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Abstract

We consider the following general graph clustering problem:
given a complete undirected graph G = (V,E, c) with an
edge weight function c : E → Q, we are asked to find a
partition C of V that maximizes the sum of edge weights
within the clusters in C. Owing to its high generality, this
problem has a wide variety of real-world applications, includ-
ing correlation clustering, group technology, and community
detection. In this study, we investigate the design of mathe-
matical programming formulations and constraint satisfaction
formulations for the problem. First, we present a novel inte-
ger linear programming (ILP) formulation that has far fewer
constraints than the standard ILP formulation by Grötschel
and Wakabayashi (1989). Second, we propose an ILP-based
exact algorithm that solves an ILP problem obtained by mod-
ifying our above ILP formulation and then performs simple
post-processing to produce an optimal solution to the original
problem. Third, we present maximum satisfiability (MaxSAT)
counterparts of both our ILP formulation and ILP-based exact
algorithm. Computational experiments using well-known real-
world datasets demonstrate that our ILP-based approaches and
their MaxSAT counterparts are highly effective in terms of
both memory efficiency and computation time.

1 Introduction

Clustering is a fundamental tool in data analysis. Roughly
speaking, the task of clustering is to divide a given set of
objects into subsets of homogeneous objects. To date, vari-
ous problem settings and optimization algorithms have been
extensively studied (Aggarwal and Reddy 2013; Jain, Murty,
and Flynn 1999; Xu and Wunsch 2005).

Let us consider the following general graph clustering
problem. An instance is a complete undirected graph G =
(V,E, c) with an edge weight function c : E → Q, where
Q is the set of rational numbers. For simplicity, we denote
cij = c({i, j}) for each {i, j} ∈ E. The edge weight
cij expresses the degree of preference that i, j ∈ V are
assigned to the same cluster; if cij is positive, we wish
to assign i, j ∈ V to the same cluster, whereas if cij is
negative, we wish to assign i, j ∈ V to different clusters.
The goal is to find a partition C = {V1, V2, . . . , Vk} (i.e.,
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⋃k
l=1 Vl = V and Vi ∩ Vj = ∅ for i �= j) of V that maxi-

mizes the sum of edge weights within the clusters in C, i.e.,∑
{i,j}∈E cijδ(C(i), C(j)), where C(i) is the (unique) cluster

to which i ∈ V belongs and δ is Kronecker’s symbol, which
is equal to 1 if two arguments are the same and 0 otherwise.
Note here that in this problem, there is no restriction on the
number of clusters in the output partition; thus, the algorithms
are allowed to specify the optimal number of clusters endoge-
nously. This problem is known as the clique partitioning prob-
lem (CPP), which was originally introduced by Grötschel and
Wakabayashi (1989). As described in Section 2, the high gen-
erality of CPP leads to a wide variety of real-world applica-
tions, including correlation clustering, group technology, and
community detection. The NP-hardness was demonstrated in
Wakabayashi (1986).

In the field of artificial intelligence, mathematical pro-
gramming and constraint satisfaction are known to be key
frameworks to solve NP-hard optimization problems. In these
frameworks, we first formulate a problem at hand as a math-
ematical programming problem or a constraint satisfaction
problem such as an integer programming (IP) problem or a
maximum satisfiability (MaxSAT) problem, and then solve
it using powerful mathematical programming or constraint
satisfaction solvers. For example, in the case of IP problems,
we may use Gurobi Optimizer or IBM ILOG CPLEX. The
problem we address, CPP, is not an exception; in fact, both
of mathematical programming formulations and constraint
satisfaction formulations have been actively developed.

Mathematical programming formulations. Grötschel
and Wakabayashi (1989) introduced a 0-1 integer linear
programming (ILP) formulation for CPP, which has been
employed by many algorithms for CPP and its variants
(e.g., (Agarwal and Kempe 2008; Bruckner et al. 2013;
Jaehn and Pesch 2013; Miyauchi and Miyamoto 2013;
Nowozin and Jegelka 2009; Oosten, Rutten, and Spieksma
2001; Van Gael and Zhu 2007)). The ILP formulation is
simple and intuitive, but not sufficiently scalable for real-
world applications in terms of both memory requirements
and computation time. In particular, the issue of memory
requirements is quite serious. Letting n = |V |, the ILP for-
mulation has 3

(
n
3

)
= Θ(n3) constrains, which grows rapidly

as n increases. For example, if n = 1,000, the number of con-
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straints reaches the order of half a billion; it is quite difficult
to store such an ILP formulation on a standard computer.

To overcome this issue, much effort has been dedicated
to constructing ILP formulations for CPP with fewer con-
straints. Dinh and Thai (2015) addressed a special case of
CPP, which is called the modularity maximization prob-
lem (Fortunato 2010; Newman and Girvan 2004), and de-
rived a set of redundant constraints in the ILP formulation
by Grötschel and Wakabayashi (1989). By removing the con-
straints in advance, they introduced an ILP formulation with
fewer constraints for the special case. Recently, Miyauchi
and Sukegawa (2015b) generalized Dinh and Thai’s result to
CPP. If m≥0 denotes the number of nonnegative-weighted
edges in G, i.e., m≥0 = |{{i, j} ∈ E : cij ≥ 0}|, the
ILP formulation by Miyauchi and Sukegawa (2015b) has
O(nm≥0) constraints, which improves on the ILP formula-
tion by Grötschel and Wakabayashi (1989) for the case in
which m≥0 is not large (e.g., m≥0 = O(n)).

