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Abstract

Submodular maximization continues to be an attractive sub-
ject of study thanks to its applicability to many real-world
problems. Although greedy-based methods are guaranteed to
find (1− 1/e)-approximate solutions for monotone submod-
ular maximization, many applications require solutions with
better approximation guarantees; moreover, it is desirable to
be able to control the trade-off between the computation time
and approximation guarantee. Given this background, the best-
first search (BFS) has been recently studied as a promising
approach. However, existing BFS-based methods for submodu-
lar maximization sometimes suffer excessive computation cost
since their heuristic functions are not well designed. In this pa-
per, we propose an accelerated BFS for monotone submodular
maximization with a knapsack constraint. The acceleration is
attained by introducing a new termination condition and de-
veloping a novel method for computing an upper-bound of the
optimal value for submodular maximization, which enables us
to use a better heuristic function. Experiments show that our
accelerated BFS is far more efficient in terms of both time and
space complexities than existing methods.

Introduction

Submodular maximization has attracted much attention
thanks to its applicability to various problems: document sum-
marization (Lin and Bilmes 2010), sensor placement (Krause,
Singh, and Guestrin 2008), influence maximization (Alon,
Gamzu, and Tennenholtz 2012), and so on. We let U :=
[n] be a finite set, where [n] := {1, . . . , n}. Set function
g : 2U → R is said to be submodular if g(X) + g(Y ) ≥
g(X ∪ Y ) + g(X ∩ Y ) for any X,Y ⊆ U and monotone if
g(Y ) ≥ g(X) for any X ⊆ Y ⊆ U .

In this paper, we consider monotone submodular maxi-
mization problems with a knapsack constraint, which we
call submodular knapsack problems (SKPs). Let cv ≥ 0 be
cost values for all v ∈ U ; we define c(X) :=

∑
v∈X cv and

cX := {cv : v ∈ X} for any X ⊆ U . Given monotone
submodular function g that satisfies g(∅) = 0 and a budget
B > 0, we address the following SKP:

maximize
X⊆U

g(X) subject to c(X) ≤ B.(1)

In what follows, X∗ denotes an optimal solution for SKP (1).
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For SKPs, the greedy algorithm is known to achieve
(1 − 1/

√
e)-approximation (Lin and Bilmes 2010); we say

solution X (or an algorithm that returns X) is α-optimal if
X is an α-approximate solution, i.e., g(X) ≥ αg(X∗). Fur-
thermore, (1 − 1/e)-optimal solutions can be obtained by
executing the greedy algorithm O(|U |3) times (Sviridenko
2004). On the other hand, it is known that (1 − 1/e + ε)-
approximation guarantees cannot be obtained in polynomial
time unless P = NP (Feige 1998).

Although the aforementioned greedy algorithms are often
effective, their approximation guarantees are sometimes un-
satisfiable. In many important decision problems, we need
to find solutions whose approximation guarantee is better
than 1 − 1/

√
e ≈ 0.39 or 1 − 1/e ≈ 0.63. The best-first

search (BFS), a general framework that includes the well-
known A∗ search, is one of the most promising approaches
that can achieve better approximation guarantees. The BFS-
based approach for submodular maximization was estab-
lished in (Chen, Chen, and Weinberger 2015); their original
paper call the algorithm filtered search (FS). Although the
time and space complexities of BFS are generally exponen-
tial in |U |, α-approximate solutions can be found for any
α ∈ [0, 1], and we can control the trade-off between the com-
putation cost and optimality by tuning the hyper-parameter,
α. As in the standard A∗ search, BFS uses heuristic function
h(X) to measure how promising the current solution X is,
and the performance of BFS strongly depends on how we
design the heuristic function h(·). Unfortunately, as we will
see in the experiments, BFSs with existing heuristic functions
sometimes work poorly in important SKP instances.

Our Contribution

In this paper, we propose an accelerated BFS for SKPs. The
acceleration is attained by introducing a new termination
condition to BFS and using a novel heuristic function. As
we will see later, computing heuristic function values re-
duces to computing upper-bounds for optimal values of SKPs
that appear as subproblems in BFS. Therefore, we propose
a novel technique to compute such upper-bounds. The ob-
tained upper-bound is empirically more accurate than those
obtained by existing techniques, thus enabling us to use a
better heuristic function in BFS. Combining the upper-bound
with the proposed termination condition substantially reduces
the computation cost of BFS; our accelerated BFS is partic-
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ularly effective when computing α-approximate solutions
for α < 1 (e.g., α = 0.7 or 0.8). Experiments show that
our algorithm outperforms existing methods in terms of both
time and space complexities.

We note that obtaining accurate upper-bounds for SKPs
is also beneficial in the empirical performance analysis of
existing approximation algorithms for SKPs. Since SKP is
NP-hard in general, computing optimal values for large SKPs
is prohibitively expensive, making it almost impossible to
evaluate the quality of obtained solutions for large SKPs.
As shown later, our upper-bound computation method is as
fast as the standard greedy algorithm, and it finds an upper-
bound that is close to the optimal value. Thus the proposed
upper-bound enables us to obtain empirical approximation
guarantees that are typically better than 1 − 1/e, which is
helpful when evaluating the quality of given solutions for
large SKPs.

Related Work

For size-constrained monotone submodular maximization
(i.e., cv = 1 for all v ∈ U ), the greedy algorithm has been
proved to be (1 − 1/e)-optimal (Nemhauser, Wolsey, and
Fisher 1978). However, no polynomial-time algorithm is
(1−1/e+ε)-optimal in the worst case unless P = NP (Feige
1998). If the curvature value κ ∈ [0, 1] of a submodular
function is small, which means the submodular function is
close to a modular function, then improved approximation
guarantees that depend on κ can be obtained (Conforti and
Cornuéjols 1984; Sviridenko, Vondrák, and Ward 2015).

