
increases, its error relative to the target function decreases.
Proposition 2. Every conjunction of v distinct variables dif-
fers from the target function ANDn(x1, . . . , xn) on fv =
2n−v − 1 rows.

3 Fixed budget analysis of RLS-GP on ANDn

In this section we consider ANDn, the problem of evolv-
ing a conjunction of n variables, using minimal function
and terminal sets. In this setting, the GP algorithms need to
construct a tree which includes each variable at least once.
This problem has been considered for the RLS-GP and RLS-
GP∗ algorithms in (Mambrini and Oliveto 2016), where it
has been shown that the algorithms find an exact solution
in expected O(n log n) iterations. For a deeper understand-
ing of the performance of RLS-GP, we present a fixed bud-
get analysis, providing a relationship between the expected
solution quality and the time the algorithms are allowed to
run. The proofs follow the techniques used in (Jansen and
Zarges 2014) to analyse Randomised Local Search on the
ONEMAX problem.
Theorem 3. For all budgets b, the expected fitness of the so-
lution produced by the RLS-GP∗ on ANDn when initialised
with an empty tree is: E(f(xb)) = 2n(1−1/(3n))b − 1.

The RLS-GP will accept mutations which insert copies of
variables which are already present in the tree (as these mu-
tations do not affect the solution’s fitness value), which also
allows it to accept mutations which apply the substitution
sub-operator of HVL-Prime to replace a redundant variable
in the tree with a potentially new variable. In this setting, we
can provide upper and lower bounds on the performance of
the RLS-GP, as illustrated in Figure 3: the result of Theo-
rem 3 provides a lower bound on the quality of the solution
at time t, and Theorem 4 provides an upper bound based on
the substitution operator always selecting a redundant vari-
able for substitution.
Theorem 4. For all budgets b, the expected fitness of the
solution produced by the RLS-GP on ANDn when initialised
with an empty tree is:

2n(1−1/(3n))b − 1 ≤ E(f(xb)) ≤ 2n(1−2/(3n))b − 1.

4 (1+1) GP on ANDn

In this section we present a runtime analysis of the Poisson-
mutation used by the (1 + 1) GP and (1 + 1) GP∗ algo-
rithms on the ANDn problem, first using the complete truth
table as the training set, and then using training sets of poly-
nomial size, chosen uniformly at random at either the begin-
ning of the optimisation process or independently in each
iteration.

0 1,000 2,000 3,000 4,000
2−12

294

2200

Budget (iterations)

E
xp

ec
te

d
er

ro
r(

ro
w

s)

RLS-GP∗

RLS-GP (lower bound)

Figure 3: Fixed budget illustration for n = 200 variables.
The expected error of the RLS-GP∗ also serves as an upper
bound on that of the RLS-GP.

4.1 Complete training set

With minimal literal and function sets, both the (1 + 1) GP
and the (1 + 1) GP∗ algorithms are able to fit the complete
training set efficiently.
Theorem 5. The (1 + 1) GP and the (1 + 1) GP∗ using
F = {AND} and L = {x1, . . . , xn} solve ANDn using
the complete truth table as training set in time Θ(n log n).

We additionally prove that the solutions produced only
contain Θ(n) leaf nodes in expectation.
Theorem 6. The (1 + 1) GP and the (1 + 1) GP∗ using
F = {AND} and L = {x1, . . . , xn} solve ANDn using
the complete truth table as training set produce a solution
with an expected Θ(n) terminals.

4.2 Static polynomial-size training sets

Since the efficient evaluation of all 2n truth table rows for
the target function is not possible without problem-specific
insight, in practice GP algorithms are run on a smaller train-
ing set of rows selected from the complete truth table. The
training set remains fixed throughout the process, which re-
flects a situation where only a limited amount of information
about the target function’s input/output behaviour is avail-
able. In this subsection, we show that the (1 + 1) GP∗ and
(1 + 1) GP algorithms easily fit polynomially-sized train-
ing sets in polynomial time and provide solutions with good
generalisation ability.