However, for most real-world instances of CPP, the pa-
rameter m≥0 is large owing to the large number of edges
with weight zero; thus, the benefit of the above reformulation
is quite limited for real-world applications. In fact, com-
putational experiments in Miyauchi and Sukegawa (2015b)
demonstrated that the decrease in the number of constraints—
which is about 20% at most—is not significant. Moreover,
their reformulation does not reduce computation time signifi-
cantly; in fact, in some cases computation time increases.

Constraint satisfaction formulations. Very recently,
Berg and Järvisalo (2017) developed MaxSAT formulations
for an optimization problem called the weighted correlation
clustering problem (WCC). It should be noted that WCC is
equivalent to CPP from an exact optimization perspective
(see Example 1 in Section 2). Thus, the MaxSAT formula-
tions by Berg and Järvisalo (2017) for WCC can be seen as
exact formulations for CPP. WCC and its variants have been
actively studied in the field of artificial intelligence (Ahn
et al. 2015; Awasthi, Balcan, and Voevodski 2014; Bansal,
Blum, and Chawla 2004; Bonchi, Gionis, and Ukkonen 2013;
Chierichetti, Dalvi, and Kumar 2014; Kim et al. 2014;
Puleo and Milenkovic 2016; Van Gael and Zhu 2007).

Specifically, Berg and Järvisalo (2017) developed three
MaxSAT formulations: MaxSAT-Transitive, MaxSAT-Unary,
and MaxSAT-Binary. MaxSAT-Transitive is the MaxSAT coun-
terpart of the ILP formulation by Grötschel and Wak-
abayashi (1989). MaxSAT-Unary and MaxSAT-Binary are
MaxSAT formulations that employ the unary encoding and bi-
nary encoding techniques, respectively. In their experiments,
the MaxSAT formulations were compared with the ILP for-
mulation by Grötschel and Wakabayashi (1989). The results
of their experiments showed that MaxSAT-Binary outperforms
both the other MaxSAT formulations and the ILP formulation.
Thus, MaxSAT-Binary is known to be state-of-the-art in terms
of exact formulation for WCC and thus for CPP.

1.1 Our Contribution

In this study, we further investigate the design of mathemat-
ical programming formulations and constraint satisfaction

formulations for CPP. Our contribution can be summarized
as follows:

1. We present a novel ILP formulation for CPP in which
the number of constraints is O(nm>0), where m>0 is
the number of positive-weighted edges in G, i.e., m>0 =
|{{i, j} ∈ E : cij > 0}|.

2. We also propose an ILP-based exact algorithm for CPP.
The algorithm first solves an ILP problem obtained by
modifying our above ILP formulation and then performs
simple post-processing to obtain an optimal solution to
CPP.

3. We present MaxSAT counterparts of both our ILP formu-
lation and ILP-based exact algorithm.

4. We conduct thorough experiments to evaluate the effec-
tiveness of our ILP-based approaches and their MaxSAT
counterparts in terms of both memory efficiency and com-
putation time.

We first describe our first result above in detail. To design
our ILP formulation, we effectively use the above result by
Miyauchi and Sukegawa (2015b). Recall that they proposed
an ILP formulation for CPP that has O(nm≥0) constraints.
The serious problem with their formulation is that for most
real-world instances of CPP, the parameter m≥0 is large
owing to the large number of edges with weight zero. The
critical idea behind the design of our ILP formulation is to
perturb the edge weight function of a given instance so that
all edges with weight zero have some negative weight. By
doing this, the resulting instance has small m≥0; thus, the
ILP formulation by Miyauchi and Sukegawa (2015b) for the
resulting instance, which is our proposed ILP formulation for
the original instance, has far fewer constraints. Our theoreti-
cal analysis demonstrates that if the negative values used for
the perturbation are close to zero, the proposed formulation
obtains an optimal solution to the original instance.

We describe our second result in detail. In our ILP for-
mulation above, it is necessary to deal with some negative
perturbation values very close to zero. Unfortunately, such
values may cause numerical instability and therefore increase
computation time in practice; hence, such perturbation should
be avoided if possible. To this end, we introduce an ILP prob-
lem that is identical to our above ILP formulation for CPP
except that it uses an unperturbed objective function. This
modified ILP problem also has O(nm>0) constraints but
does not depend on the perturbation. However, the ILP prob-
lem itself is incomplete as an ILP formulation for CPP; in
fact, an optimal solution to the ILP problem may be infeasi-
ble for CPP. Thus, to obtain an optimal solution to CPP, the
algorithm also performs simple post-processing that runs in
linear time.

We next describe our third result in detail. As mentioned
above, Berg and Järvisalo (2017) introduced a MaxSAT for-
mulation called MaxSAT-Transitive, which is the MaxSAT
counterpart of the ILP formulation by Grötschel and Wak-
abayashi (1989). That is, MaxSAT-Transitive uses hard clauses
to represent the constraints in the ILP formulation and soft
clauses associated with appropriate weights to represent its
objective function. Beginning with MaxSAT-Transitive, we
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can reproduce our results for ILP in the context of MaxSAT;
specifically, we can obtain MaxSAT counterparts of both our
ILP formulation and ILP-based exact algorithm.

Finally, we describe our fourth result in detail. In a series
of experimental assessments, we compare our ILP-based ap-
proaches and their MaxSAT counterparts with the previous
formulations using well-known real-world datasets arising
in the context of correlation clustering, group technology,
and community detection. The results demonstrate that our
approaches significantly outperform the state-of-the-art for-
mulations in terms of both memory efficiency and computa-
tion time. In particular, our ILP-based approaches can solve
a real-world instance with a few thousand vertices for which
the ILP formulation by Grötschel and Wakabayashi (1989)
has more than eight billion constraints.