SKP is a more general problem and includes the size-
constrained monotone submodular maximization. For a spe-
cial case of SKP, the greedy algorithm has been proved to be
(1−1/

√
e)-optimal (Khuller, Moss, and Naor 1999), and this

result has been extended to the general SKP (Lin and Bilmes
2010). If we are allowed to execute the greedy algorithm
O(|U |3) times, then (1− 1/e)-approximate solutions can be
obtained for SKP (Sviridenko 2004); unfortunately, this is
too computationally expensive in most applications.

When it comes to obtaining approximation guarantees that
are better than 1− 1/e, there are two major approaches: in-
teger programming (IP) and BFS. The IP-based approach
was first studied by (Nemhauser and Wolsey 1981), who
proposed a branch-and-bound algorithm. A more efficient
IP-based algorithm using the submodularity cut is proposed
in (Kawahara et al. 2009); although this method is applica-
ble to non-monotone submodular maximization, it can only
deal with the size-constrained case. Unfortunately, IP-based
methods are sometimes inefficient since they must solve sub-
problems too many times. The BFS-based methods are typi-
cally more efficient than the IP-based ones by virtue of their
search strategy based on certain priorities, and so are attract-
ing much attention recently. For submodular maximization
with a specific objective function and an s-t path constraint,
an A∗ search algorithm is proposed in (Zeng et al. 2015);
their algorithm employs the greedy algorithm for computing
heuristic function values. For some submodular maximiza-
tion problems including SKP, a BFS-based algorithm, called
filtered search (FS), was proposed in (Chen, Chen, and Wein-
berger 2015); in the FS for SKP, heuristic function values

are computed by solving relaxed knapsack problems (KPs).
FS has a hyper-parameter, α ∈ [0, 1], that a user can control,
and FS is guaranteed to find α-approximate solutions; this
technique is studied as the weighted A∗ search in the field of
search problems (Pohl 1970; Ebendt and Drechsler 2009).

BFS for SKPs and Acceleration Techniques

We explain some basics of BFS for SKP (1) and additional
techniques for its acceleration: under estimation and termi-
nation condition. The detail of BFS with these techniques is
shown in Algorithm 1. We also provide a theoretical analysis
on the proposed algorithm.

In what follows, we define X+Y := X∪Y and X−Y :=
X\Y for any X,Y ⊆ U . We abuse notation and sometimes
regard v ∈ U as a subset of U ; for instance, we let X + v =
X ∪ {v}. We also define g(X | Y ) := g(X + Y )− g(Y ).

BFS for SKPs

We briefly review the procedures of BFS for SKPs, as detailed
in (Chen, Chen, and Weinberger 2015).

Let F := {X ⊆ U : c(X) ≤ B} be the collection of
all feasible solutions, and remember that elements in U are
numbered by 1, . . . , n. We define a state-space tree G =
(F , E), which is a directed tree whose root is ∅ ∈ F .1 Each
node corresponds to a feasible solution X ∈ F , and is called
a state; the pair X,Y ∈ F has a directed edge (X,Y ) ∈
E if and only if X = Y − maxY holds, where maxY
is an element in Y with the largest number. For example,
X = {2} and Y = {2, 4} have an edge (X,Y ) since Y −
maxY = {2, 4} − {4} = {2} = X . We abuse the notation
and suppose that the set U has the linear order <; for example,
we use {2} < {4}. Although |F| can be exponential in |U |,
BFS expands states in F on-demand, typically requiring the
storage of a very small fraction of F .

As in Algorithm 1, BFS employs a max heap (i.e., a priority
queue) to manages 〈key, value〉 pairs. A key corresponds
to state X ∈ F and the priority value of X is defined as
f(X) := g(X) + h(X), where h(·) is a heuristic function.
In each step of BFS, we pop the state with the biggest priority
value from the heap and push its child states onto the heap.
Let T ∈ F be a state popped from the heap. Then all child
states S ∈ F such that (T, S) ∈ E (i.e., S = T + v for all
v ∈ U such that v > maxT ) are pushed onto the heap. These
procedures are repeated until solution T such that h(T ) = 0
is obtained. BFS is guaranteed to be optimal if the heuristic
function is admissible, i.e., h(X∗) = 0 and h(X) ≥ g(X∗ |
X) for any optimal solution X∗ and X ⊆ U .

Under Estimation

While computing an optimal solution with BFS is sometimes
too computationally expensive, an approximate solution can
often be obtained efficiently by employing the under esti-
mation technique as in (Chen, Chen, and Weinberger 2015);

1The original paper of FS uses a state-space graph and closed
list so that each state is examined at most once. In practice, however,
it is inefficient to use the closed list explicitly. Thus we employ here
the state-space tree often used in reverse search (Avis and Fukuda
1996).
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Algorithm 1 BFSTC(U, g(·), cU , B, α)

1: Smax ← GetFeasible(∅)
2: f(∅) ← αh(∅)
3: gupper ← f(∅)/α
4: MaxHeap.push(〈∅, f(∅)〉)
5: while MaxHeap is not empty do
6: T ← MaxHeap.pop()
7: if h(T ) = 0 then
8: return T
9: end if

10: gupper ← min{gupper, f(T )/α}
11: for each S such that (T, S) ∈ E do

12: Ŝ ← GetFeasible(S)
13: Smax ← argmaxX∈{S+Ŝ,Smax} g(X)

14: if g(Smax)/gupper ≥ α then
15: return Smax

16: end if
17: f(S) ← g(S) + αh(S)
18: MaxHeap.push(〈S, f(S)〉)
19: end for
20: end while

this approach is analogous to that of the weighted A∗ al-
gorithm (Pohl 1970; Ebendt and Drechsler 2009). Specifi-
cally, instead of using f(T ) = g(T ) + h(T ), we employ
the under-estimated priority f(T ) = g(T ) + αh(T ), where
α ∈ [0, 1] is a controllable hyper parameter. From the non-
negativity of g(·) and the admissibility of h(·), we have
f(T ) ≥ α(g(T ) + h(T )) ≥ αg(X∗), which guarantees
the α-optimality of BFS.