To begin with, we show that in O(log n) iterations, both
of the (1 + 1) GP algorithms are able to find a solution that
fits a polynomially-sized training set.
Theorem 7. The (1 + 1) GP∗ and (1 + 1) GP algorithms,
with F = {AND} and L = {x1, . . . , xn}, will fit the train-
ing set of s = poly(n) rows drawn uniformly with replace-
ment from the complete truth table of ANDn in expected
O(log n) iterations. Additionally, for any c > 0, a solution
fitting the training set is constructed within O((c+1) log n)
iterations with probability at least 1− n−c.

Generalisation ability In (Mambrini and Oliveto 2016),
it was proved that a solution with O(log n) variables will fit
a polynomially-sized training set with high probability; this
will be reflected in Observation 9. However, our Theorem 7

1366



only provides an upper bound on the number of iterations
it takes to construct a solution fitting the training set, which
does not guarantee that this solution will have Ω(log n) vari-
ables as in expectation the algorithms will attempt as many
deletions as insertions. The following theorem shows that
the constructed solution will indeed contain at least Ω(log n)
distinct variables.

Theorem 8. The solution produced by the (1 + 1) GP∗

and (1 + 1) GP algorithms, with F = {AND} and L =
{x1, . . . , xn}, using a training set of size s = poly(n) and
s ≥ nc′ , where c′ > 0 is an arbitrary constant, drawn uni-
formly with replacement from the complete truth table of
ANDn, in expectation contains Ω(log n) distinct literals.

Having shown that the expected number of distinct vari-
ables in the solution that fits the training set is Ω(log n), we
can now state the generalisation ability of the GP algorithms.

Observation 9. A conjunction of c log n distinct variables,
where c > 0 is a constant, matches the ANDn function on
a row drawn uniformly at random from the complete truth
table of ANDn with probability 1− n−c.

In Section 7, we will show that if the training set is chosen
arbitrarily, using just n specific rows of the complete truth
table is sufficient for any of the considered GP algorithms
using minimal function and terminal sets to evolve a solution
with a generalisation error of 0.

4.3 Dynamic polynomial-size training sets

We now consider the behaviour of the GP algorithms when a
smaller training set is chosen independently at random from
the complete truth table of the target function in each it-
eration. This approach would be used when the complete
truth table describing the behaviour of the target function is
known, but is prohibitively large to evaluate in its entirety for
every fitness comparison performed by the GP algorithms.

Theorem 10. Let n2c+ε rows be sampled from the com-
plete truth table in each iteration (where c > 0 and ε >
0 are any constants) for ANDn with F = {AND} and
L = {x1, . . . , xn}. The RLS-GP and the (1 + 1) GP will
terminate in expected O(log2 n) iterations. W.o.p. the gen-
eralisation error will be at most n−c. The RLS-GP∗ and the
(1 + 1) GP∗ will find a solution with a generalisation error
of at most n−c within an expected O(log n) iterations.

5 Extended function set: adding negations

In this section we consider the effect of allowing the
GP algorithms to access additional functions when con-
structing solutions for ANDn. More specifically, we intro-
duce the negation (unary NOT) operator. To avoid hav-
ing to modify the HVL-Prime mutation operator to sup-
port unary functions, we introduce negation by extend-
ing the literal set rather than the function set, i.e. L =
{x1, . . . , xn, x1, . . . , xn}. While this is not exactly equiv-
alent in expressive power to having NOT in the function set,
the issues encountered by the GP algorithms in the simpli-
fied setting are similarly possible when NOT is added to the
function set. We show that similarly to the results for the

RLS-GP algorithms with local-search mutation in (Mam-
brini and Oliveto 2016), the (1 + 1) GP algorithms are also
unable to find the optimal solution using the complete truth
table in polynomial time.
Theorem 11. The (1 + 1) GP∗ using F = {AND} and
L = {x1, . . . , xn, x1, . . . , xn} does not fit the complete
training set for ANDn in polynomial time with overwhelm-
ing probability.