2 Application Examples

CPP is a general clustering problem and therefore has a wide
variety of applications. Here we provide some important
application examples.
Example 1 (Correlation clustering). Correlation clustering
was introduced by Bansal, Blum, and Chawla (2004) for
clustering with qualitative information. As an example, we
consider document clustering, in which a set of documents is
to be clustered into topics, with the hindering constraint that
there is no exact prior definition of what a “topic” constitutes.
Alternatively, it can be assumed that there exists qualitative
similarity information indicating that a number of pairs of
documents are similar or dissimilar. In such a situation, the
goal of correlation clustering is to find a partition of the set of
documents that agrees as much as possible with the similarity
information.

A mathematical formulation of correlation clustering is as
follows: Let G′ = (V ′, E+, E−) be an edge-labeled undi-
rected graph in which each edge e ∈ E+ is labeled as “+”
(similar) and each edge e ∈ E− is labeled as “−” (dissim-
ilar). Note that E+ ∩ E− = ∅ holds. The maximization
version, MAXAGREE, asks for a partition C of V ′ that max-
imizes agreements (the number of + edges within clusters
plus the number of − edges across clusters). The minimiza-
tion version, MINDISAGREE, asks for a partition C of V ′
that minimizes disagreements (the number of − edges within
clusters plus the number of + edges across clusters). These
problems are equivalent in terms of optimality and are both
NP-hard (Bansal, Blum, and Chawla 2004). WCC, which was
mentioned above, deals with edge-weighted generalizations
of both MAXAGREE and MINDISAGREE.

MAXAGREE and MINDISAGREE can be reduced to CPP.
An instance G = (V,E, c) of CPP is constructed as fol-
lows: Let V = V ′. For each {i, j} ∈ E, we set cij = 1 if
{i, j} ∈ E+, cij = −1 if {i, j} ∈ E−, and cij = 0 other-
wise. Clearly, an optimal solution to CPP corresponds to an
optimal solution to both MAXAGREE and MINDISAGREE. It
should be noted that WCC can also be reduced to CPP and
CPP can be reduced to WCC.
Example 2 (Group technology). Group technology plays
a key role in the design of efficient manufacturing sys-

tems (Groover 2007). Suppose that the goal is to develop
a manufacturing system for some new product, comprising p
parts that are processed by q machines. In such a situation,
the goal of group technology is to find a suitable partition of
the set of parts and machines needed to define an efficient
cellular manufacturing system.

As mentioned in Oosten, Rutten, and Spieksma (2001),
group technology can be modeled as CPP. An instance G =
(V,E, c) of CPP is constructed as follows: Let V be a union
of the set of p parts and the set of q machines. An edge
{i, j} ∈ E between a part i and a machine j has weight 1 if i
is processed by j and −1 otherwise. Each edge between two
parts or two machines has weight zero.
Example 3 (Community detection). Community detection
is a fundamental task in network analysis that aims to find
a partition of the set of vertices into communities (Fortu-
nato 2010). Intuitively speaking, a community is a subset
of vertices densely connected internally but sparsely con-
nected with the rest of the network. Recently, the issue of
community detection in bipartite networks has garnered a
significant amount interest (Fortunato 2010). Barber (2007)
introduced a quality function called the bipartite modular-
ity, which is appropriate for community detection in bipar-
tite networks. Let G′ = (V ′, E′) be an undirected bipar-
tite graph for which it is known that V ′ is divided into
V ′
L and V ′

R so that each edge has one endpoint in V ′
L and

the other in V ′
R. The bipartite modularity, a quality func-

tion for a partition C of V ′, can be written as Qb(C) =
1

|E′|
∑

i∈V ′
L

∑
j∈V ′

R

(
Aij − didj

|E′|
)
δ(C(i), C(j)), where Aij

is the (i, j) component of the adjacency matrix of G′ and di is
the degree of i ∈ V ′. The bipartite modularity maximization
problem is NP-hard (Miyauchi and Sukegawa 2015a).

The problem can be reduced to CPP. An instance G =
(V,E, c) of CPP is constructed as follows: Let V = V ′. An
edge {i, j} ∈ E between i ∈ V ′

L and j ∈ V ′
R has weight

Aij

|E′| − didj

|E′|2 . Each edge between two vertices in V ′
L or two

vertices in V ′
R has weight zero.

3 ILP Formulation

We first revisit the standard formulation by Grötschel and
Wakabayashi (1989) and the reformulation by Miyauchi and
Sukegawa (2015b). Let V = {1, 2, . . . , n} and P = {(i, j) :
1 ≤ i < j ≤ n}. For each (i, j) ∈ P , we introduce a decision
variable xij equal to 1 if i, j ∈ V are in the same cluster and
0 otherwise. Then the ILP formulation by Grötschel and
Wakabayashi (1989) can be represented as follows:

P(G) : max.
∑

(i,j)∈P

cijxij

s. t. xij + xjk − xik ≤ 1 ∀(i, j, k) ∈ T,

xij − xjk + xik ≤ 1 ∀(i, j, k) ∈ T,

−xij + xjk + xik ≤ 1 ∀(i, j, k) ∈ T,

xij ∈ {0, 1} ∀(i, j) ∈ P,

where T = {(i, j, k) : 1 ≤ i < j < k ≤ n}. The triangle
inequality constraints stipulate that for any i, j, k ∈ V , if
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i, j ∈ V are in the same cluster and j, k ∈ V are also in
the same cluster, then i, k ∈ V must be in the same cluster.
The ILP formulation has

