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Abstract

Submodular function maximization (SFM) has attracted much
attention thanks to its applicability to various practical prob-
lems. Although most studies have considered SFM with size or
budget constraints, more complex constraints often appear in
practice. In this paper, we consider a very general class of SFM
with such complex constraints (e.g., an s-t path constraint on
a given graph). We propose a novel algorithm that takes advan-
tage of zero-suppressed binary decision diagrams, which store
all feasible solutions efficiently thus enabling us to circum-
vent the difficulty of determining feasibility. Theoretically, our
algorithm is guaranteed to achieve (1 − c)-approximations,
where c is the curvature of a submodular function. Experi-
ments show that our algorithm runs much faster than exact
algorithms and finds better solutions than those obtained by an
existing approximation algorithm in many instances. Notably,
our algorithm achieves better than a 90%-approximation in all
instances for which optimal values are available.

1 Introduction

Submodular function maximization (SFM) can model a large
number of real-world problems (e.g., sensor placement, fea-
ture selection, and document summarization), and so con-
tinues to be a dominant subject of study. Given finite set
V , set function f : 2V → R is said to be submodular if
f(S)+f(T ) ≥ f(S ∪T )+f(S ∩T ) for all S, T ∈ 2V , and
monotone if f(T ) ≥ f(S) for any S ⊆ T . Although SFM is
NP-hard in general, greedy-based algorithms are known to of-
fer strong approximation guarantees; some of them consider
a size constraint, a budget constraint, or a matroid constraint.
However, it has remained hard to design efficient approxima-
tion algorithms for SFM with more complex constraints. A
typical such problem is the submodular orienteering problem
(SOP) (Chekuri and Pal 2005):
SOP: Given budget B > 0 and a graph with edge costs
and two specified vertices s, t, we seek to find an s-t path
whose cost is at most B to maximize a submodular objective
function of the set of vertices visited by the s-t path. SOP
is important since it models various practical problems such
as path-planning problems with robotic sensors (Singh et al.
2009), travel planning (Zeng et al. 2015), and door-to-door
marketing (Zhang and Vorobeychik 2016).
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SFM with complex constraints also arises in the context of
wireless sensor network (WSN) design. One such example
is the problem considered in (Krause et al. 2006). Given a
graph that represents the connectability of sensor nodes, we
seek a connected tree to maximize a submodular function that
measures the informativeness of the obtained tree. Each edge
in the graph has a cost, which represents the energy consumed
when the two sensors placed on its ends communicate with
each other, and the total cost of the obtained tree must be
less than or equal to a given budget, B. In realistic WSN
design problems, however, more complex constraints often
appear. Below we list two such examples, which we call the
submodular Steiner tree problem (SSTP) and the submodular
vertex-connected network problem (SVCNP):

SSTP: As in (Ke, Liu, and Tsai 2011), many sensor place-
ment problems have some critical areas that we are partic-
ularly interested in; a vertex that corresponds to a critical
area is called a terminal. In SSTP, we seek a Steiner tree that
covers all terminals under the budget constraint to maximize
an objective function.

SVCNP: We aim to obtain a robust WSN that has no cut ver-
tex, which is a vertex whose removal breaks the connectivity
of the network; we call a network with no cut vertex vertex-
connected (VC) network. Since the failure of a sensor placed
on a cut vertex blocks data transmission, how to design a
VC network has been extensively studied (Liu et al. 2006;
Xiong and Li 2010). In SVCNP, we seek a VC network under
the budget constraint to maximize an objective function.

The difficulty of the above problems is that the constraints
are rigid. Given a subset of vertices, determining the feasibil-
ity of the subset in SOP and SSTP reduces to NP-complete
problems: the Hamilton path problem and Steiner tree prob-
lem, respectively. The feasibility determination in SVCNP is
known to be as hard as the Hamilton cycle problem if the edge
costs are uniform, and it becomes more difficult if the costs
are not uniform, for which no existing algorithm has been de-
veloped; SVCNP is empirically more challenging than SOP
and SSTP due to the difficult feasibility determination. If we
apply a naive iterative algorithm (e.g., the greedy algorithm)
to such problems, we need to solve an NP-complete problem
every time a solution is updated.
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1.1 Our Contribution

We propose a novel approximation algorithm for SFM de-
fined over graphs, including many hard problems such as
SOP, SSTP, and SVCNP. Formally, given graph G = (V,E),
where V and E are the vertex set and edge set, respectively,
and monotone submodular function f : 2V → R+ such that
f(∅) = 0, we consider the following problem:

maximize
X⊆E

f(V (X)) subject to X ∈ F ,(1)

where F ⊆ 2E is a feasible set that consists of edge sub-
sets with certain substructures, and V (X) := {u ∈ V |
(u, v) or (v, u) ∈ X for some v ∈ V } is the set of ends of all
e ∈ X . Problem (1) can express various constrained SFM
problems; for example, an SOP can be written as problem (1)
whose F is the set of all s-t paths whose cost is at most B.

