
Proximal Alternating Direction Network:
A Globally Converged Deep Unrolling Framework

Risheng Liu,1,2,∗ Xin Fan,1,2 Shichao Cheng,1,2,3 Xiangyu Wang,1,2 Zhongxuan Luo1,2,3

1DUT-RU International School of Information Science & Engineering, Dalian University of Technology, Dalian, China
2Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China

3School of Mathematical Science, Dalian University of Technology, Dalian, China
{rsliu, xin.fan, zxluo}@dlut.edu.cn, shichao.cheng@outlook.com, wxy9326@gmail.com

Abstract

Deep learning models have gained great success in many
real-world applications. However, most existing networks are
typically designed in heuristic manners, thus lack of rigor-
ous mathematical principles and derivations. Several recent
studies build deep structures by unrolling a particular opti-
mization model that involves task information. Unfortunately,
due to the dynamic nature of network parameters, their resul-
tant deep propagation networks do not possess the nice con-
vergence property as the original optimization scheme does.
This paper provides a novel proximal unrolling framework to
establish deep models by integrating experimentally verified
network architectures and rich cues of the tasks. More impor-
tantly, we prove in theory that 1) the propagation generated by
our unrolled deep model globally converges to a critical-point
of a given variational energy, and 2) the proposed framework
is still able to learn priors from training data to generate a con-
vergent propagation even when task information is only par-
tially available. Indeed, these theoretical results are the best
we can ask for, unless stronger assumptions are enforced. Ex-
tensive experiments on various real-world applications verify
the theoretical convergence and demonstrate the effectiveness
of designed deep models.

Introduction

In last years, deep models (a.k.a. deep neural networks)
have produced the state-of-the-art performance in many ap-
plication fields, such as image processing, object recogni-
tion, natural language processing, and bioinformatics. On
the downside, these existing approaches are typically de-
signed based on heuristic understandings of a particular
problem, and trained using engineering experience to imple-
ment multi-layered feature propagations, e.g., (Krizhevsky,
Sutskever, and Hinton 2012; Simonyan and Zisserman 2014;
He et al. 2016). Therefore, they lack solid theoretical guid-
ances and interpretations. More importantly, it is challeng-
ing to incorporate the mathematical rules and principles of
the considered task into these existing networks.

Alternatively, several recent works, e.g., (Gregor and Le-
Cun 2010; Schmidt and Roth 2014; Andrychowicz et al.
2016), build their networks using a specific optimization

∗Corresponding Author.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

model and iteration scheme. The main idea is to unroll nu-
merical algorithms and constitute their network architec-
tures based on the resulted iterations. In this way, these ap-
proaches successfully incorporate the information of a pre-
defined energy into the network propagation. Nevertheless,
due to the dynamical nature of parameterized iterations, ex-
isting theoretical results, especially convergence, from the
optimization area are not valid at all. Furthermore, the un-
rolled deep models are often with limited flexibility and
adaptability as the basic architectures are restricted by the
particular iteration scheme.

To partially overcome limitations in existing approaches,
this work attempts to develop a simple, flexible and efficient
framework to build deep models for various real-word ap-
plications. The launching point of our work is from Energy-
Based Models (EBMs) (Teh et al. 2003; Zhao, Mathieu, and
LeCun 2016). EBMs are a series of methods, which asso-
ciate a scalar energy to each configuration of observations
and their interested perditions. The inference of EBM con-
sists of searching for a configuration of variables that min-
imizes the energy. In this work, we consider the following
energy minimization formulation

inf
x

{F(x) := f(x;y) + r(x)} , (1)

where y and x are the observed and predicted variables, re-
spectively, r reveals the priors of predictions, and f is a mea-
sure of compatibility, i.e., fidelity, between x and y.

We establish a novel proximal framework to unroll the
general energy in Eq. (1), and incorporate various experi-
mentally efficient architectures into the resulted deep model.
Promising theoretical properties and practical performance
will be also demonstrated. The main advantages of our
proposed framework against existing optimization-unrolled
deep models can be distilled to the following three points.

Insensitive Unrolling Scheme: Most existing iteration-
unrolling based deep models are strictly confined to some
special types of energy formulations. For example, archi-
tectures in (Schmidt and Roth 2014; Chen and Pock 2017)
are deduced from the field-of-experts prior while networks
in (Gregor and LeCun 2010) are based on �1-regularizations.
In contrast, our unrolling strategy only depends on the sep-
arable structure and functional properties of F , but is com-
pletely insensitive to particular forms of f and r. We can
even design deep models without knowing the form of r so

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1371

that our framework adapts to various challenging tasks and
complex data distributions.

