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Abstract

Locality preserving projection (LPP) is a well-known method
for dimensionality reduction in which the neighborhood
graph structure of data is preserved. Traditional LPP employ
squared F-norm for distance measurement. This may exag-
gerate more distance errors, and result in a model being sen-
sitive to outliers. In order to deal with this issue, we pro-
pose two novel F-norm-based models, termed as F-LPP and
F-2DLPP, which are developed for vector-based and matrix-
based data, respectively. In F-LPP and F-2DLPP, the distance
of data projected to a low dimensional space is measured by
F-norm. Thus it is anticipated that both methods can reduce
the influence of outliers. To solve the F-norm-based models,
we propose an iterative optimization algorithm, and give the
convergence analysis of algorithm. The experimental results
on three public databases have demonstrated the effectiveness
of our proposed methods.

Introduction

High-dimensional data are widely acquired in modern image
process and computer vision research (Schadt et al. 2010).
The high-dimensionality of data not only increases com-
putational complexity and memory requirements in algo-
rithms, but also adversely affects their performance in real
applications. In many practical problems, one can confirm
that the high dimensional data in general lie in or close to
a low dimensional space or manifold (Wang et al. 2017).
Thus how to effectively and properly find low-dimensional
embedding of high dimensional data becomes a meaning-
ful and urgent problem in the big data era. The past few
decades have witnessed great progress in the research on
dimensionality reduction algorithms and models (He et al.
2005; Yan et al. 2005; Xu, Caramanis, and Mannor 2013;
Wang, Q. Gao, and Nie 2017).

Principal component analysis (PCA) (Jolliffe 1986) is one
of classical dimensionality reduction methods and wide uti-
lized in scientific research. PCA aims to learn a linear trans-
formation by maximizing the variance of projected data or
equivalently minimizing the reconstruction error when re-
covering the data from their low dimensional counterpart.

Linear discriminant analysis (LDA) (Belhumeur, Hes-
panha, and Kriegman 1997) and locality preserving projec-
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tion (LPP) (He and Niyogi 2003) are two other popular ways
of dimensionality reduction. As a supervised learning ap-
proach, LDA aims at learning a discriminant projection ma-
trix by maximizing the ratio of the between-class distance
to the inter-class distance. LPP seeks for the low dimen-
sional projection so that the locality structure of data can
be well preserved. This has been implemented by building
a graph neighborhood information of the data points, then
using the Laplacian of the graph to learn a projection ma-
trix which maps the data points to a subspace where the
original locality structure is preserved. These methods have
been used in object recognition (Yanadume et al. 2004; Iosi-
fidis et al. 2012), face recognition (Turk and Pentland 1991;
Zhao and Phillips 1999; Xu et al. 2010) and image recogni-
tion (Feng et al. 2006).

However, these dimensionality reduction methods are
sensitive to outliers because they all rely on the squared
F-norm which magnifies the effect of outliers. It is well-
known that the l1-norm is robust to outliers (Brooks, Dul,
and Boone 2013; Meng, Zhao, and Xu 2012). In order to al-
leviate this effect, Ke and Kanade (Ke and Kanade 2005)
proposed the robust PCA called PCA-L1, which uses l1-
norm to minimize the reconstruction error. PCA-L1 achieves
robust results, however, it usually gets the local optimal so-
lution due to the discontinuity of the objective function. Mo-
tivated by the advantage of using l1-norm, Zhong and Zhang
(Zhong and Zhang 2013) proposed LDA-L1. It maximized
the l1-norm based objective function and a greedy algo-
rithm was suggested to learn a discriminant projection ma-
trix. However, the model is not rotational invariant and the
solution seriously depends on the selection of initial point.
Yu et al (Yu et al. 2011) proposed an enhanced locality pre-
serving projection (ELPP), and this model just focuses on
building robust graph structure, and is not really robust to
outliers. Recently, F-norm-based methods (Li et al. 2017;
Xu et al. 2017), which are derived from squared F-norm,
were proposed to be used as an alternative measure in objec-
tive functions. It is said that F-norm has less contribution to
outliers than the squared F-norm, meanwhile it overcomes
the shortcomings of l1-norm with the rotational invariant.