The constraint in problem (1) can be quite complex, and
so we must devise a way to handle the constraint if we are
to develop a truly efficient algorithm. To do this, our algo-
rithm takes advantage of the zero-suppressed binary decision
diagram (ZDD) (Minato 1993). A ZDD is defined as a di-
rected acyclic graph (DAG) and stores each feasible solution
X ∈ F as a path connecting two specified nodes, called a
root node and a true node. Thus, in our algorithm, problem (1)
is reduced to SFM on a DAG, by which we circumvent the
difficulty of determining feasibility for the rigid constraints.

Our algorithm is proved to achieve (1−c)-approximations,
where c is the curvature of the submodular function (Con-
forti and Cornuéjols 1984); it is defined as c := 1 −
minv∈V f(v | V \{v})/f(v), where f(v | S) := f(S ∪
{v}) − f(S) for any v ∈ V and S ⊆ V . The curvature
value is bounded from above for many practical submod-
ular functions (Maehara et al. 2017; Sharma, Kapoor, and
Deshpande 2015); in such cases our (1− c)-approximation
algorithm is guaranteed to find nearly optimal solutions. Un-
fortunately, since ZDD size can be exponential in |V |, our
algorithm generally incurs exponential computation time.
However, ZDDs that appear in practice are often of tractable
size as confirmed in previous studies (e.g., (Minato 1993))
and our experiments. In the experiments, we apply our algo-
rithm to three sensing tasks formulated as SOP, SSTP, and
SVCNP, respectively; notably, to the best of our knowledge,
our algorithm is the first practical approximation algorithm
that is applicable to SVCNP. We show that our algorithm
achieves at least a 90%-approximation in all instances for
which optimal values are available, outperforming an existing
approximation algorithm in most cases. Our algorithm is also
shown to be much faster than exact algorithms.

1.2 Related Work

SFM has attracted much attention due to its applicability to
various real-world problems (e.g., sensor placement (Krause
et al. 2008; Krause, Singh, and Guestrin 2008), feature selec-
tion (Thoma et al. 2009), and document summarization (Lin
and Bilmes 2010)). Most previous studies (Buchbinder et al.
2015; Conforti and Cornuéjols 1984; Nemhauser, Wolsey,
and Fisher 1978; Sviridenko 2004) consider SFM with a size
constraint, a knapsack constraint, or a matroid constraint,
for which the greedy-based strategy is effective. On the

other hand, SFM with more complex constraints (e.g., SOPs,
SSTPs, and SVCNPs) often appears in practice, for which
naive greedy-based methods do not work.

SOP has been extensively studied because of its appli-
cability to many problems (Singh et al. 2009; Zeng et al.
2015; Zhang and Vorobeychik 2016). SOP was proposed
in (Chekuri and Pal 2005) as an extension of the orienteering
problem, a classical combinatorial optimization problem. For
SOP, they proposed a quasi-polynomial time approximation
algorithm, called the recursive greedy algorithm. Singh et
al. scaled up the recursive greedy algorithm and applied it to
path-planning problems for robot-based environment sensing.
Recently, a faster bi-criterion approximation algorithm for
SOP called the generalized cost-benefit greedy algorithm
(GCB) was proposed in (Zhang and Vorobeychik 2016);
it uses the cost-benefit greedy strategy with approximate
cost computation. A special case of SOP is also considered
in (Zeng et al. 2015). The authors studied the travel route
search problem of maximizing the satisfaction of a traveler’s
preference, which is an SOP with a keyword coverage (KC)
objective function. They proposed an A∗ algorithm with a
heuristic function that suits the KC function. While the algo-
rithm is exact (i.e., it always finds an optimal solution), its
time complexity is generally exponential in |E|.

SFM with a budget and tree constraint is studied in (Krause
et al. 2006); it is an important problem in WSN design. For
this problem they proposed an efficient approximation algo-
rithm called pSPIEL.

In many real-world WSN design problems, our interest is
rarely spread over the whole target areas; rather we have some
critical areas that are of particular interest. Such a situation
is modeled as a network design problem with a Steiner tree
constraint in (Ke, Liu, and Tsai 2011). However, they did not
consider the submodularity of objective functions, which is
known to be essential in sensor placement problems (Krause,
Singh, and Guestrin 2008). Thus we consider SSTP, which
is an SFM problem with a budget and Steiner tree constraints.
This problem is very hard due to its rigid constraints, and
thus no algorithms have been studied.

SVCNP is also a variant of the problem considered
in (Krause et al. 2006). In many real-world scenarios it is
important to obtain a robust WSN, and thus finding VC net-
works has been an attractive research subject (Liu et al. 2006;
Xiong and Li 2010). Although many existing approximation
algorithms consider computing the smallest VC network on
graphs with uniform edge costs (Garg, Santosh, and Singla
1993; Heeger and Vygen 2016), no algorithm considers non-
uniform edge costs, which frequently appear in practice. This
implies no existing algorithm can determine the feasibility of
a given vertex subset efficiently in SVCNPs. The SVCNP is
very challenging due to the difficulty of feasibility determi-
nation, and thus no effective algorithm has been developed.