(
n
2

)
= Θ(n2) variables and 3

(
n
3

)
=

Θ(n3) triangle inequality constraints.
Miyauchi and Sukegawa (2015b) derived a set of redun-

dant triangle inequality constraints in P(G). By removing
the constraints in advance, they introduced the following ILP
formulation:

RP(G) : max.
∑

(i,j)∈P

cijxij

s. t. xij + xjk − xik ≤ 1 ∀(i, j, k) ∈ T 1
≥0,

xij − xjk + xik ≤ 1 ∀(i, j, k) ∈ T 2
≥0,

−xij + xjk + xik ≤ 1 ∀(i, j, k) ∈ T 3
≥0,

xij ∈ {0, 1} ∀(i, j) ∈ P,

where T 1
≥0 = {(i, j, k) ∈ T : cij ≥ 0 or cjk ≥ 0}, T 2

≥0 =

{(i, j, k) ∈ T : cij ≥ 0 or cik ≥ 0}, and T 3
≥0 = {(i, j, k) ∈

T : cjk ≥ 0 or cik ≥ 0}. They proved the following theorem:
Theorem 1 (Theorem 1 in Miyauchi and Sukegawa (2015b)).
Let G = (V,E, c) be an arbitrary instance of CPP. P(G) and
RP(G) share the same set of optimal solutions.

Therefore, we can solve RP(G) instead of P(G) to ob-
tain an optimal solution to CPP. Note that the number of
triangle inequality constraints in RP(G) can be evaluated
as O(nm≥0), where m≥0 is the number of nonnegative-
weighted edges in G, i.e., m≥0 = |{(i, j) ∈ P : cij ≥ 0}|.

3.1 Our Formulation

Here we present our ILP formulation. Without loss of gen-
erality, we assume that the edge weight function c is integer-
valued. When c is rational-valued, we can immediately obtain
an equivalent instance in which c is integer-valued by multi-
plying an appropriate value for each cij .

Let E0 = {{i, j} ∈ E : cij = 0}. We define an edge
weight function c̃ so that for each {i, j} ∈ E,

c̃ij =

{ −ε if {i, j} ∈ E0,

cij otherwise,

where ε ∈ (0, 1/
(
n
2

)
). Let us introduce a new instance G̃ =

(V,E, c̃). Then the number of triangle inequality constraints
in RP(G̃) is O(nm>0), where m>0 is the number of positive-
weighted edges in G, i.e., m>0 = |{(i, j) ∈ P : cij > 0}|.
It is expected that as ε > 0 is sufficiently small, an optimal
solution to RP(G̃) is also optimal to RP(G) and thus to P(G).
In fact, we have the following theorem:
Theorem 2. Let G = (V,E, c) be an arbitrary instance of
CPP such that c is integer-valued. Any optimal solution to
RP(G̃) is also optimal to P(G).

Proof. Let x̃ = (x̃ij)(i,j)∈P be an arbitrary optimal solution
to RP(G̃). From Theorem 1, x̃ is an optimal solution to
P(G̃), which implies that x̃ satisfies all the triangle inequality
constraints for T . Thus, x̃ is also feasible for P(G).

We now show the optimality of x̃ to P(G). Let x =
(xij)(i,j)∈P be an optimal solution to P(G) and a its objective
value in P(G). Since all the constraints in RP(G̃) are also con-
tained in P(G), the solution x is feasible for RP(G̃). The ob-
jective value of x in RP(G̃), i.e.,

∑
(i,j)∈P c̃ijxij , is strictly

greater than a− 1 because the decrement, due to the change
from P(G) to RP(G̃), of the objective value of x is at most
ε·|E0| <

(
1/
(
n
2

))·(n2) = 1. As for the objective value of x̃ in
P(G), i.e.,

∑
(i,j)∈P cij x̃ij , we have a ≥∑(i,j)∈P cij x̃ij ≥∑

(i,j)∈P c̃ij x̃ij ≥
∑

(i,j)∈P c̃ijxij > a− 1, where the first
inequality follows from the feasibility of x̃ in P(G), and the
third inequality follows from the optimality and feasibility of
x̃ and x, respectively, in RP(G̃). Since the objective value
of x̃ in P(G) is an integer, we have

∑
(i,j)∈P cij x̃ij = a.

Therefore, x̃ is optimal to P(G).

4 ILP-Based Exact Algorithm

We introduce the following ILP problem:

RP∗(G) : max.
∑

(i,j)∈P

cijxij

s. t. xij + xjk − xik ≤ 1 ∀(i, j, k) ∈ T 1
>0,

xij − xjk + xik ≤ 1 ∀(i, j, k) ∈ T 2
>0,

−xij + xjk + xik ≤ 1 ∀(i, j, k) ∈ T 3
>0,

xij ∈ {0, 1} ∀(i, j) ∈ P,

where T 1
>0 = {(i, j, k) ∈ T : cij > 0 or cjk > 0}, T 2

>0 =
{(i, j, k) ∈ T : cij > 0 or cik > 0}, and T 3

>0 = {(i, j, k) ∈
T : cjk > 0 or cik > 0}. Note here that the set of constraints
is the same as in RP(G̃), whereas the objective function is
the same as in P(G) and RP(G), i.e., the unperturbed one.