Proposed Termination Condition

We now explain the proposed termination condition
(Steps 12–16), which detects that an α-approximate solution
has been already obtained; we refer to our algorithm as BFS
with termination condition (BFSTC).

As we will show later, evaluating h(S) requires to ob-
tain subset Ŝ ⊆ U such that S + Ŝ ∈ F . If we can de-
tect g(S + Ŝ)/g(X∗) ≥ α without knowing the true value
of g(X∗), we can immediately stop the search and return
S + Ŝ as an α-approximate solution. We use this idea to
create BFSTC. In Steps 1 and 12, GetFeasible(S) computes
Ŝ; for example, we may use the standard greedy algorithm
to obtain Ŝ. How to compute Ŝ depends on the heuristic
function used, and thus we show the details of GetFeasible
later for each heuristic function. Smax maintained in Algo-
rithm 1 always gives a feasible solution, and it is updated in
Step 13 so that Smax is the current best solution. Furthermore,
since we have f(T ) ≥ αg(X∗) thanks to the admissibility
of h(·), gupper maintained in Algorithm 1 always gives an
upper-bound of g(X∗); g(Smax)/g(X

∗) ≥ g(Smax)/gupper
always holds. Namely, g(Smax)/gupper ≥ α implies Smax is
an α-approximate solution, i.e., g(Smax)/g(X

∗) ≥ α. As
in the experiments, the termination condition reduces the
search effort of our algorithm, particularly when computing
α-approximate solutions for α ≤ 0.7.

Theoretical Analysis

We here show a sufficient condition for BFSTC to achieve α-
approximation; more specifically, we show a weaker version
of the admissibility that suffices to obtain the α-optimality
of BFSTC. The condition is a key to obtaining the proposed
heuristic function. As shown by Chen, Chen, and Weinberger,
if heuristic function h(·) satisfies the following critical ad-
missibility (CA),2 then BFS is α-optimal. In what follows, we
define VS := {v ∈ U : v > maxS} for any given S ⊆ U ;
namely, VS consists of the elements that are considered to be
added to S in BFSTC.
Definition 1 (critical admissibility). We say h(·) satisfies CA
if the following conditions hold for any S ⊆ U :
1. h(S) = 0 if g(v | S) ≤ 0 or S + v /∈ F for all v ∈ VS ,
2. h(S) ≥ maxX⊆VS :X+S∈F

∑
v∈X g(v | S) otherwise.

We introduce here the weak critical admissibility (WCA).
With WCA, we can design a novel heuristic function as
shown later, which substantially enhances BFS performance.
Definition 2 (weak critical admissibility). We say h(·) satis-
fies WCA if the following conditions hold for any S ⊆ U :
1. h(S) = 0 if g(v | S) ≤ 0 or S + v /∈ F for all v ∈ VS ,
2. h(S) ≥ maxX⊆VS :X+S∈F g(X | S) otherwise.

We name this condition WCA since heuristic function h(·)
satisfying CA always satisfies WCA, while the reverse is not
true; this can be confirmed using the submodularity of g. The
following theorem guarantees that BFSTC is α-optimal if its
heuristic function satisfies WCA. For proof, see the appendix.
Theorem 1. If h(·) satisfies WCA, then solution R ⊆ U
obtained by BFSTC satisfies g(R) ≥ αg(X∗).

In the next section we discuss how to design h(·). The first
condition of WCA (or CA) is easily satisfied by examining
all v ∈ VS , and thus we focus on the second condition. Given
current solution S, heuristic function value h(S) satisfying
the second condition of WCA is obtained as an upper-bound
of the optimal value of the following SKP:

maximize
Y⊆V

gS(Y ) subject to c(Y ) ≤ BS ,(2)

where BS := B − c(S), V := {v ∈ VS : c(v) ≤ BS} and
gS(·) := g(· | S) is a monotone submodular function defined
on U − S; gS(·) is sometimes called the contraction of g on
S (see, e.g., (Bach 2013)) and satisfies gS(∅) = 0. Therefore,
in the next section, we discuss how to obtain upper-bounds
of the optimal value of SKP (2).

Upper-bound Computation for SKP

As we have seen above, given solution S, heuristic function
value h(S) is obtained by computing an upper-bound of
SKP (2). In this section, we let Y ∗ ⊆ V denote an optimal
solution for SKP (2), and we discuss how to compute an
upper-bound of gS(Y ∗), which we use as heuristic function
value h(S). In what follows, for a given ordered subset X ⊆

2The above definition of CA is slightly different from the original
one presented in (Chen, Chen, and Weinberger 2015) since we
employed the state-space tree instead of the state-space graph.
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Algorithm 2 GreedySK(V, gS(·), cV , BS)

1: X ← GreedyAdd(V, gS(·), cV , BS)
2: vmax ← maxv∈V gS(v)
3: Z ← argmaxY ∈{vmax,X} gS(Y )
4: return Z

Algorithm 3 GreedyAdd(V, gS(·), cV , BS)

1: X ← ∅
2: while V �= ∅ do
3: v̂ ← argmaxv∈V gS(v | X)/cv
4: if c(X + v̂) ≤ BS then
5: X ← X + v̂
6: end if
7: V ← V − v̂
8: end while
9: return X

V , we let X1:i denote the set of the first i elements (X1:i = ∅
if i < 1) and Xi denotes its i-th element.