The analysis for the (1 + 1) GP is more complex, as the
algorithm allows the current solution to mutate almost freely
after a contradiction has been obtained, since all solutions
containing a contradiction are wrong on exactly one row
(where all variables are set to true).
Theorem 12. The (1 + 1) GP using F = {AND} and
L = {x1, . . . , xn, x1, . . . , xn} does not fit the complete
training set for ANDn in polynomial time with overwhelm-
ing probability.

We note that a solution containing a contradiction matches
the output of ANDn on all but one row of the complete
truth table, and thus has a generalisation error of just 2−n.
Hence, while introducing negations prevents the GP algo-
rithms from constructing the optimal solution in polyno-
mial time, it does not harm the generalisation ability of the
current-best solution, including the cases where an incom-
plete training set is used: if the optimisation process ends by
introducing a contradiction, then the resulting solution will
achieve a much lower error than the solutions produced in
section 4.2 using minimal terminal and function sets.

Contradictions are also not the only problem the GP sys-
tems face when negations can be added to the solution. Even
if the solutions including a contradiction could never be ac-
cepted, non-optimal solutions which contain all n distinct
variables in either positive or negative form have the same
fitness value (i.e., they are wrong on two rows: the all-true
row, and the row including setting all positive literals to true
and all negative literals in the solution to false). Since insert-
ing both negative and positive literals improves the fitness
of the mutated offspring, it is unlikely that the first solution
with all n distinct variables produced by the GP has signif-
icantly more positive literals than negative ones. As replac-
ing negative literals with positive literals gets increasingly
unlikely the fewer negative literals remain in the solution, it
would be overwhelmingly unlikely that a solution with no
negative literals is encountered in polynomial time.

In Section 7, we will show that there exists a training set of
2n+ 1 rows (or, if a population with a diversity mechanism
is used, just n + 1 rows), that is sufficient to allow the GP
algorithms to evolve a solution with a generalisation error of
0 even when negations are present in the terminal set.

6 Extended terminal set: ANDn,m

In general, when evolving a program it is not necessarily
known in advance which distinct terminals will be required.
(Valiant 2009) considered a setting where target functions
are a conjunction of an unknown subset of n variables, mod-
eling an uncertainty over which inputs are actually used in
e.g. a classification problem. In this section we tackle a sim-
ilar setting by considering the ANDn,m problem, where the

1367



target function is a conjunction of m < n variables in the
terminal set – and thus the GP algorithm has to contend
with variables which are ultimately ignored by the target
function. We point out that, differently from Valiant’s work,
the GP systems we consider are not especially designed to
solve the problem. Throughout this section we consider lo-
cal search mutation operators to simplify the analysis.

6.1 Complete training set

Similarly to Proposition 2, the error of a candidate solution
on the ANDn,m problem can also be calculated without ex-
plicitly evaluating all 2n rows of the truth table.

Proposition 13. Let ĥ be a conjunction of m distinct vari-
ables, m ≤ n. Any conjunction containing a ≤ m distinct
variables in ĥ, and b ≤ n − m distinct variables not in ĥ
will differ from ĥ on fa,b = 2n−a−b + 2n−a − 2n+1−m−b

rows of the n-variable truth table for ĥ.
The following observation specifies exactly when adding

and removing variables ignored by the target function im-
proves the fitness value of a candidate solution.

Observation 14. Suppose ĥ is a conjunction of m ≤ n dis-
tinct variables. For a conjunction with a ≤ m distinct vari-
ables in ĥ, and b ≤ n−m distinct variables not in ĥ, adding
a new distinct variable in ĥ to the conjunction always de-
creases fa,b, while adding a new distinct variable not in ĥ
to the conjunction decreases fa,b if and only if a < m − 1,
and increases fa,b if and only if a = m.

We will show that the HVL-Prime SUB operation prevents
the RLS-GP∗ algorithm from fitting the complete training
set, while the RLS-GP is able to do so in a polynomial num-
ber of iterations. To illustrate the former behaviour, we set
m to be linear with respect to n in the following theorem.
Theorem 15. The RLS-GP∗ algorithm with F = {AND}
and L = {x1, . . . , xn} will with high probability fail to find
the optimum of ANDn,m in finite time when m = cn for any
constant 0 < c < 1 when using the complete training set.