Thanks to the recent advances in algorithms for construct-
ing decision diagrams (DDs), optimization methods using
DDs are receiving much attention (Bergman et al. 2016;
Coudert 1997; Morrison, Sewell, and Jacobson 2016). Those
methods are advantageous in that their use of DDs allows
them to deal with complex constraints via efficient enumer-
ation of all feasible solutions. However, most existing opti-
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mization methods with DDs consider linear objective func-
tions, whereas nonlinear objective functions, including sub-
modular functions, are of critical importance in practice. To
the best of our knowledge, our algorithm is the first nonlin-
ear optimization algorithm that uses ZDDs (Minato 1993),
which is a kind of DD, to deal with complex constraints.
ZDDs are known to be suitable for storing specific graph
substructures (e.g., s-t paths), thus enabling us to develop an
efficient algorithm for SFM over graphs.

2 ZDD-based Algorithm

This section presents the approximation algorithm for prob-
lem (1). We first elucidate the properties of the ZDD that
we use to store the set of all feasible solutions F ⊆ 2E in
problem (1). We then describe the algorithm that searches for
an approximate solution on the ZDD.

2.1 Zero-suppressed Binary Decision Diagrams

For a given F ⊆ 2E , we define a ZDD that stores all X ∈ F
as a DAG, and denote it by ZF = (N,A). To avoid confusing
G = (V,E) with ZF = (N,A), we refer to the elements
in V and E as vertex and edge, respectively, whereas the
elements in N and A are called node and arc, respectively.
Furthermore, we refer to a path on ZF as a route. Below
we detail the properties of the ZDD ZF that are needed to
understand subsequent discussions.

ZDD ZF = (N,A) is a DAG with root node r ∈ N , and
two terminal nodes 0,1 ∈ N , called the false node and true
node, respectively. Let I := E ∪ V be the set of all edges
and vertices of G that is totally ordered (see (Kawahara et
al. 2017b) for details of the ordering); the i-th element of I
is denoted by Ii. Each node n ∈ N\{0,1} is labeled with
Ii ∈ I; we denote the label of n by l(n) ∈ I and let l(r) = I1.
Every n ∈ N\{0,1} has two outgoing arcs called 0-arc and
1-arc. If n ∈ N\{0,1} is labeled with Ii, each arc outgoing
from n points to 0,1, or n ∈ N\{0,1} labeled with Ij (j >
i); this guarantees that each label Ii ∈ I appears at most
once on any route in ZF . We define Rn,n′ ⊆ 2A as the set of
all routes from n ∈ N to n′ ∈ N and R :=

⋃
n,n′∈N Rn,n′

as the collection of all routes in ZF . Any route R ∈ R
is associated with the following edge subset ER ⊆ E and
vertex subset VR ⊆ V :

ER := {l(n) ∈ E | (n, n′) ∈ R is 1-arc. } ,
VR := {l(n) ∈ V | (n, n′) ∈ R is 1-arc. } .

Namely, when proceeding along route R, we add l(n) ∈ I to
ER or VR only if (n, n′) ∈ R is 1-arc. There is the following
one-to-one correspondence between X ∈ F and R ∈ Rr,1:

F = {ER ⊆ E | R ∈ Rr,1}.(2)

Thus F ⊆ 2E is stored as Rr,1 in ZF . Furthermore,
V (ER) = VR holds for any R ∈ Rr,1.

Figure 1 shows an example of a ZDD that enumerates all
s-t paths in the graph. In the ordinary definition of ZDDs (Mi-
nato 1993), each node is labeled using only e ∈ E. However,
here we employ ZDDs whose nodes are labeled with v ∈ V
or e ∈ E as described above since the vertex labels are neces-
sary for our algorithm. Such ZDDs can be constructed by the

(a) Graph (b) ZDD

Figure 1: Graph G = (V,E) with s = v1 and t = v3, and a
ZDD that stores all s-t paths in G; each node n ∈ N\{0,1}
is labeled by l(n) ∈ I . The solid arcs are 1-arcs and the
dashed arcs are 0-arcs. Note that we have F = {ER ⊆
E | R ∈ Rr,1} = {{e1}, {e2, e3}} and {VR ⊆ V | R ∈
Rr,1} = {{v1, v3}, {v1, v2, v3}}.

algorithm shown in (Kawahara et al. 2017b). Unfortunately,
the size of ZDD ZF = (N,A), which we define by |N |,
generally increases exponentially with |V |. More precisely,
|N | ≤ (|E|+2|V |)dw(G) holds where w(G) is the pathwidth
of G (w(G) ≤ |V |) and d is a parameter that appears when
constructing a ZDD (d = O(|w(G)|)) as shown in (Suzuki
and Minato 2016); the relationship between pathwidth and
ZDD size is detailed in (Inoue and Minato 2016). Fortunately,
ZDD size is often tractable in many applications; in particular,
it tends to be small if pathwidth w(G) is small. For exam-
ple, as shown in Section 3.1, a ZDD with about 3.0 × 107

nodes can store about 6.0×1016 feasible solutions of an SOP,
which allows our algorithm to find an approximate solution
within 4.0× 103 seconds.