For later use, we show the ordinary greedy algorithm for
SKP (2) in Algorithm 2, which we call GreedySK. The algo-
rithm computes two candidates, X and vmax, as its output:
X is obtained by adding the elements with the largest cost-
benefit ratio sequentially, and vmax is a singleton with the
maximum objective value. We refer to the algorithm for com-
puting the first candidate X as GreedyAdd, and we describe
it separately from GreedySK for later use.

In the rest of this section, we show three upper-bounds of
gS(Y

∗), which we name uapp, umod, and udom. The first two
bounds are obtained with existing techniques. The third one
is the proposed upper-bound, and is used as heuristic function
value h(S) in our algorithm.

Upper-bound with Approximation Ratios (uapp)

Given γ-approximate solution Z for SKP (2), the simplest
way to obtain an upper-bound of gS(Y

∗) is to compute
uapp := gS(Z)/γ. As in (Lin and Bilmes 2010), GreedySK
for SKPs achieves at least (1− 1/

√
e)-approximation; more

strictly, if X is the output of GreedyAdd, the approxima-
tion ratio achieved by GreedySK is at least γ = 1 −(
1− 1

2|X|
)|X|

. In the size-constrained case, we can im-
prove the upper-bound using the results in (Conforti and
Cornuéjols 1984) as follows: we compute the curvature
κ ∈ [0, 1] of submodular function gS and we let γ =
1
κ

(
1− (1− κ/|X|)|X|

)
. The A∗ algorithm, whose heuris-

tic function is a variant of the above uapp, is studied in (Zeng
et al. 2015) for a specific objective function.

We now consider the computational aspect of BFSTC that
uses uapp as its heuristic function value. For current S, we
can compute h(S) = uapp efficiently once we obtain gS(Z),
where Z is the output of GreedySK(V, gS(·), cV , BS).
Therefore, in Steps 1 and 12 of BFSTC, we use
GreedySK(V, gS(·), cV , BS) as GetFeasible(S), with
which we compute gS(Z) and let h(S) = gS(Z)/γ.

Upper-bound with Modular Functions (umod)

The second upper-bound umod is the one used in (Chen, Chen,
and Weinberger 2015), which gives a heuristic function sat-
isfying CA. Thanks to the submodularity of gS , we have∑

v∈X gS(v) ≥ gS(X) for any X ⊆ V , and thus we obtain

max
X⊆V :c(X)≤BS

∑
v∈X

gS(v) ≥
∑
v∈Y ∗

gS(v)(3)

≥ gS(Y
∗) = gS(Y

∗).

Therefore, in order to bound gS(Y ∗) from above, we compute
an upper-bound of the left-hand side of eq. (3), which is an
optimal value of KP. Such an upper-bound is easily obtained
by considering the fractional relaxation of KP as follows. We
sort V in the non-increasing order of rv := gS(v)/cv; V1:i

denotes the first i elements of the sorted set. If we have rv =
∞ (i.e., gS(v) > 0 and cv = 0) for some v ∈ V , we place
them at the beginning of V in arbitrary order. Furthermore,
we define l := max{i ∈ [|V |] : c(V1:l) ≤ BS}. If l < |V |,
then the following value bounds the left-hand side of eq. (3)
from above (see, (Dantzig 1957)):

umod :=
∑

v∈V1:l

gS(v) + (BS − c(V1:l)) rVl+1
.

If l = |V |, then gS(Y
∗) = gS(V ) thanks to the monotonicity

of gS , and thus we let umod := gS(V ). Consequently, umod
always bounds gS(Y ∗) from above.

Given current solution S, we consider computing h(S) =
umod efficiently in BFSTC. As discussed above, umod is ob-
tained by solving the relaxed KP. Thus in Steps 1 and 12
of BFSTC, we let GetFeasible(S) compute V1:l+1 and out-
put V1:l if l < |V |; note that we have V1:l + S ∈
F . We then set h(S) to the objective value that is
obtained by solving the relaxed KP; namely h(S) =∑

v∈V1:l
gS(v)+(BS − c(V1:l)) gS(Vl+1)/cVl+1

. If l = |V |,
we let GetFeasible(S) output V and set h(S) = gS(V ).

For later use, given any Y ⊆ V , we define umod(Y ) as
an upper-bound of maxX⊆V \Y :c(X)≤BS

gS(X | Y ) that is
obtained by solving its relaxed KP as shown above.

Upper-bound with Dominant Elements (udom)

We here propose the new upper-bound udom. To compute
udom, we use an output of GreedyAdd(V, gS(·), cV , BS),
which we denote X1:k; X1:i is the set of the first i elements
added by GreedyAdd for i ∈ [k]. We define

β1:k :=

{
0 if umod(X1:i) = 0 for some i ∈ [k],∏k

i=1 βi otherwise,

βi := 1− gS(Xi | X1:i−1)

umod(X1:i−1)
for i ∈ [k].