We note that the quality of the solution produced by the
RLS-GP∗ when it gets stuck with multiple copies of an un-
desired variable is not prohibitively bad: such a solution
would still contain all m desired variables, and, in expec-
tation, at most (n − m)/2 non-ĥ variables (as in expecta-
tion at least half of the non-ĥ variables would be removed
rather than substituted out). Recalling Proposition 13, and
setting a = cn, b = (n − cn)/2, we get an error on fa,b =

2n(1−c) − 2n(1−c)/2 rows; and hence error(h∗) < 2−cn.
Without the SUB sub-operation of HVL-Prime, the RLS-

GP∗ is able to fit the complete training set in polynomial
time, since mutations which insert additional copies of any
variable into the tree would never improve the fitness of the
current solution, and hence would never be accepted.
Theorem 16. The RLS-GP∗ algorithm, using the HVL-
Prime mutation operator without the SUB operation, with
F = {AND} and L = {x1, . . . , xn} will find the optimum
of ANDn,m in expected O(n log n) iterations when using the
complete training set.

We now show that the non-strictly elitist RLS-GP algo-
rithm is able to fit the complete training set in polynomial
time even with the full HVL-Prime mutation operator. Since
the RLS-GP is able to accept solutions with identical fitness,
it can reduce the number of copies of undesired variables via
random walks, eventually allowing it to remove the last copy
of each of the undesired variables. We begin by observing
that the current solution does not increase beyond a certain
size in the time required to fit the training set.
Lemma 17. The number of terminals in the current solu-
tion of the RLS-GP algorithm, using the HVL-Prime muta-
tion operator with F = {AND} and L = {x1, . . . , xn}
on ANDn,m, remains below 3n during the first O(n log n)
iterations with high probability.

Having established a bound on the maximum size of the
tree during the first O(n log n) iterations of the RLS-GP on
ANDn,m, we can proceed to bound its runtime.
Theorem 18. The RLS-GP algorithm, using the HVL-
Prime mutation operator with F = {AND} and
L = {x1, . . . , xn} will find the optimum of ANDn,m in
O(n log n) iterations with probability 1− o(1).

6.2 Dynamic polynomial-size training sets

A polynomially-sized training set can be used to produce
a solution with a polynomially small generalisation error.
In this case we restrict the maximum size of the tree the
RLS-GP algorithm will accept (as is common in applica-
tions of GP to avoid the rapid increase of program size
without significant return in fitness, i.e., bloat (Koza 1992;
Poli, Langdon, and McPhee 2008)), and compare the fitness
of two solutions by sampling S rows from the complete truth
table independently at random in each iteration.
Theorem 19. For any desired generalisation error n−c,
where c > 0 is a constant, the RLS-GP algorithms with
a tree size limit Tmax = c log2 n and sampling set size
S ∈ Ω(n2c+1) can construct a solution with the desired gen-
eralisation error on the ANDn,m problem in expectation in
O(cn log(n) log(m)) iterations.

We note that without the restriction on Tmax, it is possi-
ble for the GP’s current solution to collect too many incor-
rect variables, which reduces the probability that mutations
which increase/decrease the number of distinct correct vari-
ables are correctly identified as improving/reducing fitness,
leaving the GP system to perform a random walk where it is
easier to remove correct variables from the solution than to
insert the missing correct variables.

7 Evolving exact solutions efficiently

For the AND family of problems analysed in the previ-
ous sections, we have shown that using randomly-selected
polynomially-sized training sets yields solutions, which de-
spite generalising well, are not equivalent to the target func-
tion. In this section we show the existence of small training
sets which can be used to efficiently evolve a program that
is exactly equivalent to the target function.