2.2 GreedyDP

We here show a (1 − c)-approximation algorithm for prob-
lem (1). Let ZF = (N,A) be a ZDD that stores F . We define
f(R) := f(VR) for all R ∈ R. From the properties of ZDDs,
problem (1) can be written as the following SFM on the ZDD:

maximize
R⊆A

f(R) subject to R ∈ Rr,1.(3)

Note that, if we obtain a (1 − c)-approximate solution
R ∈ Rr,1 for problem (3), then ER ⊆ E is a (1 − c)-
approximate solution for problem (1) due to the one-to-one
correspondence (2).

For every n ∈ N\{r}, we let Preds(n) ⊆ N be the set of
all predecessors of n, and we define An := {(n′, n) ∈ A :
n′ ∈ Preds(n)}. We present here Algorithm 1, which finds
a (1− c)-approximate solution Rr,1 ∈ Rr,1 for problem (3).
The search strategy of Algorithm 1 is based on the well-
known dynamic programming (DP) approach that is used
for finding the longest path on a DAG (see, e.g., (Sedgewick
and Wayne 2011)). On the other hand, Algorithm 1 is greedy
in that, once we obtain a route, we do not change it, and a
new route Rr,n is obtained by the greedy rule over An. Thus
we call it GreedyDP. Note that, once we have constructed
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Algorithm 1 GreedyDP(ZF , f)

1: U = N\{r}.
2: Create a topological order of all n ∈ U .
3: Rr,n = ∅ for all n ∈ N .
4: while U 
= ∅ do
5: Let n ∈ U be the first node in the topological order.
6: (n′′, n) = argmax

(n′,n)∈An

f(Rr,n′ ∪ (n′, n)).

7: Rr,n = Rr,n′′ ∪ (n′′, n).
8: U = U\{n}.
9: end while

10: return Rr,1.

ZF for a feasible set F , it can be reused when maximizing
any objective functions in the same F using GreedyDP. This
makes our algorithm efficient particularly when solving SFM
problems repeatedly in the same feasible set; for example,
our algorithm is really efficient when solving path planning
problems for a robotic sensor that must perform sensing on a
daily basis or more frequently in the same target space.

Algorithm 1 first creates a topological order for U =
N\{r} so that, for all (n′, n) ∈ A, n′ comes before n. Al-
gorithm 1 then finds a route Rr,n for each n ∈ N\{r} in
the topological order. At each iteration, U ⊆ N\{r} repre-
sents the set of nodes that have not been visited yet. Thanks
to the topological sorting, we have Preds(n) ⊆ N\U for
n ∈ N chosen in Step 5. We can easily check that Algo-
rithm 1 requires at most O(|N |) function value evaluations.
The following theorem provides the approximation guarantee
for GreedyDP. For proof, see the appendix.

Theorem 1. If R∗r,1 is an optimal route, GreedyDP finds a
route Rr,1 satisfying f(Rr,1) ≥ (1− c)f(R∗r,1).

3 Experiments

We conduct experiments on three sensing tasks to assess
the performance of our algorithm. One is the path planning
problem for a robotic sensor, which can be written as an
SOP, and the others are indoor WSN design problems, which
can be formulated as an SSTP and SVCNP, respectively. All
experiments were performed on a computer equipped with
128 GB RAM and Xeon E5 3.1 GHz CPU. Algorithm 1 and
the alternative algorithms that we used for comparison were
implemented in Python. We used the C++ library (Suzuki
2016) to construct the ZDDs in our algorithm. Throughout
the experiments, the limit of execution time is 104 seconds.

3.1 Path Planning for a Mobile Robotic Sensor

We consider the following path planning problem as consid-
ered in (Singh et al. 2009; Zhang and Vorobeychik 2016).
As shown in Figures 3 (a) and (b), the 2-D target space is
discretized by the grid graph G = (V,E). We seek a path in
G that visits a subset of vertices optimally so that a mobile
robot equipped with sensors can collect as much informa-
tion as possible. Using a grid graph is a natural approach
when obstacles, such as buildings, are placed regularly in the
target space. We discretize the target space by using 5 × 9

and 7 × 13 grids. For simplicity, we suppose that the cost
of traversing one edge is always 1, and the obtained path
X ⊆ E must satisfy the budget constraint |X| ≤ B for some
B > 0. To assess the scalability of algorithms, we consider
all feasible budget values: B = 1, 3, . . . , 43 for the 5×9 grid
and B = 1, 3, . . . , 89 for the 7× 13 grid, where B = 43 and
B = 89 are the length of the longest s-t paths in the 5 × 9
and 7× 13 grids, respectively.