Then we let udom := gS(X1:k)/(1− β1:k).
Theorem 2. udom ≥ gS(Y

∗) holds for any given S ⊆ U .
The proof, presented in the appendix, is analogous to

the well-known proof of (1 − 1/e)-approximation for
size-constrained submodular maximization. In the size-
constrained case, we have βi = 1 − 1/k in the worst case,
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which leads to the (1− 1/e)-approximation guarantee; from
this fact, the simple upper-bound gS(X1:k)/(1 − 1/e) ≥
gS(Y

∗) can be obtained. In most cases, however, we have
βi < 1 − 1/k, and hence udom is expected to be closer to
gS(Y

∗) than gS(X1:k)/(1− 1/e).
We discuss when udom gives an upper-bound that is close

to gS(Y
∗). From the definition of udom, we see that udom is

likely to overestimate gS(Y
∗) if β1:k ∈ [0, 1] is close to 1;

namely β1:k ≈ 0 is desirable, which holds if we have βi ≈ 0
for some i ∈ [k]. Such small βi can be obtained if we have
gS(Xi | X1:i−1)/umod(X1:i−1) ≈ 1, which occurs if Xi is
has a dominant marginal gain compared to v ∈ V −X1:i. In
other words, if gS(Xi | X1:i−1) � gS(v | X1:i−1) holds for
all v ∈ V −X1:i, then we have βi ≈ 0, and consequently we
obtain β1:k ≈ 0. Namely, the accuracy of udom depends on
the dominance of the elements selected by GreedyAdd.

We consider computing h(S) = udom efficiently in BFSTC
for current solution S. As shown above, udom can be com-
puted easily if we have gS(X1:k) and the marginal gains
gS(v | X1:i−1) for all v ∈ V − X1:i−1 and i ∈ [k],
which can be obtained once GreedyAdd(V, gS(·), cV , BS)
is executed. Therefore, in Steps 1 and 12 of BFSTC, we
get Ŝ by using GreedySK(V, gS(·), cV , BS), which includes
GreedyAdd(V, gS(·), cV , BS) as its building block. Then we
can compute udom without additional function evaluation.

Experiments

All experiments were conducted on a 64-bit Cent7.3.1611
machine with Xeon 5E-2697 v3 2.6 GHz CPUs and 256
GB of RAM. Our algorithm is BFSTC with the heuristic
function given by udom, which we call DOM. To benchmark
our algorithm, we use BFSTC with the heuristic functions
given by uapp and umod, which we call APP and MOD, re-
spectively. Note that APP and MOD are improved variants of
those in (Zeng et al. 2015) and (Chen, Chen, and Weinberger
2015), respectively. All instances considered are formulated
as SKPs. For the objective functions, we use the following
weighted coverage (COV) function, facility location (LOC)
function, and bipartite influence (INF) function.

Weighted Coverage (COV) The first one is the well-
known weighted coverage function (see, e.g., (Krause and
Golovin 2013)). Let [m] be a set of m items. We define
wi ≥ 0 as the weight of i-th item for each i ∈ [m]. Each
v ∈ U covers some items, and we let Iv ⊆ [m] indicate the
set of items covered by v. The following weighted coverage
function is monotone and submodular:

g(X) :=
∑

i∈⋃v∈X Iv

wi.

This function often appears in the context of itemset mining
(e.g., (Kumar et al. 2015)). Here cv is the cost of choosing v.

Facility Location (LOC) The second one is the facility
location function (see, e.g., (Krause and Golovin 2013)). We
regard U as a set of locations and consider selecting some
locations at which to build certain facilities. Let [m] be a set
of m clients. We define qi,v ≥ 0 as the benefit i-th client gains
from the facility built at v. Given X ⊆ U , which represents

the set of locations where the facilities are built, each client
gains benefit from the most beneficial facility, and thus the
total benefit for the clients is defined as

g(X) =
∑
i∈[m]

max
v∈X

qi,v;

this is known to be a monotone submodular function. Here
cv represents the cost of building a facility at v.

Bipartite Influence (INF) The third one represents an in-
fluence model on bipartite graphs, which is a special case of
the problem studied in (Alon, Gamzu, and Tennenholtz 2012).
Let U be a set of items. We regard [m] as a set of m targets.
Given bipartite graph G = (U, [m];A), where A ⊆ U × [m]
is a set of directed edges, we consider an influence maxi-
mization problem on G. The probability that i-th target gets
activated by items X ⊆ U is 1 − ∏

v∈X:(v,i)∈A(1 − pv),
where pv ∈ [0, 1] is the activation probability of item v. Ob-
jective function g(X) is the expected number of targets that
are activated by items in X , which can be written as

g(X) =
∑
i∈[m]

⎛
⎝1−

∏
v∈X:(v,i)∈A

(1− pv)

⎞
⎠ .

In this setting, cv represents the cost of choosing v.

Artificial Instances

We randomly generated 100 instances for COV, LOC, and
INF, and we compared the performance of the three algo-
rithms. In all instances, we set |U | = 100 and B = 1. The
costs cv (v ∈ U ) are drawn randomly from a uniform distri-
bution on [0, 1]; we denote a uniform distribution over [a, b]
by u[a,b]. We let m = 1000 for each m that appears in the
definitions of COV, LOC, and INF. In COV instances, wi are
drawn from u[0,1], and each v ∈ U randomly covers each
w ∈ W with probability 0.3. In LOC instances, all benefits,
qi,v , are drawn from u[0,1]. In INF instances, all pv are drawn
from u[0,1], and each pair (v, i) ∈ U × [m] is connected
randomly with probability 0.3. In all instances, we set the
time limit to one hour.