Unfortunately, RP∗(G) may fail to obtain an optimal
solution to P(G). In fact, there exist instances such that
an optimal solution to RP∗(G) is infeasible for P(G). For
example, consider G = (V,E, c) with V = {1, 2, 3, 4},
c12 = 1, c13 = c23 = −1, and c14 = c24 = c34 = 0.
A 0-1 vector x∗ = (x∗

ij) such that x∗
12 = x∗

14 = x∗
24 =

x∗
34 = 1 and x∗

13 = x∗
23 = 0 is one of the optimal solu-

tions to RP∗(G); however, the triangle inequality constraint
−x13 + x34 + x14 ≤ 1 in P(G) is violated.

To obtain an optimal solution to P(G), we perform the
following simple post-processing, which we refer to as pp,
for an optimal solution x∗ to RP∗(G): Let P ∗

>0 = {(i, j) ∈
P : x∗

ij = 1, cij > 0}. Obtain a set of weakly connected
components {V1, V2, . . . , Vk} of (V, P ∗

>0) by the depth-first
search. Output a 0-1 vector x∗ that corresponds to the parti-
tion {V1, V2, . . . , Vk}, i.e., x∗ such that x∗

ij = 1 if and only
if i, j ∈ Vq for some q ∈ {1, 2, . . . , k}. Note that pp runs in
time linear in the size of G.

4.1 Correctness

Here we demonstrate that our algorithm (i.e., RP∗(G)+pp)
returns an optimal solution to P(G). To this end, it suffices
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to show that the objective value of x∗ remains the same as
that of x∗ (in P(G) and RP∗(G)) because x∗ is feasible for
P(G) and x∗ is optimal to a relaxation RP∗(G) of P(G). For
convenience, we define P ∗

in = {(i, j) ∈ P : x∗
ij = 1} and

P ∗
out = P \ P ∗

in. We have the following lemmas:

Lemma 1. It holds that
∑

(i,j)∈P∗
in

cijx
∗
ij =

∑
(i,j)∈P∗

in

cijx
∗
ij .

Proof. It suffices to show that for any q ∈ {1, 2, . . . , k},
it holds that x∗

ij = 1 for each i, j ∈ Vq with i < j. Fix
q ∈ {1, 2, . . . , k}. Let i, j be a pair of distinct vertices of Vq .
Since Vq is weakly connected by P ∗

>0, there exists a path on
P ∗
>0 that connects i and j if we ignore the direction of edges.

Denote this (undirected) path by i = v0, v1, . . . , vt = j.
Since cv0v1 > 0 (and cv1v2 > 0), RP∗(G) has the constraint
xv0v1 + xv1v2 − xv0v2 ≤ 1. Note here that in this notation,
it is necessary that v0 < v1 < v2 holds. If it is not the
case, we should swap the order of the indices appropriately.
Substituting x∗

v0v1 = x∗
v1v2 = 1 to this constraint, we have

x∗
v0v2 = 1. Moreover, since cv2v3 > 0, RP∗(G) also has the

constraint xv0v2 + xv2v3
− xv0v3 ≤ 1. Substituting x∗

v0v2 =
x∗
v2v3 = 1 to this constraint, we have x∗

v0v3 = 1. Repeating
this operation, we finally have x∗

v0vt = x∗
ij = 1.

Lemma 2. It holds that
∑

(i,j)∈P∗
out

cijx
∗
ij ≤ 0.

Proof. For each (i, j) ∈ P ∗
out, we have (i, j) /∈ P ∗

>0. If other-
wise, then x∗

ij = 1 and thus (i, j) ∈ P ∗
in. Therefore, for each

(i, j) ∈ P ∗
out, we have x∗

ij = 0 or cij ≤ 0, which proves the
lemma.

By Lemmas 1 and 2, we have
∑

(i,j)∈P cijx
∗
ij =∑

(i,j)∈P∗
in
cijx

∗
ij ≥
∑

(i,j)∈P∗
in
cijx

∗
ij +
∑

(i,j)∈P∗
out
cijx

∗
ij =∑

(i,j)∈P cijx
∗
ij . Therefore, we have the following theorem:

Theorem 3. Let G = (V,E, c) be an arbitrary instance of
CPP such that c is integer-valued. Any 0-1 vector returned
by our algorithm (i.e., RP∗(G)+pp) is optimal to P(G).

5 MaxSAT Counterparts

Here we present MaxSAT counterparts of both our ILP
formulation (i.e., RP(G̃)) and ILP-based exact algorithm
(i.e., RP∗(G)+pp). It should be noted that we here con-
sider WCC rather than CPP. As described above, WCC is
equivalent to CPP from an exact optimization perspective.
Let G = (V,E+, E−, c) be an instance of WCC. Note that
c : E+ ∪E− → Q>0 is an edge weight function, where Q>0

is the set of positive rational numbers. The (positive) edge
weights represent the strength of similarity and dissimilarity
for {i, j} ∈ E+ and {i, j} ∈ E−, respectively. For simplic-
ity, we denote cij = c({i, j}) for each {i, j} ∈ E+ ∪ E−.