Consider a minimal training set M , consisting of n rows,
where the i’th row sets xi to false and all xj (where j �= i)

1368



to true. We will show that using a static training set M (or
a training set based on M ) will allow the GP algorithms to
construct an optimal solution efficiently.
Theorem 20. The RLS-GP and (1 + 1) GP algorithms us-
ing the training set M are able to find the optimal solution
of ANDn with F = {AND} and L = {x1, . . . , xn} in ex-
pected O(n log n) fitness evaluations (or O(n2 log n) train-
ing set row evaluations)

The minimal training set M can also be used for the RLS-
GP when the target function is a conjunction of m < n vari-
ables, as is the case in the ANDn,m problem.
Theorem 21. The RLS-GP algorithms using the training
set M are able to find the optimal solution on ANDn,m

with F = {AND} and L = {x1, . . . , xn} in expected
O(n log n) fitness evaluations (or O(n2 log n) training set
row evaluations).

We expect that a similar result would also hold for the
(1 + 1) GP algorithms. However, since mutations which
simultaneously insert both correct and undesired variables
can occur and be accepted, and inserting copies of already-
present undesired variables does not affect fitness, proving
this would require a more complex random walk argument
following the style of Theorem 18.

As it does not appear to be possible for the (1+1) GP to
evolve a conjunction of n variables if their negations are also
present in the terminal set (even when using the complete
truth table, per Theorems 11 and 12), we show how a more
careful choice of the training set can be beneficial.
Theorem 22. Using a training set consisting of the n rows
of the M training set and n + 1 copies of the row setting
all variables to true, and L = {x1, . . . , xn, x1, . . . , xn}, the
RLS-GP and (1 + 1) GP algorithms are able to construct
the optimal solution to ANDn in O(n log n) iterations.

A similar effect can be achieved by using a population
with an explicit diversity mechanism, rather than adding
n additional copies of the all-true row. To the best of our
knowledge this is the first time the benefits of using a popu-
lation in GP systems have been rigorously proved. We con-
sider the (μ + 1) GP algorithm, which maintains a popula-
tion of μ trees. In each iteration, an offspring is produced by
selecting an ancestor uniformly at random from the current
population and applying HVL-Prime k = 1 + Poisson(1)
times. If the fitness of the offspring is at least that of the
worst individual in the population, it replaces that individual.
With the phenotype diversity mechanism, offspring which
exactly replicate the training set behaviour of any individual
already present in the population are not accepted, even if
their fitness is better than that of the worst individual in the
population.
Theorem 23. Using a training set consisting of the n rows
of the M training set and a single copy of the row setting
all variables to true, and L = {x1, . . . , xn, x1, . . . , xn}, the
(μ+1) GP algorithm, with μ ≥ n+2 and using phenotype
diversity, when initialised with μ empty solutions, construct
the optimal solution in expected O(μn log n) iterations.

Thus, we have shown that there exist training sets con-
taining just O(n) rows which allow the GP algorithms to

construct the exact target function in polynomial time on the
AND family of problems, even when the terminal set L con-
tains negated literals or extra variables.

8 Conclusion
In this paper, a considerable step has been made towards the
understanding of the working principles of general purpose
GP systems for evolving programs with a given function-
ality. We presented a time and space complexity analysis
of the RLS-GP and the (1 + 1) GP algorithms for evolv-
ing Boolean conjunctions (i.e., the ANDn problem). A fixed
budget analysis for ANDn provided a relationship between
the expected error produced by the evolved program and the
time the algorithm is allowed for the optimisation when local
mutations are used. We made a considerable step forward to-
wards the analysis of realistic GP systems by equipping the
algorithms with more realistic mutation operators with large
neighbourhoods, and by extending the function and terminal
sets with more than just the minimal elements.

For ANDn with minimal function and terminal sets we
show that the (1 + 1) GP and (1 + 1) GP∗ algorithms pro-
duce a solution fitting the complete training set in Θ(n log n)
iterations and prove that this solution is of size Θ(n). When
the size of the training set is limited to a polynomial of n,
these GP systems produce logarithmically-sized solutions
which generalise well.