Flexible Built-in Architecture: On the one hand, the ar-
chitectures in existing unrolled networks are deduced from
fixed iteration schemes, thus lacking flexibility. On the other
hand, it has been revealed in many practical applications that
heuristic deep architectures, e.g., ReLU and Batch Normal-
ization, are extremely efficient though absent of theoretic
analysis. Our studies show that under some mild conditions,
our deep model can incorporate most existing empirically
successful network architectures (even built by means of en-
gineering tricks). In other words, we indeed theoretically of-
fer the flexibility for existing deep architectures while taking
the advantage of their efficiency.

Convergence Guarantee: A fundamental weakness un-
derlying existing networks is the elusiveness of theoretical
analysis. Especially, little to no attention has been paid to
the convergence behaviors of deep models1. The main rea-
son is that even building networks by unrolling converged
optimization algorithms, the dynamic nature of their param-
eters and heuristic architectures would still break the con-
vergent guarantee in original iteration scheme. Contrarily,
this paper proves that our designed deep models do have
nice convergence properties. That is, under some mild con-
ditions, the sequence generated by the proposed proximal
alternating direction networks (PADNet) can converge to a
critical-point of Eq. (1) with relatively simple priors2. Fur-
thermore, our propagation guarantees at least fixed-point
convergence when handling complex priors, e.g., only with
partial task/data information. We argue that these theoretical
results are the best we can ask for, unless stronger assump-
tions are enforced.

Proximal Alternating Direction Network

In this section, we develop an alternating direction type un-
rolling scheme to generate the propagation sequence (de-
noted as {xk}) based on the energy model in Eq. (1). As
shown in the following, rather than directly calculating xk+1

from xk, we would like to first design cascaded propaga-
tions of two auxiliary variables (denoted as uk and vk) cor-
responding to the fidelity and prior of the task, respectively.
The residual type deep architectures are then incorporated
for subsequence updating. Finally, a novel proximal error
correction process is designed to control our propagation.

Alternating Direction Scheme: For each xk, we intro-
duce the Moreau-Yosida regularization (Parikh, Boyd, and
others 2014; Xu, Lin, and Zha 2016) of F with parameter
μk and auxiliary variable u to obtain the following regular-

1Notice that the concept of “convergence” in this paper is not
only related to the propagation of network parameters in the train-
ing phase, but the outputs of network architectures for both training
and test phases. That is, we consider the output of the t-th basic ar-
chitecture as the t-th element of a sequence, and then investigate
the convergence on the resulting sequence.

2We will formally discuss details of relatively “simple” and
“complex” priors in the following sections.

ized energy model

Mμk

F (xk) = inf
u

{
fμk

xk (u) + r(u)
}
,

where fμk

xk (u) := f(u) + μk

2 ‖u− xk‖2.
(2)

Now the problem is temporarily reduced to calculate u based
on xk. One common inference strategy for u in Eq. (2) is
to introduce another auxiliary variable v and a Lagrange
multiplier λ and then perform alternating minimizations to
the corresponding augmented Lagrange function, resulting
to the following iteration scheme

uk+1 = argmin
u

fμk

xk (u) +
ρk

2 ‖u− (vk − λk)‖2, (3)

vk+1 ∈ argmin
v

r(v) + ρk

2 ‖v − (uk+1 + λk)‖2, (4)

λk+1 = λk + (uk+1 − vk+1), (5)

where ρk is a penalty parameter.
In this way, we actually perform the well-known Alternat-

ing Direction Method of Multiplier (ADMM) (Parikh, Boyd,
and others 2014; Lin, Liu, and Su 2011) for the Moreau-
Yosida regularized approximation of the original energy in
Eq. (1) at each iteration.

Built-in Deep Architecture: We then show how to in-
corporate deep architectures into the above base iteration.
Specifically, we consider a residual formulation to replace
the subproblem in Eq. (4). That is, we define the propaga-
tion of v as3

vT = Nα(v0;WT) := v0 − α

(
T−1∑
t=0

G(vt;Wt)

)
, (6)

where WT = {Wt}T−1
t=0 is the set of learnable parame-

ters, α is a step-size parameter, G is the basic network unit,
(v0,vT) are the input and output of Nα (at T -th stage), re-
spectively. Notice that standard training strategies can be di-
rectly adopted to optimize parameters of our basic architec-
ture. If necessary, one may further jointly fine-tune parame-
ters of the whole network after the design phase.