We revisit MaxSAT-Transitive introduced by Berg and
Järvisalo (2017), which is the MaxSAT counterpart of P(G).
Let V = {1, 2, . . . , n} and P = {(i, j) : 1 ≤ i < j ≤ n}.
For each (i, j) ∈ P , we introduce a Boolean variable xij

equal to True if i, j ∈ V are in the same cluster and False

otherwise. Then MaxSAT-Transitive, which we refer to as
S-P(G) in the present study, can be represented as follows:

Hard clauses:

(¬xij ∨ ¬xjk ∨ xik) ∀(i, j, k) ∈ T,

(¬xij ∨ xjk ∨ ¬xik) ∀(i, j, k) ∈ T,

(xij ∨ ¬xjk ∨ ¬xik) ∀(i, j, k) ∈ T,

Soft clauses:

(xij) with weight cij ∀(i, j) ∈ P with {i, j} ∈ E+,

(¬xij) with weight cij ∀(i, j) ∈ P with {i, j} ∈ E−,

where T = {(i, j, k) : 1 ≤ i < j < k ≤ n}. The set of
hard clauses is a clausal representation of the set of triangle
inequality constraints in P(G), and the set of soft clauses is a
clausal representation of the objective function in P(G).

By beginning with S-P(G), we can reproduce our results
for ILP in the context of MaxSAT; specifically, we can ob-
tain S-RP(G), S-RP(G̃), and S-RP∗(G)+S-pp, which are the
MaxSAT counterparts of RP(G), RP(G̃), and RP∗(G)+pp,
respectively. The detailed description of them is omitted ow-
ing to space limitations. We have the following theorems:

Theorem 4 (MaxSAT counterpart of Theorem 2). Let G =
(V,E+, E−, c) be an arbitrary instance of WCC such that c
is integer-valued. Any optimal solution to S-RP(G̃) is also
optimal to S-P(G).

Theorem 5 (MaxSAT counterpart of Theorem 3). Let G =
(V,E+, E−, c) be an arbitrary instance of WCC such that c
is integer-valued. Any True-False assignment returned by
our algorithm (i.e., S-RP∗(G)+S-pp) is optimal to S-P(G).

6 Experimental Evaluation

The purpose of our experiments is to evaluate the effective-
ness of our ILP-based approaches and their MaxSAT coun-
terparts in terms of both memory efficiency and computation
time. To this end, we use well-known real-world datasets aris-
ing in the context of correlation clustering, group technology,
and community detection.

6.1 ILP-Based Approaches

We first compare our ILP formulation (i.e., RP(G̃)) and ILP-
based exact algorithm (i.e., RP∗(G)+pp) with the previous
ILP formulations (i.e., P(G) and RP(G)) and the state-of-
the-art MaxSAT formulation (i.e., MaxSAT-Binary). As for
RP(G̃), we set the parameter ε as follows: ε = 1

n2 and
2
n2 , both of which are less than 1/

(
n
2

)
. All ILP formula-

tions were solved using Gurobi Optimizer 7.0.2 with default
parameters. As for MaxSAT-Binary, we employed the pre-
processing and symmetry-breaking operations mentioned in
Berg and Järvisalo (2017). The preprocessing was simulated
using Coprocessor 3.0 and the symmetry-breaking proce-
dure called REMOVESLACK was applied. MaxSAT-Binary
was solved using MaxHS 2.9, as recommended in Berg and
Järvisalo (2017).
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Table 1: Instances used in our experiments.

ID Name n m>0/
(
n
2

)
m≥0/

(
n
2

)
P1 Protein1 669 4.22% 98.49%
P2 Protein2 587 6.36% 98.21%
P3 Protein3 567 6.39% 97.95%
P4 Protein4 654 2.64% 98.87%

G9 Ch-8x20b 28 24.07% 81.75%
G14 Mc-16x24 40 11.47% 61.81%
G16 KI-16x43 59 7.36% 67.15%
G17 Ca-18x24 42 10.22% 60.05%
G18 MT-20x20 40 14.23% 62.95%
G19 Ku-20x23 43 12.51% 61.57%
G21 Bo-20x35 55 10.03% 62.90%
G25 CH5-24x40 64 6.50% 58.88%
G26 CH6-24x40 64 6.50% 58.88%
G27 CH7-24x40 64 6.50% 58.88%
G28 Mc-27x27 54 15.30% 64.36%
G29 Ca-28x46 74 7.81% 60.13%
G30 Ku-30x41 71 5.15% 55.65%
G31 St-30x50-1 80 4.87% 57.41%
G32 St-30x50-2 80 5.28% 57.82%
G33 Ki-36x90 126 4.23% 66.41%
G34 MC-37x53 90 24.39% 75.43%
G35 Ch-40x100 140 4.32% 63.21%

C1 Wafa-CEO 41 11.10% 63.54%
C2 Divorces 59 11.63% 85.33%
C3 Hollywood movies 102 3.73% 56.79%
C4 Scotland interlocks 244 1.21% 59.00%
C5 Graph product 674 0.27% 50.43%
C6 Network science 2,549 0.08% 53.11%

The time limit was set to 4 hours and the memory limit was
set to 96 GB. The experiments were conducted on a Linux
machine with Intel Xeon Processor E5-2650 v2 2.60 GHz
CPU and 96 GB RAM.

Correlation clustering. Correlation clustering instances
were first tested. Specifically, we considered MAXAGREE in
the edge-weighted setting (i.e., WCC). The upper section of
Table 1 lists the instances on which experiments were con-
ducted, which were generated from protein sequence datasets
on http://www.paccanarolab.org/scps in the same
manner as in Berg and Järvisalo (2017). The data consist of
similarity values between amino-acid sequences that were
computed using BLAST (Altschul et al. 1990).