The results are summarized in Table 1 for various approx-
imation ratios α = 0.4, . . . , 1.0, which can be controlled
by the user; since the greedy algorithm for SKP achieves
1− 1/

√
e ≈ 0.39 approximation, we consider only the case

α > 0.39. For each method, we observed and compared the
number of instances solved without exceeding the time limit,
number of nodes pushed onto the heap (averaged over all 100
instances), and running time. In Table 2, which is provided
in the appendix, we also present some detailed results on the
number of pushed nodes averaged over solved instances. The
running times in Table 1 is compared for two pairs (DOM,
MOD) and (DOM, APP), both of which are averaged over
all instances solved by the both methods. Our method DOM
substantially outperforms the other methods in all aspects.
Notably, in the case α ≤ 0.7, DOM pushes only one node
onto the heap, thus requiring dramatically less time and space
complexities than the other methods. This result is thanks to
the high accuracy of udom and the proposed termination condi-
tion; our upper-bound udom is so accurate that DOM detected
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Table 1: Numerical results for artificial instances. ‘# solved’ is the number of instances solved without exceeding the time limit.
‘# nodes’ is the number of nodes pushed onto the heap averaged over all instances including those unsolved. ‘A–B time’ compares
the running times for the two methods (A,B) = (DOM,MOD) and (DOM,APP); the running times are averaged over instances
solved by both A and B. For each value of α the best results are given in bold.

Approximation ratio α 0.4 0.5 0.6 0.7 0.8 0.9 1.0

COV

# solved
DOM 100 100 100 100 100 96 84
MOD 100 97 91 84 73 64 62
APP 100 83 59 47 27 24 20

# nodes
DOM 1.00e+0 1.00e+0 1.00e+0 1.00e+0 3.98e+3 5.96e+5 1.55e+6
MOD 1.13e+5 4.66e+5 9.05e+5 1.39e+6 1.98e+6 2.56e+6 2.92e+6
APP 1.35e+4 1.43e+6 2.88e+6 4.05e+6 7.29e+6 8.16e+6 9.67e+6

DOM–MOD time (s) DOM 2.47e-2 2.61e-2 2.60e-2 2.35e-2 2.92e+0 6.32e+1 1.95e+2
MOD 2.72e+1 1.24e+2 2.79e+2 4.13e+2 4.83e+2 4.80e+2 8.75e+2

DOM–APP time (s) DOM 2.47e-2 2.49e-2 2.49e-2 2.19e-2 2.07e+0 2.30e+1 4.75e+1
APP 3.42e+0 4.28e+2 7.19e+2 1.36e+3 1.09e+3 1.05e+3 8.04e+2

LOC

# solved
DOM 100 100 100 100 100 100 100
MOD 100 100 100 98 93 87 76
APP 100 98 77 60 45 38 32

# nodes
DOM 1.00e+0 1.00e+0 1.00e+0 1.00e+0 2.08e+3 1.03e+5 5.38e+5
MOD 2.27e+4 8.83e+4 2.53e+5 5.40e+5 9.25e+5 1.37e+6 1.91e+6
APP 4.99e+2 5.13e+5 1.79e+6 2.88e+6 4.12e+6 5.10e+6 6.18e+6

DOM–MOD time (s) DOM 1.72e-2 1.70e-2 1.74e-2 1.70e-2 1.55e+0 3.17e+1 7.74e+1
MOD 3.67e+0 1.38e+1 6.74e+1 1.50e+2 2.49e+2 4.48e+2 4.33e+2

DOM–APP time (s) DOM 1.72e-2 1.68e-2 1.64e-2 1.57e-2 1.25e+0 1.27e+1 2.62e+1
APP 1.90e-1 1.20e+2 4.96e+2 7.74e+2 6.84e+2 9.41e+2 8.35e+2

INF

# solved
DOM 100 100 100 100 100 100 100
MOD 100 100 100 100 97 93 89
APP 100 99 87 69 48 38 29

# nodes
DOM 1.00e+0 1.00e+0 1.00e+0 1.00e+0 8.76e+2 6.02e+4 3.52e+5
MOD 5.59e+2 9.62e+3 5.81e+4 2.11e+5 5.05e+5 7.99e+5 1.11e+6
APP 2.85e+2 4.25e+5 1.24e+6 2.23e+6 3.71e+6 5.04e+6 6.78e+6

DOM–MOD time (s) DOM 1.59e-3 1.65e-3 1.66e-3 1.82e-3 8.14e-2 2.97e+0 1.61e+1
MOD 2.25e-2 2.83e-1 1.93e+0 2.86e+1 1.26e+2 1.88e+2 3.01e+2

DOM–APP time (s) DOM 1.59e-3 1.65e-3 1.60e-3 1.71e-3 6.70e-2 1.20e+0 3.20e+0
APP 1.45e-2 1.43e+2 4.12e+2 8.00e+2 6.99e+2 8.49e+2 8.04e+2

the α-optimality of the solution obtained by GreedySK at the
beginning, and thus it terminated in Step 15 of Algorithm 1
without pushing additional nodes onto the heap.

Real-world Instances

We applied the three algorithms to COV, LOC, and INF
instances that are generated with real-world data. Since the
data did not include information on cost values cv, we drew
them from u[0.1,1] in all instances; in practice it is rare for
any item v to have cost of cv ≈ 0, and thus we set the
lower-bound of cost to 0.1. The budget value, B, is set for
each instance so that the resulting instance does not become
computationally too demanding; we set B to a small value if
|U | is large. In all instances, the time limit is one day (86,400
seconds). Below we detail the experimental settings:

COV: The COV instance uses a dataset on messages ex-
changed by 899 users on 522 topics (Opsahl 2013). Each
user posts messages on some topics with which he/she is

familiar; we regard a user covers a topic if he/she posts
messages to the topic. Each topic is weighted based on
the number of posted messages; namely, the importance
of topics is measured by the number of posted messages.
We consider selecting some users so that the total weights
of covered topics is maximized. Here we let B = 1.25.