It is easy to check that the network in Eq. (6) actually
recursively performs coordinate descent steps (i.e., vt+1 =
vt − αG(vt)) to propagate v. So from optimization view-
point, we interpret G as a descent-direction-estimation ar-
chitecture for the optimization of the subproblem in Eq. (4).
While in more challenging scenario (e.g., hard to define an
explicit and solvable r for this subproblem), we can still
learn built-in propagation architectures from training data to
obtain our desired solution.

Proximal Error Correction: Now it is ready to give the
formal updating scheme of xk. We can see that built-in ar-
chitectures in Eq. (6) actually do not exactly optimize the
original energy in Eq. (1). So it is necessary to introduce an
additional step to control our propagation at each iteration.
Specifically, denote vk+1 as the output of built-in network in

3Formally, we should denote the output of t-th residual unit at
k-th iteration as vk

t . But in this paragraph, we temporarily omit the
superscript k to simplify the presentation.

1372

Eq. (6) at k-th iteration. Then we adopt a proximal-gradient-
like scheme (Wang et al. 2017) to formally update xk+1

xk+1 ∈
argmin

x
r(x) + 1

2‖x− (vk+1 −∇fμk

xk (v
k+1))‖2

:= proxr

(
vk+1 −∇fμk

xk (v
k+1)

)
,

(7)

where proxr is Moreau’s proximal operator of r.
Overall, our proposed deep model, called Proximal

Alternating Direction Network (PADNet), is summarized in
Alg. 1. Notice that we actually consider PADNet in two dif-
ferent scenarios, which can be categorized by properties of
prior regularization r in Eq. (1). That is:
• Simple priors: proxr can be computed in closed-form.
• Complex priors: proxr is intractable or r is unknown.

We perform error correction (i.e., Step 4 in Alg. 1) in the
first case (Explicit PADNet or EPADNet for short) but di-
rectly propagate the output of built-in networks (i.e., Step 3
in Alg. 1) in the second case (Implicit PADNet or IPADNet
for short). Theoretical results for these two different scenar-
ios will be respectively proved in the next section.

Algorithm 1 Proximal Alternating Direction Network
Require: u0, v0, x0, λ0 and necessary parameters.

1: for k = 0, 1, 2, · · · ,K − 1 do

2: uk+1 = argminu fμk

xk (u) +
ρk

2 ‖u− (vk − λk)‖2.
(Preliminary Estimation)

3: vk+1 = Nαk(uk+1 + λk;Wk
Tk
).

(Network Propagation)
4: xk+1 = proxr

(
vk+1 −∇fμk

xk (v
k+1)

)
.

(Error Correction)
5: λk+1 = λk + (uk+1 − vk+1).

(Dual Updating)
6: end for

Learning with Convergence Guarantee

In general, unrolling task-aware optimization schemes may
incorporate rich domain-knowledge into the network struc-
ture. Unfortunately, the sequence generated by most existing
unrolled deep models will no longer have convergence guar-
antee, even though nice theoretical results have been proved
and verified for their original optimization schemes.

Fortunately, we in this work demonstrate that under some
mild conditions, the propagation generated by our PADNet
is globally converged4, even with built-in network architec-
tures designed in heuristic manners.

Convergence Behavior Analysis of PADNet

To make our paper self-contained, some necessary defini-
tions should be presented before the formal analysis. Indeed,

4Notice that “globally converged” in this paper is in the sense
that the whole sequence generated by our deep model is converged
and this concept has been widely used in non-convex optimiza-
tion (Attouch et al. 2010) society.

these concepts have been widely known in variational anal-
ysis and optimization and one may refer to (Rockafellar and
Wets 2009; Attouch et al. 2010) and references therein for
more details.
Definition 1 We give necessary definitions, including
proper and lower semi-continuous, coercive and semi-
algebraic.
• A function r : Rn → (−∞,+∞] is said to be proper and

lower semi-continuous if dom(r) �= ∅, where dom(r) :=
{x ∈ R

n : r(x) < +∞} and lim infx→y r(x) ≥ r(y) at
any point y ∈ dom(r).

• A function F is said to be coercive, if F is bounded from
below and F → ∞ if ‖x‖ → ∞, where ‖ · ‖ is the �2
norm.

• A subset S of Rn is a real semi-algebraic set if there ex-
ist a finit number of real polynomial functions gij , hij :
R

n → R such that

S =

p⋃
j=1

q⋂
i=1

{x ∈ R
n : gij(x) = 0 and hij(x) < 0} .