Concerning the extended function set, when negated vari-
ables are also included in the terminal set for ANDn, the al-
gorithms encounter great difficulties in fitting the complete
training set. Nevertheless, the solutions have overwhelm-
ingly good generalisation capabilities over the training set
under uniform distribution. On the other hand, for extended
terminal sets when the set of variables used by the target
function is unknown to the GP algorithm (i.e. the ANDn,m

setting), we have demonstrated that the non-strictly elitist
RLS-GP has an advantage over the RLS-GP∗.

Overall, interesting characteristics of the considered
benchmark function may be derived from the presented
work. When using the minimal sets and the complete truth
table, the problem is very similar to the ONEMAX coupon
collecting benchmark problem used in evolutionary optimi-
sation (Droste, Jansen, and Wegener 2002; Oliveto and Yao
2011). Hence, it is ideal as an easy benchmark function to
evaluate the hillclimbing characteristics of GP systems.

However when smaller training sets are used, the problem
characteristics change considerably. In a training set of poly-
nomial size drawn uniformly at random from the complete
truth table of ANDn, all the training set points return 0 in
output with overwhelming probability (w.o.p.). This means
that a constant function that always returns 0 will generalise
well. We see this in our analysis where, with minimal termi-
nal and function sets, a logarithmic number of conjunctions
suffice to fit the polynomial training sets. These solutions
are somewhat similar to those evolved in (Valiant 2009).
However, when negated variables are also allowed, then con-
stant functions that always return 0 are easily evolved. While
these functions are trap points from which it is hard to es-
cape on the complete training set, they fit a polynomial size
training set (w.o.p.). In both cases the programs will return

1369



the correct output (w.o.p.) over randomly drawn rows from
the complete training set. It is fair, though, to assume that
in many practical applications of ANDn circuits, the only
input returning a true value occurs far more often than any
other single input. An interesting future research direction is
to consider such a scenario for the evolution of conjunctions.

Overall, defining an “easy” benchmark function to eval-
uate the generalisation capabilities of GP systems still re-
mains an open problem. Benchmark functions where prob-
lems such as bloat and overfitting (Koza 1992) can be stud-
ied in further detail also need to be devised. Further direc-
tions for future work are to consider analyses of algorithms
with more comprehensive terminal and function sets, along
the way towards the analysis of more sophisticated and real-
istic population based GP systems.

Acknowledgements Financial support by the Engineering
and Physical Sciences Research Council (EPSRC Grant No.
EP/M004252/1) is gratefully acknowledged.

References

Al-Sahaf, H.; Al-Sahaf, A.; Xue, B.; Johnston, M.; and Zhang,
M. 2017. Automatically evolving rotation-invariant texture im-
age descriptors by genetic programming. IEEE Transactions on
Evolutionary Computation 21(1):83–101.
Archetti, F.; Lanzeni, S.; Messina, E.; and Vanneschi, L. 2007.
Genetic programming for computational pharmacokinetics in drug
discovery and development. Genetic Programming and Evolvable
Machines 8(4):413–432.
Doerr, B., and Goldberg, L. A. 2010. Drift analysis with tail
bounds. In Proceedings of the Parallel Problem Solving from Na-
ture conference (PPSN XI), 174–183.
Doerr, B.; Kötzing, T.; Lagodzinski, J. A. G.; and Lengler, J.
2017. Bounding bloat in genetic programming. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO
2017), 921–928.
Doerr, B.; Johannsen, D.; and Winzen, C. 2012. Multiplicative
drift analysis. Algorithmica 64(4):673–697.
Doerr, B. 2011. Analyzing randomized search heuristics: Tools
from probability theory. In Auger, A., and Doerr, B., eds., Theory
of Randomized Search Heuristics: Foundations and Recent Devel-
opments. World Scientific. chapter 1, 1–20.
Droste, S.; Jansen, T.; and Wegener, I. 2002. On the analysis of
the (1+1) evolutionary algorithm. Theoretical Computuer Science
276(1-2):51–81.
Durrett, G.; Neumann, F.; and O’Reilly, U. 2011. Computational
complexity analysis of simple genetic programming on two prob-
lems modeling isolated program semantics. In Proceedings of the
Foundations of Genetic Algorithms workshop (FOGA 2011), 69–
80.
Feldman, V. 2008. Evolvability from learning algorithms. In
Dwork, C., ed., Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada,
May 17-20, 2008, 619–628. ACM.
Feller, W. 1968. An introduction to probability theory and its
applications. Wiley.
He, J., and Yao, X. 2001. Drift analysis and average time complex-
ity of evolutionary algorithms. Artificial Intelligence 127(1):57–
85.