This experiment uses air quality sensor data monitored at
11 stations in Shanghai, China (Zheng, Liu, and Hsieh 2013),
and we focus on PM2.5 data. Given the data obtained at the
11 stations, we consider collecting additional information
using a mobile robot equipped with sensors. The robot must
start from and return to specified locations.

To measure the informativeness of obtained paths, we em-
ploy the entropy function of the selected vertices, which
is known to be a monotone submodular function (Krause,
Singh, and Guestrin 2008). Let V0 be the set of locations of
the 11 stations. Starting from S = V0, if S is the current
set of vertices that have already been visited, the marginal
gain of visiting new vertex v /∈ V \S is expressed by the con-
ditional entropy H(v | S) := (1/2) log(2πeσ2

v|S), where
σ2
v|S := K(v, v) − K(v, S)K(S, S)−1K(S, v) is the con-

ditional covariance. The matrices K(S, T ) ∈ R
|S|×|T | are

defined by a kernel function; we here use an ordinary Gaus-
sian kernel (see, e.g., (Bishop 2006)). The parameters of
K(·, ·) are fitted to the data obtained at the 11 stations.

In this experiment we use the following two algorithms to
benchmark our algorithm:
GCB: A generalized cost-benefit greedy algorithm (Zhang
and Vorobeychik 2016). Given current solution S ⊆ V , GCB
considers adding new vertex v ∈ V \S sequentially in non-
increasing order of the cost-benefit ratios; to do this we need
an approximate cost of S, which we compute here using the
nearest neighbor algorithm as in the original paper. We note
that this method does not always find a simple s-t path as
a solution; namely, it sometimes finds a walk that visits the
same vertices twice or more.
A∗ algorithm: An exact A∗ algorithm based on (Zeng et al.
2015). Since heuristic function h(·) used in the original A∗

algorithm is designed for the KC function, it is not applicable
to our setting. Thus we considered two alternatives of h(·).
Given current vertex v ∈ V and solution X ⊆ E, both
heuristic function values h(X) bound

(4) max
S⊆W :|S|≤B−|X|

f(S | V (X))

from above, where W is a set of all vertices that are reachable
from v with at most B − |X| cost; the A∗ algorithm is exact
if h(X) is always larger than or equal to (4). The first one is
a natural generalization of the one used in (Zeng et al. 2015);
letting h′(X) be the objective value achieved by the greedy
algorithm, which achieves a (1 − 1/e)-approximation for
problem (4), we set h(X) = h′(X)/(1− 1/e). The second
one is from (Chen, Chen, and Weinberger 2015); we let
h(X) = maxS⊆W :|S|≤B−|X|

∑
v∈S f(v | V (X)), which

is at least as large as (4) thanks to the submodularity. We
experimentally observed that A* search with the second h(·)
is much faster, and thus we employed it.
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Figure 2: (a)–(d) are the results on SOPs with a 5× 9 grid, and (e)–(h) are those with a 7× 13 grid. (a), (e) Semi-log plot of
running times for our algorithm, GCB and the A∗ algorithm. The running times of our algorithm are shown for constructing a
ZDD (ZDD-construction), executing GreedyDP (ZDD-GreedyDP) and their summation (ZDD-total). (b), (f) Running times of
our algorithm and GCB. (c), (g) Semi-log plot of the ZDD size |N | and the number of feasible solutions |F|. (d), (h) Objective
values achieved by our algorithm, GCB and the A∗ algorithm; those of the A∗ algorithm are always optimal.

(a) Our algorithm (b) GCB

Figure 3: s-t paths with B = 13 obtained by our algorithm
and GCB, respectively. The vertices s, t ∈ V are indicated
by the blue filled circle and square, respectively. The 11 filled
black triangles indicate the locations of the 11 stations. The
heat map expresses the informativeness of locations before
performing sensing with the robot; locations with a warmer
(darker) color are more informative.

We also tried to apply an algorithm based on the recur-
sive greedy algorithm (Singh et al. 2009) to the problem.
However, since the problem is not a Euclidean SOP, most of
the techniques employed to accelerate the recursive greedy
are not applicable. As a result, the approximation algorithm
based on the recursive greedy took far longer than the exact
A∗ algorithm; actually it took more than one day to find a
solution for an SOP with the 5 × 9 grid and B = 9. Thus
we omit comparison with the recursive greedy. We note that,
even if the techniques for acceleration can be used, the re-
cursive greedy becomes at most three orders of magnitude
faster (see, (Singh et al. 2009)). Thus it is still slower than
our algorithm, which took only about 10−1 seconds for the
SOP with the 5× 9 grid and B = 9.