(8)
A function r : Rn → (−∞,∞] is called semi-algebraic if
its graph {(x, z) ∈ R

n+1 : r(x) = z} is a semi-algebraic
subset of Rn+1.

Remark 1 Indeed, many functions arising in learning and
vision areas, including �0 norm, rational �p norms (i.e.,
p = p1/p2 with positive integers p1 and p2) used in our
experimental part and their finite sums or products, are all
semi-algebraic.

In the following, we first analyze PADNet for tasks with
simple priors. Specifically, given a variable x, we esti-
mate the discrepancy between it and the optimal solution of
Eq. (2) by the function

Ek(x) := gx +∇fμk

xk (x), where gx ∈ ∂r(x). (9)

Here Ek is deduced based on the first-order optimality con-
dition of Eq. (2) at k-th iteration. Then with the following
simple error condition, we prove in Theorem 1 that the prop-
agation of EPADNet indeed globally converges to a critical-
point of Eq. (1). Please refer to supplemental materials for
necessary preliminaries and all proofs of the proposed theo-
ries in this paper.
Condition 1 (Error Condition) The error function (in
Eq. (9)) at k-th iteration should satisfy ‖Ek(xk+1)‖ ≤
CE‖xk+1 − xk‖, where CE > 0 is a universal constant.

Theorem 1 (Critical-Point Convergence of Explicit PAD-
Net) Let f be continuous differential, r be proper and lower
semi-continuous and F be coercive. Then EPADNet con-
verges to a critical point of Eq. (1) under Condition 1. That
is, {xk} generated by EPADNet is a bounded sequence and
its any cluster point x∗ is a critical point of Eq. (1) (i.e., sat-
isfying 0 ∈ ∂F(x∗)). Furthermore, if F is semi-algebraic,
then {xk} globally converges to a critical point of Eq. (1).
Remark 2 With the semi-algebraic property of F , we can
also obtain convergence rate of EPADNet based on a partic-
ular desingularizing function φ(s) = c

θ (s)
θ with a constant

1373

c > 0 and parameter θ ∈ (0, 1] (defined in (Chouzenoux,
Pesquet, and Repetti 2016)). Specifically, the sequence con-
verges after finite iterations if θ = 1. The linear and sub-
linear rates can be obtained if choosing θ ∈ [1/2, 1) and
θ ∈ (0, 1/2), respectively.

It has been verified that broad class of functions arising in
learning problems (even nonconvex and nonsmooth) satisfy
assumptions in Theorem 1. For example, both �0 norm and
rational �p norm with p > 0 (i.e., p = p1/p2, p1 and p2
are positive integers) are proper, lower semi-continuous and
semi-algebraic.

Based on above analysis, we propose a learning frame-
work (summarized in Alg. 2) to adaptively design and train
globally converged deep models for different learning tasks.

Algorithm 2 The Learning Framework of PADNet
Require: u0, v0, x0, λ0, G, tmax ≥ 1, kmax ≥ 1, ε >

0, CE > 0, {μk|2CE < μk < ∞}, {ρk|ρk =
(γ)kρ0, ρ0 > 0, γ > 1} ((γ)k denotes k-th power of
γ) and {αk|αk =

√
1/ρk}.

1: for k = 0, 1, 2, · · · do

2: uk+1 = argminu fμk

xk (u) +
ρk

2 ‖u− (vk − λk)‖2.
3: for t = 0, 1, 2, · · · do

4: Train Nαk with Wk
0:t = {Wk

0:t−1,Wk
t } (i.e., t+1

basic units).
5: vk+1

t+1 = Nαk(uk+1 + λk;Wk
0:t).

6: xk+1
t+1 = proxr(v

k+1
t+1 −∇fμk

xk (v
k+1
t+1)).

7: if ‖Ek(xk+1
t+1)‖ ≤ CE‖xk+1

t+1 − xk‖ or t ≥ tmax
then

8: xk+1 = xk+1
t+1 , vk+1 = vk+1

t+1 , Tk = t, break.
9: end if

10: end for
11: λk+1 = λk + (uk+1 − vk+1).
12: if

‖xk+1−xk‖
‖xk‖ ≤ ε or k ≥ kmax then

13: K = k, break.
14: end if
15: end for

Remark 3 Theorem 1 together with Alg. 2 actually provides
a flexible framework with solid theoretical guarantee for
deep model design and we only need to check whether built-
in networks satisfy Condition 1 during their design phase.
Furthermore, in general, any architectures satisfying this
condition (even designed in engineering manner) can be in-
corporated into our deep models.