Jansen, T., and Zarges, C. 2014. Performance analysis of ran-
domised search heuristics operating with a fixed budget. Theoret-
ical Computer Science 545:39–58.
Jansen, T. 2013. Analyzing Evolutionary Algorithms - The Com-
puter Science Perspective. Natural Computing Series. Springer.
Kötzing, T.; Sutton, A. M.; Neumann, F.; and O’Reilly, U. 2014.
The MAX problem revisited: The importance of mutation in ge-
netic programming. Theoretical Computer Science 545:94–107.
Koza, J. R. 1992. Genetic programming - on the programming
of computers by means of natural selection. Complex adaptive
systems. MIT Press.
Koza, J. R. 2010. Human-competitive results produced by genetic
programming. Genetic Programming and Evolvable Machines
11(3-4):251–284.
Langdon, W. B., and Poli, R. 2002. Foundations of genetic pro-
gramming. Springer.
Liu, L., and Shao, L. 2013. Learning discriminative representa-
tions from RGB-D video data. In Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2013),
1493–1500.
Mambrini, A., and Oliveto, P. S. 2016. On the analysis of simple
genetic programming for evolving boolean functions. In Proceed-
ings of Genetic Programming - 19th European Conference (Eu-
roGP 2016), 99–114.
Mitzenmacher, M., and Upfal, E. 2005. Probability and com-
puting: Randomized algorithms and probabilistic analysis. Cam-
bridge University Press.
Oliveto, P. S., and Witt, C. 2011. Simplified drift analysis for
proving lower bounds in evolutionary computation. Algorithmica
59(3):369–386.
Oliveto, P. S., and Witt, C. 2012. Erratum: Simplified drift
analysis for proving lower bounds in evolutionary computation.
arXiv:1211.7184.
Oliveto, P. S., and Yao, X. 2011. Runtime analysis of evolutionary
algorithms for discrete optimization. In Auger, A., and Doerr, B.,
eds., Theory of Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific. chapter 2, 21–52.
O’Neill, M.; Vanneschi, L.; Gustafson, S. M.; and Banzhaf, W.
2010. Open issues in genetic programming. Genetic Programming
and Evolvable Machines 11(3-4):339–363.
O’Reilly, U.-M., and Oppacher, F. 1996. A comparative analysis
of GP. In Advances in Genetic Programming 2. MIT Press. 23–44.
Poli, R.; Langdon, W. B.; and McPhee, N. F. 2008. A Field Guide
to Genetic Programming. http://lulu.com.
Rowe, J. E., and Sudholt, D. 2014. The choice of the offspring
population size in the (1, λ) evolutionary algorithm. Theoretical
Computer Science 545:20–38.
Schuh, M. A.; Angryk, R. A.; and Sheppard, J. W. 2012. Evolving
kernel functions with particle swarms and genetic programming.
In Proceedings of the Twenty-Fifth International Florida Artificial
Intelligence Research Society Conference (FLAIRS 2012).
Song, D.; Heywood, M. I.; and Zincir-Heywood, A. N. 2005.
Training genetic programming on half a million patterns: an exam-
ple from anomaly detection. IEEE Transactions on Evolutionary
Computation 9(3):225–239.
Valiant, L. G. 2009. Evolvability. Journal of the ACM 56(1).
Wagner, M.; Neumann, F.; and Urli, T. 2015. On the performance
of different genetic programming approaches for the SORTING
problem. Evolutionary Computation 23(4):583–609.

1370