Although some of the aforementioned methods are robust
to outliers, they are concerned with vectorial data. When we
have 2D or high-order data, a typical workaround is to vec-
torize 2D data, which may break their structure and discard
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valuable spatial information existed in data . In this case,
some methods for 2D data are proposed, such as two di-
mensional principal component analysis (2DPCA) (Yang et
al. 2004) and two dimensional locality preserving projec-
tion (2DLPP) (Hu, Feng, and Zhou 2007; Zhang, Zhao, and
Xiong 2010), which are extended from vectorial data to ma-
trix data. In order to alleviate their sensitivity to outliers, two
dimensional l1-norm based methods were proposed. Wang
et al (Wang et al. 2015) proposed robust 2DPCA with l1-
norm (denoted by 2DPCA-L1) by using l1-norm to measure
reconstruction error. Pang et al (Pang, Li, and Yuan 2010)
proposed tensor l1-norm subspace learning. But these l1-
norm based methods are not rotational invariant.

Motivated by the advantage of robust to outliers of F-
norm, Wang and Gao (Wang and Gao 2017) propose F-norm
2DPCA (F-2DPCA), which uses F-norm to replace squared
l2-norm and achieves robustness. However, F-2DPCA only
takes into account the global information of data ignoring
local structural information among data points.

In this paper, we firstly propose the robust LPP with F-
norm termed as F-LPP, and then extend F-LPP for 2D data
(F-2DLPP). In F-LPP, the distance is measured in terms
of F-norm, and summarizing the distance among different
points. In F-2DLPP, the data is represented by matrix for
keeping spatial structure. We develop an iterative algorithm
to solve F-LPP and F-2DLPP.

This paper has following main contributions:
• Firstly we propose F-norm based LPP model, our method

is robust to outliers, meanwhile it keeps the advantage of
LPP.

• Secondly, we extend the vector-based F-LPP to matrix-
based F-2DLPP, which can make use of structural infor-
mation within 2D data.

• Finally, an iterative optimization algorithm is given to
minimize the distance in projected space. The conver-
gence analysis of the objective function for the proposed
algorithm is proved.
The rest of the paper is organized as follows. In Section 2,

we review the necessary knowledge for classic Locality Pre-
serving Projections algorithm (LPP). We use F-norm instead
of the squared F-norm as metric distance to measure the dis-
tance in projected space with LPP in Section 3. In Section 4,
the performance of the proposed methods are evaluated on
several public facial databases. In the last section, we con-
clude the paper.

Locality Preserving Projection (LPP)

Let X = {x1,x2, · · · ,xN} be N training samples, where
each xi ∈ R

H is the i-th sample with dimension H . Local-
ity Preserving Projection (LPP) seeks for a projection vector
a ∈ R

H , that is, yi = aTxi fulfills the following objective
function,

min
a

N∑
i,j

(yi − yj)
2wi,j =

N∑
i,j

1

2
(aTxi − aTxj)

2wij , (1)

where W ∈ R
N×N is a symmetric weight matrix whose el-

ements wij measure the similarity or affinity of data points.

For example, if xi and xj are connected, its element wij is
defined by so-called Gaussian heat kernel,

wij =

{
e−

‖xi−xj‖2
t if xi and xj are connected

0 otherwise

where t is the kernel width parameter.
As the tradition, we assume the data set X has been cen-

tralized. To avoid a trivial solution for problem (1), it is a
common practice to impose a constraint as:

aTXDXTa = 1,

where D is a diagonal matrix whose elements are column
sum of matrix W with dii =

∑
j wij . Thus the final optimal

problem becomes

min
a

N∑
i,j

1

2
(aTxi − aTxj)

2wij = aTXLXTa,

s.t. aTXDXTa = 1.

Where L = D−W is the Laplace matrix.
It is easy to show that the optimal projection vector a can

be solved by the minimum eigenvalue solution,

XLXTa = λXDXTa. (2)

In fact, we can reformulate the above optimal problem as
the one for a number of optimal projection as a projection
matrix A. That is, we can seek for h projection vectors so
that the data with H dimension can reduce to h. The overall
LPP model is defined as

min
A

N∑
i,j

1

2
‖ATxi −ATxj‖2wij = ATXLXTA,

s.t. ATXDXTA = I.

Similarly, all the projection vectors in A can be solved
from the generalized eigenvector problem as defined in
equation (2).

The LPP Model Based on F-norm

In this section, we firstly propose the LPP model based on
F-norm distance for vector variate, and then extend it to the
case for matrix variate.