The results are detailed in Table 2. The number of vari-
ables is always equal to

(
n
2

)
= n(n− 1)/2. The number of

constraints in RP∗(G) is omitted because it is exactly the
same as in RP(G̃). OM in some columns indicates that the
memory requirements of the formulation (and the solving
phase) exceed the limit (i.e., 96 GB). For the formulations
that could be stored on the machine but could not be solved
within the time limit, the relative gaps (i.e., (UB− LB)/LB,
where UB and LB, respectively, are the upper and lower
bounds on the optimal value) obtained by the time limit are
presented within parentheses if they are finite; otherwise OT
is given. For each instance, the best computation time (or the
relative gap) among the formulations is written in bold.

It is seen that neither P(G) nor RP(G) could be stored on
the machine for instances P1 and P4 owing to a shortage

of memory capacity. Although RP(G) had fewer constraints
than P(G), the decrement was quite small, with at most 0.1%
of the constraints removed. By contrast, our formulations,
RP(G̃) and RP∗(G), had far fewer constraints, with about
90% of the constraints removed. Correspondingly, the mem-
ory limit was not exceeded, and optimal solutions were ob-
tained for instances P1 and P2. The results also show that
our formulations outperformed MaxSAT-Binary. In fact, only
RP(G̃) and RP∗(G)+pp could obtain an optimal solution to
instance P2 and nearly-optimal solutions for instances P3 and
P4, although MaxSAT-Binary solved instance P1 faster.

Group technology. An assessment of group technology
instances was then conducted; some of these are listed
in the middle section of Table 1. The instances were
generated from manufacturing cell formation datasets on
http://mauricio.resende.info/data in the manner
described in Example 2; a detailed description of the datasets
can be found in Gonçalves and Resende (2004). Although
there were originally 35 instances, which were indexed from
G1 to G35, some instances are omitted owing to space limi-
tations. Our preliminary experiments showed that all formu-
lations could solve the omitted instances within 10.0 s.

The results are summarized in Table 2. Because the in-
stances are smaller than those used in correlation clustering,
P(G) and RP(G) could always be stored on the machine.
Although RP(G) had fewer constraints than P(G), the com-
putation time (or the relative gap) increased in 7 out of 17
instances. Again, our formulations, RP(G̃) and RP∗(G), pro-
duced far fewer constraints. In fact, even for relatively small
instances, at least 50% of the constraints were removed, with
the figure increasing to above 90% for some large instances.
Furthermore, the computation time was reduced significantly.
In particular, RP∗(G)+pp could obtain optimal solutions for
all instances within the time limit. The results also show that
MaxSAT-Binary performed no better than P(G) and RP(G).
In fact, for any instance that could not be solved by P(G)
and RP(G), MaxSAT-Binary also failed to obtain an optimal
solution, and moreover, only MaxSAT-Binary exceeded the
memory limit for some instances owing to its significant
memory requirements in the search phase.

Community detection. Community detection instances
were then tested, with particular consideration given to the
bipartite modularity maximization problem. The last section
of Table 1 lists the instances on which experiments were
conducted, which were generated from network datasets on
http://vlado.fmf.uni-lj.si/pub/networks/data
in the manner described in Example 3.

The results are detailed in Table 2. It is seen that the trend
of the results is similar to that produced in the correlation
clustering and group technology assessments, i.e., RP(G̃)
and RP∗(G)+pp outperformed P(G), RP(G), and MaxSAT-
Binary. Most strikingly, our approaches could obtain an opti-
mal solution to instance C6 with 2,549 vertices, while P(G)
and RP(G) required more than 8 billion and 6 billion con-
straints, respectively. Furthermore, MaxSAT-Binary left a very
large relative gap (i.e., 6,350.3%).
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Table 2: Results for the previous ILP formulations, our ILP-based approaches, and the state-of-the-art MaxSAT formulation.

ID P(G) RP(G) RP(G̃) ε = 1
n2 ε = 2

n2 RP∗(G)+pp MaxSAT-Binary
#constr. time(s) #constr. time(s) #constr. time(s) time(s) time(s) #var. #clauses time(s)

P1 149,038,482 OM 148,995,305 OM 12,106,852 4,010.3 3,505.6 3,796.2 167,184 684,568 2,304.8
P2 100,614,735 OM 100,571,045 OT 12,191,742 2,774.3 3,430.9 3,039.9 179,968 744,956 (48.1%)
P3 90,660,465 OT 90,611,160 OT 10,995,760 (0.3%) (0.3%) (0.3%) 173,928 719,876 (18.1%)
P4 139,222,212 OM 139,199,019 OM 7,161,805 (0.2%) (0.2%) (0.2%) 109,692 434,570 (119.2%)