Figures 2 (a)–(h) summarize the numerical results; (a)–
(d) are those of the 5 × 9 grid, and (e)–(h) are those of the
7 × 13 grid. We first consider the computation cost of the
algorithms. In Figures 2 (a) and (e), running times of our
algorithm, GCB and the A∗ algorithm are shown, where the
results of the A∗ algorithm with B > 27 and B > 23 are
omitted in (a) and (e), respectively, since the time limit was
exceeded. We see that our algorithm and GCB are much more
scalable than the A∗ algorithm; our algorithm is about 5×102

times faster than the A∗ algorithm for the SOP on the 5× 9
grid with B = 27. The detailed running time comparison
of our algorithm and GCB is shown in Figures 2 (b) and
(f). Although GCB is more scalable than our algorithm, both
have reasonable computation costs relative to those of the
other algorithms. As examined in (Minato 1993), ZDD size
does not always increase with the value of B (Figures 2 (c)
and (f)), and neither does the running time of our algorithm.
Figures 2 (c) and (f) show that, in many instances, ZDD size
is smaller than the number of feasible solutions by orders
of magnitude, which makes our algorithm far more scalable
than exact algorithms.

We now turn to the quality of solutions obtained by the al-
gorithms. The objective values achieved the three algorithms
are shown in Figures 2 (d) and (h), where those computed
by the A∗ algorithm for B ≤ 27 and B ≤ 23, respectively,
are optimal. Our algorithm significantly outperformed GCB;
actually, it always achieved at least a 99%-approximation
in the 26 instances to which the A∗ algorithm was applied,
and found optimal solutions in 18 out of the 26 instances.
The following two reasons explain why GCB had trouble
in achieving high objective values. (1) The first reason is
the difficulty of finding a feasible s-t path that covers the
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Figure 4: (a) Semi-log plot of running times of our algorithm, GCB, and ES. For our algorithm, the running time for each
procedure is shown as in Figure 2. (b) Running times of our algorithm and GCB. (c) Numbers of feasible solutions and ZDD
sizes. (d) Function values obtained by the three algorithms; those of ES for B ≤ 57 are optimal.

current solution of vertices efficiently. Every time GCB finds
new solution S ⊆ V , we need to evaluate the cost of S by
computing the minimum-cost s-t path that visits all vertices
in S; this, however, is NP-hard in general. Thus GCB instead
evaluates the cost of S inexactly using the nearest neighbor
algorithm, which finds an s-t walk that visits all vertices in
S. As a result, GCB sometimes returns an s-t walk that visits
the same vertices time and again, which leads to the lower
objective values. (2) The second reason is the characteristics
of the cost-benefit greedy search strategy. To see this, we use
Figures 3 (a) and (b) as explanatory examples. The figures
show the solutions obtained by the two algorithms for the
SOP on the 5 × 9 grid with B = 13. Here, our algorithm
successfully found an optimal s-t path. GCB also finds an s-t
path, but it fails to pass through the informative area (around
the 3rd column from the left in the grid graph). Since GCB
employs the cost-benefit greedy search strategy, it tends to
choose vertices that are not far from s, t in the first a few
iterations. Consequently, GCB fails to reach informative ar-
eas that are far from s, t. On the other hand, our algorithm
seldom suffers these two problems. This is because (1) all fea-
sible s-t paths are stored in a ZDD, and thus, (2) even if the
informative areas are far from s, t, our algorithm considers
s-t paths going through the areas as candidates.

3.2 Indoor WSN Design with Critical Areas

We consider an indoor WSN design problem formulated as
an SSTP. To collect as much information as possible, we aim
to design a network that covers as wide an area as possible
under the following four constraints. (1) Sensors must be
placed at some specified locations (e.g, locations close to
outlets); we denote the set of locations by V . (2) The sensors
must form a connected network; sensors that are too far
from each other, or even nearby sensors that are obstructed
by, for example, walls or radiation from appliances, cannot
communicate with each other. (3) The communication cost
of the obtained network must be at most B; sensors consume
electric power when communicating with each other, and the
total power consumption is bounded by B. (4) There are some
critical locations, which are called terminals, and a sensor
must be placed on every terminal. To model this situation,
we construct graph G = (V,E) as in Figures 5 (a) and (b).
A sensor can be placed on a vertex, and two sensors can

(a) Our algorithm (b) GCB

Figure 5: Illustration of the problem and obtained solutions.
The vertices represent the locations where sensors can be
placed, and two sensors can communicate if and only if
they are placed on vertices connected by an edge. The filled
squares indicate terminals. Blue thick edges are the networks
obtained with (a) our algorithm and (b) GCB for B = 50.

communicate if and only if they are placed on two vertices
connected by an edge. The terminals are indicated by filled
squares. We seek to find an optimal Steiner tree in G that
includes all terminals.