The LPP Model Based on F-norm for Vector
Variate (F-LPP)

Although the conventional LPP based on squared F-norm
distance measurement has been successful for many appli-
cations, it is vulnerable to outliers because the large error
can be exaggerated by the use of squared F-norm. Compared
with squared F-norm, F-norm can weaken the effect of out-
liers. Inspired by this, it is reasonable to replace the squared
form with just F-norm in the classical LPP model, and get
following model.

min
A

∑
i,j

1

2
||ATxi −ATxj ||F · wij . (3)
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Model (3) is so called F-LPP, whose distance is measured
by F-norm. Compared with the classical LPP with squared
F-norm, the novel F-LPP is not vulnerable to outliers. In
fact, the objective function of model (3) is derived from the
following form,∑

i,j

1

2
||ATxi −ATxj ||F · wij

=
1

2

∑
i,j

||ATxi −ATxj ||2Fwij

||ATxi −ATxj ||F .

Let
w′ij =

wij

||ATxi −ATxj ||F . (4)

Thus, the above objective function can be written as

min
A

1

2

∑
i,j

||ATxi −ATxj ||2Fw′ij . (5)

However the objective in (5) is significantly different from
the original LPP objective function in (1) because w′ij is in
fact the function of A.

In order to learn the projection matrix A, similar to the
classic LPP, we impose the constraint ATXDXTA = I.
Finally, F-LPP model (3) can be transformed to following
form

min
A,W′

1

2

∑
i,j

||ATxi −ATxj ||2Fw′ij ,

s.t. ATSrA = I;

(6)

where Sr = XDXT determined by the original wij .
We are considering a new optimization with respect to two

unknown variables A and W′ in problem (6). Thus by de-
coupling the function relation between W′ and A, we end
up with a relaxed optimization problem. Two variables will
be optimized in an alternative way by optimizing one vari-
able while fixing the other.

Specifically, when W′ is known, we can learn A by min-
imizing equation (6) which is equivalent to a classic LPP
problem. In fact, treating W′ as a constant matrix and de-
noting diagonal matrix D′ with its element d′ii =

∑
j w

′
ij

and Laplace matrix L′ = D′ −W′ , the optimization prob-
lem becomes

min
A

1

2
tr(ATXL′XTA),

s.t. ATSrA = I.

(7)

Hence A is solved by the following eigenvalue problem

XL′XTA = ΛSrA, (8)

where Λ is a diagonal matrix consisting of all the general-
ized eigenvalues.

When A is fixed, we will update the new affinity matrix
W′ by equation (4).

The iterative optimization algorithm for F-LPP is summa-
rized in Algorithm 1.

Algorithm 1 Optimization Algorithm for F-LPP Model
Require:

Training set X = {xi}, i = 1, · · · , N , and the maximal
iteration number Itr.
Initialize projection matrices A and Laplace matrix W
and Sr = XDXT .

1: for t = 1 to Itr do
2: For all training points, calculate W′ by equation (4)

and D′, L′ = D′ −W′.
3: Solve (7) for A by generalized eigenvector problem

(8) such that A’s columns consist of the eigenvectors
corresponding to the h minimum eigenvalues.

4: if convergence then
5: break;
6: end if
7: end for

Ensure:
Projection matrix A

The LPP Model Based on F-norm for Matrix
Variate (F-2DLPP)

LPP algorithm works only for vectorial variate. For 2D data,
a typical approach is to vectorize them. This may destroy the
spatial structure of data and ignore the valuable information
about the spatial relationships. This section will extend F-
LPP model to the case for 2D data, namely F-2DLPP.

Given N training samples X = {Xi} (i = 1, · · · , N )
with Xi ∈ R

m×n being matrix data. W ∈ R
N×N is the

affinity matrix of data. F-2DLPP aims to find a projection
matrix U by minimizing the F-norm distance in a projected
space. That is

min
U

∑
i,j

1

2
||UTXi −UTXj ||F · wij ,

where U ∈ R
m×l (l ≤ m) is the projection matrix.

Similar to (5), the objective function of F-2DLPP is equiv-
alent to following formula∑

i,j

1

2
||UTXi −UTXj ||F · wij

=
1

2

∑
i,j

tr(UT (Xi −Xj)(Xi −Xj)
TU)wij

||UTXi −UTXj ||F

=
1

2

∑
i,j

tr(UT (Xi −Xj)(Xi −Xj)
TU)w′ij .

Adding a constraint condition, the F-2DLPP model can be
rewritten as

min
U

1

2
tr(UTTlU),

s.t. UTTrU = I;

(9)

where
Tl =

∑
i,j

(Xi −Xj)(Xi −Xj)
Tw′ij ,

Tr =

N∑
i=1

XidiiX
T
i .