G14 27,417 20.8 23,366 17.0 5,902 4.2 4.6 4.2 3,412 12,120 12.3
G16 97,527 233.3 84,297 551.1 13,560 14.2 13.9 12.4 6,212 22,440 64.3
G17 34,440 18.4 28,920 14.0 6,640 5.2 4.8 3.2 3,960 14,122 12.5
G18 29,640 804.4 25,661 803.9 7,839 433.6 343.6 273.9 3,680 12,962 OM
G19 37,023 66.6 31,606 52.4 8,646 18.9 18.6 14.4 4,196 15,128 219.5
G21 78,705 126.8 67,196 149.2 14,938 21.0 21.2 19.1 6,260 22,856 182.2
G25 124,992 474.5 102,860 245.2 15,750 16.6 12.9 14.7 9,536 31,718 110.4
G26 124,992 426.8 102,875 418.3 15,765 62.2 61.1 25.5 9,536 31,718 (1.4%)
G27 124,992 1,338.4 102,887 1,145.3 15,777 227.2 258.1 168.9 9,536 31,718 (160.6%)
G28 74,412 2,426.5 65,114 1,419.3 21,044 1,322.7 1,193.3 570.1 6,480 23,758 OM
G29 194,472 (6.4%) 161,752 (8.5%) 28,840 1,596.3 1,715.2 1,296.5 12,628 48,267 OM
G30 171,465 29.8 137,420 30.7 17,222 4.7 6.2 4.3 12,064 46,280 12.3
G31 246,480 78.4 199,476 85.0 23,508 10.7 12.0 10.6 14,620 55,683 14.9
G32 246,480 2,634.1 200,359 4,556.4 25,405 127.0 107.8 47.0 14,620 55,683 (137.2%)
G33 842,520 (151.3%) 716,019 (132.1%) 68,435 (6.0%) (6.7%) 11,963.4 25,980 100,201 OM
G34 352,440 (13.2%) 326,247 (82.9%) 146,067 5,968.0 7344.6 4,131.6 18,909 73,342 (149.5%)
G35 1,342,740 16.3 1,121,684 13.4 112,904 1.3 1.3 1.3 42,240 168,918 17.8

C1 31,980 54.8 27,466 41.4 6,640 9.4 10.4 7.5 3,612 12,952 14.1
C2 97,527 4,927.8 93,475 4,749.9 20,116 75.6 74.5 64.8 4,308 15,232 138.9
C3 515,100 (11.6%) 413,487 (11.8%) 37,470 8,711.4 10,821.9 (0.4%) 23,190 90,651 OM
C4 7,174,332 (8.4%) 5,840,182 (8.4%) 172,070 (1.3%) (1.9%) (1.5%) 129,024 527,718 (141.9%)
C5 152,410,272 OM 114,839,168 OM 822,272 15.9 16.2 18.2 1,369,960 5,888,398 4,994.9
C6 8.3G OM 6.3G OM 13,130,379 397.2 407.3 402.4 21,417,336 94,669,067 (6,350.3%)

6.2 MaxSAT Counterparts

Next we compare our MaxSAT formulation (i.e., S-RP(G̃))
and MaxSAT-based exact algorithm (i.e., S-RP∗(G)+S-pp)
with the MaxSAT counterparts of P(G) and RP(G) (i.e.,
S-P(G) and S-RP(G)). As for S-RP(G̃), we set the parameter
ε as in its ILP counterpart, i.e., ε = 1

n2 and 2
n2 . All MaxSAT

formulations were solved using MaxHS 2.9.
The results are detailed in Table 3 with the same notations

as in Table 2. As for S-RP(G̃), the left and right columns
correspond to the results of ε = 1

n2 and ε = 2
n2 , respec-

tively. Note that the number of hard clauses in each MaxSAT
formulation is equal to the number of constraints in its ILP
counterpart (see Table 2). It is seen that our results are still
effective for MaxSAT. In fact, S-RP(G̃) could solve 6 out of
11 instances that could be solved neither by S-P(G) nor by
S-RP(G), and moreover, S-RP∗(G) could solve instances P1,
P2, and P4 much faster than S-P(G) and S-RP(G).

7 Conclusion

In this study, we have investigated the design of mathematical
programming formulations and constraint satisfaction formu-
lations for CPP. More specifically, we have presented a novel
ILP formulation, an ILP-based exact algorithm, and their
MaxSAT counterparts. The experimental results demonstrate
that our approaches significantly outperform the state-of-the-
art formulations in terms of both memory efficiency and
computation time.

Table 3: Results for the MaxSAT counterparts.

ID S-P(G) S-RP(G) S-RP(G̃) S-RP∗(G)+S-pp
time(s) time(s) time(s) time(s) time(s)

P1 4,362.6 5,284.4 (0.5%) (0.7%) 1,058.4
P2 2,690.6 2,779.7 2,049.8 2,366.6 486.0
P3 (11.0%) (3.1%) (253.1%) (8.2%) (3.9%)
P4 6,998.2 7,773.0 (31.8%) (31.8%) 3,200.5

G14 14.9 14.5 16.6 18.0 21.8
G16 19.6 20.1 41.4 49.0 39.2
G17 6.1 6.2 11.4 13.1 10.5
G18 (140.0%) (140.0%) 3,782.8 3,868.5 (140.0%)
G19 195.7 198.7 45.4 50.8 637.7
G21 124.3 126.6 49.9 60.2 132.4
G25 31.9 43.4 46.2 44.4 32.3
G26 2,017.7 1,986.3 348.5 484.6 4197.1
G27 (121.1%) (121.1%) 1,615.8 2,338.5 (123.7%)
G28 OM OM 3,995.1 6,949.2 OM
G29 OM OM 8,658.7 11085.3 OM
G30 7.1 6.1 15.8 16.8 14.7
G31 8.7 9.3 26.9 28.2 8.9
G32 (118.0%) (118.0%) 772.0 841.4 11,172.4
G33 OM OM OT OT OM
G34 (164.4%) (164.4%) OT 13,421.1 (154.9%)
G35 14.4 11.4 2.8 2.4 3.1

C1 13.8 13.4 14.5 18.0 9.7
C2 83.5 87.6 119.3 82.9 106.2
C3 (1,340.7%) (1,340.7%) OT OT (802.1%)
C4 (65.8%) (65.8%) OT OT (75.3%)
C5 4,162.6 2,794.7 525.7 555.7 268.0
C6 OM OM (18.3%) (25.7%) (8.5%)
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