This experiment uses temperature field data from the Intel
Berkeley Research Laboratory (Madden 2004). To construct
graph G, we use the data on connectivity; two vertices are
connected if and only if their average probability of suc-
cessful communication is at least 40%. The resulting graph
has 54 vertices and 144 edges. The edge costs are integers
ranging from 1 to 5, which are computed from the success
probability; the total cost of each obtained network must
be at most B. As shown in (Krause, Singh, and Guestrin
2008), in the context of indoor sensor placements, mutual
information MI(S) := H(V \S) −H(V \S | S) is suitable
to measure the informativeness of given S ⊆ V , where H(·)
is the entropy function used in the SOP experiments, and
thus we employ it as an objective function. Unfortunately, the
mutual information is non-monotone in general; this seems
to be somewhat undesirable as a measure of informativeness,
and it does not match the setting of problem (1). Fortunately,
however, it is known to be approximately monotone if the
number of deployed sensors is small enough compared to
|V |. Thus we here make B = 41, . . . , 80, so the number of
deployable sensors is small enough; B = 41 is the cost of
the minimum Steiner tree covering all terminals.
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Figure 6: (a) Running times of our algorithm and ES. (b) Numbers of feasible solutions and ZDD sizes. (c) Function values
attained by our algorithm and ES; those of ES for B ≤ 49 are optimal. (d) Illustration of the graph and an obtained solution; blue
thick edges are the network obtained with our algorithm for B = 101.

We implemented and applied our algorithm to the prob-
lem; its performance is compared with that of exhaustive
search (ES) and a GCB variant that employs the following ap-
proximate cost computation. Given current solution S ⊆ V ,
the cost of S is evaluated by constructing a Steiner tree that
covers S using the nearest neighbor method. More precisely,
starting from vinit ∈ S, if T ⊆ S is a current connected tree,
we connect the pair u ∈ T and v ∈ S\T that has the mini-
mum shortest-path length; this procedure is continued until
T covers all vertices in S. We vary vinit among all vertices
in S and take a Steiner tree with the smallest cost.

Figure 4 (a) shows that our algorithm and GCB are far
more scalable than ES; the results of ES for B ≥ 58 are
omitted since the time limit was exceeded. Compared with
GCB, our algorithm performs poorly in terms of running
time (Figure 4 (b)). This, however, is not such a hardship in
WSN design since we rarely face situations where we must
design a network quickly. Figure 4 (c) shows the numbers
of feasible solutions |F| and ZDD sizes |N |. We see that
ZDD size grows much more slowly than |F|, and this is why
our algorithm is more scalable than ES. Figure 4 (d) plots
the objective values achieved by the two algorithms, where
those obtained by ES for B ≤ 57 are optimal. We see that
our algorithm outperforms GCB in most instances and that
our algorithm is almost optimal for B ≤ 57; actually our
algorithm achieved more than a 97%-approximation in all
17 instances to which ES was applied, and found optimal
solutions in 5 out of the 17 instances. Figures 5 (a) and
(b) illustrate the networks obtained with our algorithm and
GCB for B = 50. The network output by our algorithm
covers a wider area than that output by GCB, showing the
effectiveness of our algorithm for this problem. Similar to
the results of the SOP experiments, GCB again suffers from
the inherent characteristics of the cost-benefit greedy strategy.
Namely, in the first a few iterations, GCB chooses vertices
around the center of the target space, which have large cost-
benefit ratios, but choosing such vertices greedily results in a
WSN that cannot cover the left and right sides of the target
space because of the budget constraint.

3.3 Robust Indoor WSN Design

We consider problems raised in finding robust WSNs, which
we formulate as SVCNPs. We use the same graph and ob-

jective function as those in the SSTP experiments. In the
SVCNP instances, we observed that the objective value in-
creases with B even for large B, and thus we set B =
9, . . . , 102; B = 9 is the cost of the minimum VC network
(at B = 103 our algorithm exceeded the time limit).

When it comes to applying our algorithm to SVCNPs, a
ZDD storing all VC networks cannot be obtained by the com-
monly used top-down construction method (see, e.g., (Kawa-
hara et al. 2017a)), and thus we constructed it using algebraic
operations defined on a family of sets (see, (Knuth 2011)),
which can be performed on ZDDs. To the best of our knowl-
edge, no existing algorithm is applicable to SVCNP since
its constraint is too complex. Thus we employ only ES to
benchmark our algorithm.

As in Figure 6 (a), our algorithm is much more scalable
than ES by virtue of the fact that the ZDD size grows more
slowly than the number of feasible solutions (Figure 6 (b));
the running times of ES for B ≥ 50 are omitted since the
time limit was exceeded. Different from the results in SOPs
and SSTPs, the ZDD-construction requires larger computa-
tion cost than ZDD-GreedyDP. This is because the ZDDs
for SVCNPs are constructed using algebraic operations on
ZDDs repetitively, which takes a somewhat long time. Fig-
ure 6 (c) plots the objective values achieved by the two al-
gorithms, where those obtained with ES for B ≤ 49 are
optimal. We observed that our algorithm attained at least
a 91%-approximation in all 41 instances to which ES was
applied, and found optimal solutions in 24 out of the 41 in-
stances. Figure 6 (d) illustrates a solution obtained with our
algorithm for B = 101, showing that our algorithm success-
fully found a VC network that covers a wide area.