(10)
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In order to learn matrix U, we still use the two-step iter-
ation algorithm. So the matrix U is obtained by the eigen-
value decomposition of TlU = ΛTrU with the l minimum
eigenvalues, then W′ is updated by fixing U. The optimiza-
tion algorithm of F-2DLPP is summarized in Algorithm 2.

Algorithm 2 Optimization Algorithm for F-2DLPP Model
Require:

Training set X = {Xi}, i = 1, · · · , N , and the maximal
iteration number Itr.
Initialize projection matrix U and Laplace matrix W
and Tr by equation (10).
Updating:

1: for t = 1 to Itr do
2: For all training points, calculate W′ by w′ij =

wij/||UTXi −UTXj ||F and D′, L′ = D′ −W′.
3: Solving (9) for U by generalized eigenvector prob-

lem TlU = λTrU, such that U’s columns consist
of the eigenvectors corresponding to the l minimum
eigenvalues.

4: if convergence then
5: break;
6: end if
7: end for

Ensure:
Projection matrix U.

Convergence Analysis

Now we provide a convergence analysis for Algorithm 1.
The main result is presented in the following theorem.

Theorem 1 The objective function value sequence pro-
duced by the iterative optimization algorithm in Algorithm
1 is monotonically decreased, that is

N∑
i,j

||(A(t+1))Txi − (A(t+1))Txj ||F · wij

≤
N∑
i,j

||(A(t))Txi − (A(t))Txj ||F · wij .

(11)

Proof: In each iteration, minimizing (6) by the eigenvalue
problem XL′XTA = ΛSrA, we have

N∑
i,j

||(A(t+1))Txi − (A(t+1))Txj ||2F
||(A(t))Txi − (A(t))Txj ||F wij

≤
N∑
i,j

||(At)Txi − (At)Txj ||2F
||(A(t))Txi − (A(t))Txj ||F wij .

(12)

As wij ≥ 0, we can absorb wij inside the norm operators

and equation (12) becomes

N∑
i,j

||[(A(t+1))Txi − (A(t+1))Txj ]wij ||2F
||[(A(t))Txi − (A(t))Txj ]wij ||F

≤
N∑
i,j

||[(At)Txi − (At)Txj ]wij ||2F
||[(A(t))Txi − (A(t))Txj ]wij ||F .

(13)

According to a2 + b2 ≥ 2ab, i.e. for any a > 0

b2

a
≥ 2b− a,

we can get inequality,

2||[(A(t+1))Txi − (A(t+1))Txj ]wij ||F
− ||[(A(t))Txi − (A(t))Txj ]wij ||F
≤ ||[(A(t+1))Txi − (A(t+1))Txj ]wij ||2F

||[(A(t))Txi − (A(t))Txj ]wij ||F .

(14)

Summing up equation (14) for each pair i, j, we have

N∑
i,j

2||[(A(t+1))Txi − (A(t+1))Txj ]wij ||F

−
N∑
i,j

||[(A(t))Txi − (A(t))Txj ]wij ||F

≤
N∑
i,j

||[(A(t+1))Txi − (A(t+1))Txj ]wij ||2F
||[(A(t))Txi − (A(t))Txj ]wij ||F .

(15)

Combining (13) and (15), we have

N∑
i,j

2||[(A(t+1))Txi − (A(t+1))Txj ]wij ||F

−
N∑
i,j

||[(A(t))Txi − (A(t))Txj ]wij ||F

≤
N∑
i,j

||[(A(t))Txi − (A(t))Txj ]wij ||2F
||[(A(t))Txi − (A(t))Txj ]wij ||F .

(16)

Simplifying (16), we obtain the following formula

N∑
i,j

||(A(t+1))Txi − (A(t+1))Txj ||F · wij

≤
N∑
i,j

||(A(t))Txi − (A(t))Txj ||F · wij .

Thus, the proof of Theorem 1 is completed.
Theorem 2 Suppose that the sequence {A(t)}∞t=1 gen-

erated by Algorithm 1 converges to A∗, then A∗ satis-
fies the KKT conditions of problem (3) with the constraint
A∗TSrA

∗ = I.
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Proof: Under the constraint ATSrA = I, the Lagrangian
function of problem (3) is

L1(A) =
1

2

N∑

i,j

‖ATxi −ATxj‖Fwij − tr(Λ(ATSrA− I)),

where Λ is the Lagrangian multiplier.
Also the Lagrangian function of problem (7) (i.e. (6)) is

given by

L2(A) =
1

2

N∑

i,j

‖ATxi −ATxj‖2Fw′
ij − tr(Λ(ATSrA− I)).