LOC: The LOC instance uses a dataset on 473 subway sta-
tions in New York City (NYC) (Roest and Mashariki 2015).
We regard the stations as clients, and consider building sev-
eral facilities so that people at any station can easily reach
one of the facilities. The candidate locations, on which
facilities can be built, are given by a 10× 10 grid that dis-
cretizes the NYC map, and we select some locations from
the 100 candidate locations. The benefit a client (station)
gains from a facility is computed based on the distance
between them. In this instance we let B = 1.5.

INF: The INF instance uses the MovieLens 100K
dataset (Harper and Konstan 2015). The dataset contains
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(c) Objective values (COV)
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(d) Running times (LOC)
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(f) Objective values (LOC)
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(g) Running times (INF)
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(i) Objective values (INF)

Figure 1: Numerical results on real-world instances. Figures (a)–(c), (d)–(f), and (g)–(i) show results for COV, LOC, and INF
instances, respectively. (a),(d),(g) Running times of the three algorithms: DOM, MOD, and APP. (b),(e),(h) Number of nodes
pushed onto the heap. (c),(f),(i) Achieved objective values.

100, 000 ratings (1-5) by 943 users on 1682 movies, and
we consider selecting some influential movies. The acti-
vation probability of each movie is computed from the
ratings, and a movie can activate a user if he/she has rated
the movie. Here we let B = 1.

Figures 1 (a)–(i) summarize the results; some results of
APP for COV and INF instances are omitted since they ex-
ceeded the time limit for COV instances, and memory short-
ages occurred with in INF instances. Similar to the results
on artificial instances, DOM outperforms the other methods
both in time and space complexities. MOD and APP tend
to require too much computational effort even for small α,
achieving slightly higher objective values than DOM in some
instances. This implies that MOD and APP are poor at using
the hyper-parameter α to control the trade-off between the
complexity and optimality. On the other hand, DOM success-
fully controlled the trade-off, and reduced the complexities

when computing α-approximate solutions for small α; in
particular DOM is efficient when α ≤ 0.7.

Conclusion and Discussion
We proposed an accelerated BFS for SKP. The acceleration
is achieved by introducing a new termination condition and
developing a novel method for computing an upper-bound
of the optimal value of the SKP. For any given α ∈ [0, 1],
our algorithm is proved to find an α-optimal solution. Experi-
ments showed that our algorithm finds approximate solutions
with substantially less time and space complexities than the
existing methods.

In this paper, as an application of the proposed upper-
bound computation method, we focused on accelerating BFS.
However, we believe that computing an upper-bound accu-
rately is beneficial to many other algorithms that include
submodular maximization as a subroutine. In future work we
will try to develop more powerful variants of the upper-bound
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Table 2: Results on the number of nodes pushed onto the heap. ‘# nodes (solved)’ is the number of pushed nodes averaged over
instances solved by each method. ‘A–B # nodes’ is the number of pushed nodes averaged over all instances solved by both
methods (A,B) = (DOM,MOD) or (DOM,APP). For each value of α the best results given in bold.

Approximation ratio α 0.4 0.5 0.6 0.7 0.8 0.9 1.0

COV

# nodes (solved)
DOM 1.00e+0 1.00e+0 1.00e+0 1.00e+0 3.98e+3 4.29e+5 8.66e+5
MOD 1.13e+5 3.37e+5 5.40e+5 7.38e+5 7.86e+5 8.21e+5 1.02e+6
APP 1.35e+4 7.47e+5 9.08e+5 1.06e+6 8.39e+5 7.66e+5 6.50e+5

DOM–MOD # nodes DOM 1.00e+0 1.00e+0 1.00e+0 1.00e+0 4.35e+3 1.69e+5 4.71e+5
MOD 1.13e+5 3.37e+5 5.40e+5 7.38e+5 7.86e+5 8.21e+5 1.02e+6

DOM–APP # nodes DOM 1.00e+0 1.00e+0 1.00e+0 1.00e+0 4.05e+3 6.77e+4 1.50e+5
APP 1.35e+4 7.47e+5 9.08e+5 1.06e+6 8.39e+5 7.66e+5 6.50e+5

LOC

# nodes (solved)
DOM 1.00e+0 1.00e+0 1.00e+0 1.00e+0 2.08e+3 1.03e+5 5.38e+5
MOD 2.27e+4 8.83e+4 2.53e+5 4.64e+5 6.34e+5 8.24e+5 8.23e+5
APP 4.99e+2 4.41e+5 8.13e+5 9.27e+5 7.73e+5 8.34e+5 7.43e+5

DOM–MOD # nodes DOM 1.00e+0 1.00e+0 1.00e+0 1.00e+0 2.20e+3 7.32e+4 2.45e+5
MOD 2.27e+4 8.83e+4 2.53e+5 4.64e+5 6.34e+5 8.24e+5 8.23e+5

DOM–APP # nodes DOM 1.00e+0 1.00e+0 1.00e+0 1.00e+0 1.99e+3 3.31e+4 9.85e+4
APP 4.99e+2 4.41e+5 8.13e+5 9.27e+5 7.73e+5 8.34e+5 7.43e+5