4 Conclusions and Discussions

We proposed a novel approximation algorithm for SFM over
graphs, which includes many important and practical prob-
lems such as SOPs, SSTPs, and SVCNPs. Our algorithm
avoids the difficulty of determining feasibility by reducing
the original problems to those of finding a route in a ZDD. We
proved that our algorithm achieves (1− c)-approximations
where c is the curvature of the objective submodular function.
We observed the performance of our algorithm via numeri-
cal experiments involving three kinds of sensing tasks. The
results showed that our algorithm finds better solutions than
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the alternative approximation algorithm in most instances,
and runs much faster than the exact algorithms. Notably, our
algorithm achieved more than a 90%-approximation in all
instances for which optimal values were available.

In some experiments, we observed that the (1 − c)-
approximation guarantee tends to be pessimistic. Actually,
our algorithm found optimal solutions for SOP instances with
c > 0.9, implying that it might be possible to improve the
(1 − c)-approximation guarantee. We believe that submod-
ular optimization with DDs is a promising subject of study
with much room for development, and so offers a significant
advance in the field of constrained submodular optimization.

Acknowledgments The authors are grateful to Hirofumi
Suzuki and Hiroaki Iwashita for providing the C++ library
to construct the ZDDs used in the implementation of our
algorithm.

Appendix

Proof for Theorem 1

Note that the submodularity of f can be also characterized by
the diminishing return property: f(v | S) ≥ f(v | T ) for any
S ⊆ T and v ∈ V \T . First, we derive an inequality for later
use. From the definition of curvature c, we have the following
inequality for any T ⊆ V and v ∈ V \T if f(v) > 0 holds:

1− c = min
S�V, v′ /∈S

f(v′ | S)
f(v′)

≤ f(v | T )
f(v)

,

which means (1− c)f(v) ≤ f(v | T ). If f(v) = 0, then we
have f(v | T ) = 0 by the submodularity. Thus (1−c)f(v) ≤
f(v | T ) holds in both cases. Since f(v | S) ≤ f(v) holds
for any S ⊆ V due to the submodularity, the following
inequality holds for any v ∈ V and S, T ⊆ V satisfying
v /∈ T :

(5) f(v | T ) ≥ (1− c)f(v | S).

Now we turn to the proof of Theorem 1. Let R∗r,n :=
argmaxR∈Rr,n f(R) for all n ∈ N . The proof is obtained
by induction on the size of U , i.e., assuming

(6) f(Rr,n′) ≥ (1− c)f(R∗r,n′) (∀n′ ∈ N\U),

we prove f(Rr,n) ≥ (1− c)f(R∗r,n) for node n ∈ U . Note
that (6) holds if U = N\{r}.

Let n ∈ U be a node chosen in Step 5 of Algorithm 1 and
n′ ∈ Preds(n) satisfy (n′, n) ∈ R∗r,n, i.e., n′ is the tail of
the last arc in R∗r,n. Furthermore, let (n′′, n) ∈ An be an arc
chosen in Step 6. Note that (n′′, n) is chosen greedily and
thus satisfies the following inequality:

f(Rr,n) = f(Rr,n′′) + f((n′′, n) | Rr,n′′)(7)

≥ f(Rr,n′) + f((n′, n) | Rr,n′).

Since (6) holds for n′ ∈ Preds(n) ⊆ N\U and R∗r,n′ ∈
Rr,n′ is an optimal route from r to n′, we get

(8) f(Rr,n′) ≥ (1−c)f(R∗r,n′) ≥ (1−c)f(R∗r,n\(n′, n)).

Now we consider two cases as follows. If (n′, n) is 0-arc or
l(n′) ∈ E, then adding (n′, n) to a route R ∈ Rr,n′ does not
increase the value of f . Thus we have

f((n′, n) | Rr,n′) = f((n′, n) | R∗r,n\(n′, n)) = 0.

If (n′, n) is 1-arc and l(n′) ∈ V , then l(n′) ∈ V is added
to the input of f by choosing (n′, n). Since l(n′) appears at
most once in Rr,n′ ∪ (n′, n) due to the property of ZDDs, we
have l(n′) /∈ VRr,n′ . Hence we obtain the following inequal-
ity by (5):

f((n′, n) | Rr,n′) ≥ (1− c)f((n′, n) | R∗r,n\(n′, n)).
Therefore, in both cases, we have

(9) f((n′, n) | Rr,n′) ≥ (1− c)f((n′, n) | R∗r,n\(n′, n)).
Substituting (8) and (9) into (7), we obtain

f(Rr,n)

≥ (1− c)
(
f(R∗r,n\(n′, n)) + f((n′, n) | R∗r,n\(n′, n))

)

= (1− c)f(R∗r,n),

where n ∈ U . By induction on the size of U , we obtain (6)
for U = ∅, and thus f(Rr,1) ≥ (1− c)f(R∗r,1) follows.
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