According to step 3 in Algorithm 1, A(t+1) is the stationary
point of L2(A) where w′ij is defined by A(t), i.e.,

N∑
i,j

w′ij(xi − xj)(xi − xj)
TA(t+1) = ΛSrA

(t+1). (17)

and w′ij = wij/‖A(t)Txi−A(t)Txj‖F . According to The-
orem assumption and w′ij is a continuous function of A(t),
taking t → ∞ on both sides of (17) gives

N∑

i,j

wij

‖A∗Txi −A∗Txj‖F (xi − xj)(xi − xj)
TA∗ = ΛSrA

∗,

which means A∗ is a stationary point of L1(A). Hence A∗
is a KKT point of problem (3).

This completes the proof of Theorem 2.
Remark 1: Both Theorems 1 and 2 ensure that the con-

verged sequence produced by Algorithm 1 is a local min-
imum of the F-LPP problem (3). Also we shall note the
sequence generated by Algorithm 1 is bounded according
to the constraint condition, hence there exists at least an
accumulation point for the sequence, i.e., a subsequence
{A(tk)}∞k=1 which is convergent.

Remark 2: Theorem 1 shows that, for the sequence
{(A(t),W′(t))}, the objective value is declining towards the
optimal value.

In experiment, we empirically show the phenomenon of
the objective convergence.

Remark 3: A similar convergence conclusion can be es-
tablished for F-2DLPP in Algorithm 2. To save space, we
simply skip it.

Experimental Results and Analysis

In this section, we conduct several experiments to evaluate
the proposed F-LPP and F-2DLPP models on three public
face databases: Extended Yale B, CMU-PIE and AR. These
experiments are designed to demonstrate the robustness for
outliers and the performance of the two proposed models
in feature extraction by comparing with other related algo-
rithms. In experiments, we use 1 nearest neighbor (1NN)
classifier.

Figure 1: Sample images with/without outliers from Ex-
tended Yale B database.

The Extended Yale B is face database 1 , which includes
38 individuals with 64 frontal-face images of each individ-
ual. The 64 photos of each one describe intra-class varia-
tions, such as illumination, expression and poses. The 64
images of one person are taken from 5 different angles and
divided into 5 subsets. In the experiment, 31 individuals are
randomly chosen, 40 images of each individual are used for
the training data and the rest of images are used for test-
ing. In addition, some training images and test images of
each person have white or black dots added as noise. The
positions of outliers are randomly distributed and their sizes
range from 5 × 5 to 7 × 7. Figure 1 shows some samples
with or without outliers of one person. All images are in
gray-scale and resized to 32 × 32.

The CMU-PIE face database 2 contains 1632 frontal-face
images of 68 individuals, which describe the intra-class vari-
ation, such as illumination and expression. In our experi-
ment, we choose 21 images of each individual, among which
we use 15 images, a total of 1020 images for training and 6
images, a total of 408 images for testing. We randomly se-
lect training and test images of each person to add occlusion
as that in Extended Yale B database. Each image is in gray-
scale and normalized to 32 × 32.

The AR face database 3 contains over 4,000 color images
corresponding to 126 people’s faces. The images were taken
in two sessions. Each session consists of 13 images, which is
7 frontal face images and 6 images with occlusion, as scarf
or glasses. Each session presents the variation of expression,
illumination condition and occlusion. Sample images of one
person are shown in Figure 2. In our experiment, we ran-
domly select 13 images of each individual for a total of 1300
images as the training set and the rest for testing. All images
are normalized to 32 × 32.

We firstly do experiments to evaluate the robustness of F-
LPP to outliers.

To test robustness, we compare the recognition rate of
LPP and F-LPP with different percentage of outliers in train-
ing images on Extended Yale B and CMU-PIE databases. As
shown in Table 1 that our method is generally higher than
LPP. Though the recognition rates of LPP and F-LPP are
all decreasing with the increase of outliers percentage, our

1http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.
html

2http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-
Pie/Home.html

3http://www2.ece.ohio-state.edu/∼aleix/ARdatabase.html
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Figure 2: Sample images of one person under two sessions on AR face database.
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Figure 3: Recognition rate of F-LPP under the different feature numbers on three public databases.