INF

# nodes (solved)
DOM 1.00e+0 1.00e+0 1.00e+0 1.00e+0 8.76e+2 6.02e+4 3.52e+5
MOD 5.59e+2 9.62e+3 5.81e+4 2.11e+5 3.86e+5 5.18e+5 6.80e+5
APP 2.85e+2 3.88e+5 7.59e+5 1.01e+6 9.51e+5 9.34e+5 8.45e+5

DOM–MOD # nodes DOM 1.00e+0 1.00e+0 1.00e+0 1.00e+0 8.86e+2 4.94e+4 2.13e+5
MOD 5.59e+2 9.62e+3 5.81e+4 2.11e+5 3.86e+5 5.18e+5 6.80e+5

DOM–APP # nodes DOM 1.00e+0 1.00e+0 1.00e+0 1.00e+0 7.94e+2 2.33e+4 7.48e+4
APP 2.85e+2 3.88e+5 7.59e+5 1.01e+6 9.51e+5 9.34e+5 8.45e+5

computation methods, which will improve the performance
of various algorithms.
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Appendix

Proof for Theorem 1

Let X∗ be an optimal solution and assume R �= X∗, other-
wise the claim holds trivially.

We first show that the max heap always contains a subset
P ⊆ X∗ such that maxP < minX∗\P until R is popped;
we regard max ∅ = 0 and min ∅ = ∞. This is apparently
true at the beginning since ∅ ⊆ X∗ is in the heap. Whenever
such P is popped, we have either

(i) P = X∗, or

(ii) all P ′ ⊆ X∗ such that (P, P ′) ∈ E are pushed onto the
heap, one of which satisfies maxP ′ < minX∗\P ′.

If case (i) occurs, then we have h(P ) = 0 since h(·) satisfies
the first condition of WCA and P = X∗ is optimal. As a
result, BFSTC returns the optimal solution P = X∗, which
contradicts the assumption. Thus case (ii) continues to hold
until BFSTC returns R. Consequently, a subset P ⊆ X∗
such that maxP < minX∗\P must be in the heap until R
is popped.

We then prove f(T ) ≥ αg(X∗) for any T popped from
the heap. As shown above, the heap always contains a subset

P ⊆ X∗ with maxP < minX∗\P . For such P , we have

f(P ) = g(P ) + αh(P ) ≥ α(g(P ) + h(P ))

≥ α(g(P ) + g(X∗\P | P )) = αg(X∗),

where the second inequality comes from the fact that h(·)
satisfies the second condition of WCA. Since the popped T
has the largest f value in the max heap, we obtain f(T ) ≥
f(P ) ≥ αg(X∗). We note that, for some popped T , we
always have gupper = f(T )/α. Hence gupper always gives an
upper-bound for g(X∗), i.e., gupper ≥ g(X∗).

We now consider two cases: R is obtained in Step 8 or
in Step 15. If R is obtained in Step 15, we have g(R) ≥
αgupper ≥ αg(X∗). If R is obtained in Step 8, we have
h(R) = 0, which leads to

g(R) = g(R) + αh(R) = f(R) ≥ αg(X∗),

where f(R) ≥ αg(X∗) comes from the fact that R is popped
from the max heap. Therefore, g(R) ≥ αg(X∗) holds in both
cases, and thus the proof is completed.

Proof of Theorem 2

For i = 0, . . . , k, we have

gS(Y
∗)(4)

≤ gS(Y
∗ +X1:i)

= gS(X1:i) + gS(Y
∗ | X1:i)

≤ gS(X1:i) + max
X⊆V \X1:i:c(X)≤BS

gS(X | X1:i)

≤ gS(X1:i) + umod(X1:i),
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where the third inequality comes from the definition of
umod(X1:i).

We first consider the case where umod(X1:i) = 0 holds for
some i ∈ [k]. In this case we have

gS(Y
∗) ≤ gS(X1:i) + umod(X1:i) = gS(X1:i)

from inequality (4). Thanks to the monotonicity of gS , we
have gS(X1:k) ≥ gS(X1:i), and hence udom = gS(X1:k) ≥
gS(Y

∗) holds; more precisely, udom = gS(X1:k) = gS(Y
∗)

holds since Y ∗ is optimal.
We then consider the case where umod(X1:i) > 0 holds for

all i ∈ [k]. For i ∈ [k], we have

gS(Y
∗) ≤ gS(X1:i−1) + umod(X1:i−1)

= gS(X1:i−1)

+
umod(X1:i−1)

gS(Xi | X1:i−1)
(gS(X1:i)− gS(X1:i−1))

= gS(X1:i−1)

+
1

1− βi
(gS(X1:i)− gS(X1:i−1))

from inequality (4). Rearranging the terms yields

gS(X1:i) ≥ βigS(X1:i−1) + (1− βi)gS(Y
∗),

and thus the following inequality holds for i ∈ [k]:

gS(Y
∗)− gS(X1:i) ≤ βi(gS(Y

∗)− gS(X1:i−1)).

Therefore, from gS(∅) = 0, we obtain

gS(X1:k) ≥
(
1−

k∏
i=1

βi

)
gS(Y

∗) = (1− β1:k) gS(Y
∗).

Hence udom = gS(X1:k)/(1− β1:k) ≥ gS(Y
∗) holds.

Results on the Number of Pushed Nodes

Table 2 summarizes the results on the number of nodes
pushed onto the heap averaged over solved instances. Our al-
gorithm, DOM, pushes fewer nodes onto the heap than other
methods, thus requiring less space complexity.
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