PCT Extended Yale B CMU-PIE
LPP F-LPP LPP F-LPP

0 88.58 89.22±0.32 1 1
5 87.23 87.58±0.11 88.97 94.27±0.13

10 83.46 85.03±0.22 88.24 93.87±0.17

20 76.21 81.67±0.28 87.01 93.63±0.31

30 70.17 79.44±0.14 86.52 93.14±0.26

Table 1: The first column is the percentage (PCT) of outliers
in image data. The last four columns are average recognition
rate(%) and variances on Extended Yale B and CMU-PIE
databases.

method has a lower decreasing speed than LPP, which illus-
trates that F-LPP can weak the effect of outliers and is more
robust to outliers than squared F-norm.

Besides the robustness, the F-LPP still keeps the advan-
tage of classical LPP, making the “close” data points still
close after mapping.

Then we compare the recognition performance at differ-
ent feature numbers of F-LPP with five other algorithms:
LPP, PCA, PCA-L1, LDA and LDA-L1 on three databases.
Each algorithm is run 10 times and the mean value of recog-
nition rate and covariance is recorded. The curve shows the
trend of recognition rate in Figure 3. From these results, we
find that F-LPP is generally superior to the other five algo-
rithms, even if there exists outliers in images on Extended
Yale B, CMU-PIE and AR databases, respectively. In addi-
tion, Figure 4 illustrates the convergence of our F-LPP in
three databases.

Table 2 lists the average recognition rates and variances
of six methods at a given feature number on Extended Yale
B, CMU-PIE and AR databases, respectively. It can be seen
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Figure 4: The convergence curves produced by F-LPP on
three public databases.

Method Databases
Extended

Yale B CMU-PIE AR

PCA 41.67±0 68.63±0 51.46±0
PCA-L1 47.90±0.24 73.04±0.79 50.91±0.20

LDA 74.33±0 83.58±0 73.08±0
LDA-L1 43.01±0 73.77±0 56.23±0

LPP 76.48±0 85.78±0 78.15±0
F-LPP 79.93±0.16 92.30±0.21 79.01±0.22

Table 2: The mean recognition rates (%) and variances of six
vector variate based methods on three public databases.
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Figure 5: Recognition rate of F-2DLPP under the different feature numbers on three public databases.

Method Runtime (s)
Extended

Yale B CMU-PIE AR

PCA 1.30±0.25 0.96±0.03 1.18±0.09
PCA-L1 54.90±0.73 36.14±0.42 55.24±0.39

LDA 9.16±0.33 71.18±0.46 9.78±0.17

LDA-L1 110.97±
1.65 13.28±0.22 117.16±

4.25
LPP 1.38±0.06 1.21±0.04 0.50±0.01

F-LPP 3.41±0.14 4.60±0.08 14.16±0.32

Table 3: The runtime(s) of six vector based methods on the
three public databases.

Method Databases
Extended

Yale B CMU-PIE AR

2DPCA 54.44±0 87.25±0 55.23±0
2DPCA-L1 57.50±0.06 89.80±0.22 55.14±0.06
F-2DPCA 59.27±0 90.39±0 55.23±0

2DLPP 79.70±0 97.55±0 69.31±0
F-2DLPP 83.76±0.48 99.11±0.01 69.41±0.27

Table 4: The average recognition rates (%) and variances of
2D variate based methods on three public databases.

that the F-LPP achieves the highest recognition rates with
acceptable variances.

Table 3 shows the runtime of six vector variate based
methods on the three public databases. Though our F-LPP
is a little slower than classical LPP and PCA, it is compara-
ble on runtime with other methods.

The second group experiment evaluates the performance
of feature extraction of F-2DLPP by comparing with 2DLPP,
F-2DPCA, 2DPCA and 2DPCA-L1. All algorithms employ
2D data representation. Figure 5 gives the recognition rates
of these algorithm on three different databases. These recog-
nition curves have shown that F-2DLPP is generally superior
to the other methods.

Table 4 presents the average recognition rates and vari-
ances of five 2D dimension reduction methods with a given
feature number on the three public databases. Our F-2DLPP

also has the best recognition rates compared with other al-
gorithms.

Conclusions

In this paper, we proposed two new LPP dimensionality re-
duction models based on F-norm for vector and matrix vari-
ables, named by F-LPP and F-2DLPP. Different from tradi-
tional LPP which uses squared F-norm for distance measure-
ment of data points, the proposed models employ F-norm.
Thus the new models keep the merits of classical LPP, and
will be more robust to outliers due to the F-norm contribut-
ing less to outliers. We proposed an iteration optimization al-
gorithm to solve the F-norm-based models. And the weaker
convergence analysis has been given for the algorithms. The
experimental results on the several public databases demon-
strated the effectiveness of our proposed methods.
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