In contrast, when handling tasks with complex priors, nei-
ther error checking (i.e., Step 6 in Alg. 2) during design
and training nor error correction (i.e., Step 4 in Alg. 1) dur-
ing test will be performed. Therefore, we cannot obtain the
same convergence results as that in Theorem 1. Fortunately,
by enforcing another easily satisfied condition to built-in ar-
chitectures, we would still prove a fixed-point convergence
guarantee for IPADNet.

Condition 2 (Architecture Condition) For any given input
v, the architecture Nα should satisfy ‖Nα(v)−v‖ ≤ CNα,
where CN > 0 is a universal constant.

Notice that this bound condition is relatively weak and we
can check that most commonly used linear and nonlinear
operations in existing deep networks satisfy it.

Theorem 2 (Fixed-Point Convergence of Implicit PADNet)
Let f be continuous differential with bounded gradients.
Then IPADNet is converged under Condition 2. That is,
{(uk,vk,λk)} generated by IPADNet is a Cauchy se-
quence, so that is globally converged to a fixed-point.

Remark 4 Theorem 2 actually provides a theoretically
guaranteed paradigm to fuse both analytical and empirical
informations to build deep models for challenging learning
tasks. That is to say, we can simultaneously design model-
based fidelity function f to reveal our theoretical under-
standings of the problem and learn complex priors from
training data by model-free network architecture Nα.

To end our analysis, we emphasize that the above con-
vergence results are the best we can ask for unless other
stronger assumptions are made on the given learning task.

Implementable Error Calculation

It can be observed in Eq (9) that directly calculating Ek using
its theoretical definition is challenging due to the subgradi-
ent term gx. So we provide a calculable formulation based
on the following derivations. Specifically, using Eq. (7), we
have

xk+1 = proxr

(
vk+1 −∇fμk

xk (v
k+1)

)
= proxr

(
xk+1 −∇fμk

xk (x
k+1) + (μk − 1)(xk+1

−vk+1)−∇f(vk+1) +∇f(xk+1)
)
.

(10)

By setting ek+1 = (μk − 1)(xk+1 − vk+1)−∇f(vk+1) +
∇f(xk+1) in Eq. (10) and following Theorem 1, we directly
have that if k → ∞, then

ek+1 −∇fμk

xk (x
k+1) ∈ ∂r(xk+1). (11)

Therefore, we actually obtain the following implementable
error calculation formulation for Ek

Ek(xk+1) := ek+1

= (μk − 1)(xk+1 − vk+1)−∇f(vk+1) +∇f(xk+1).
(12)

Discussions

Intuitively, one may argue that building a deeper network
should definitely result good performance. But unfortu-
nately, many empirical evidences (Simonyan and Zisserman
2014) have suggested that the improvement cannot be triv-
ially gained by simply adding more layers, or worse, deeper
networks even suffer from a decline on performance in some
applications (Shen, Lin, and Huang 2016). Therefore, it is
particularly worthy of investigating the intrinsic propagation
behaviors for networks with different topological structures
and architectures from more solid theoretical perspective.

1374

Indeed, our above theories have built intrinsic theoretical
connections between unrolled deep models and original nu-
merical schemes. We also investigate conditions for incorpo-
rating heuristic architectures into the proposed deep model.
Therefore, the studies in this paper should provide a new
perspective and introduce several powerful tools from op-
timization area to address the challenging but fundamental
issues discussed in above paragraph.

Experiments

To verify our theoretical results and demonstrate the effec-
tiveness of our deep models in application fields, we apply
PADNet on two real-world applications, i.e., non-blind de-
convolution and single image haze removal. All experiments
are conduced on a PC with Intel Core i7 CPU at 3.4 GHz,
32 GB RAM and a NVIDIA GeForce GTX 1050 Ti GPU.

Non-blind Deconvolution

We first consider non-blind deconvolution, which is an im-
portant task in learning and vision areas. Specifically, given
an observation y (e.g., image), the latent signal x can be
processed in a filtered domain as follows (Krishnan and Fer-
gus 2009; Schmidt and Roth 2014) D(y) = D(x)⊗ k+ ε,
where D is a set of filters (e.g., horizontal and vertical gra-
dient operations), ⊗ denotes convolution, k is a point spread
function and ε denotes errors/noises. This problem can be
formulated as the maximum-a-posteriori estimation

x∗ = argmax
x

p(x|y) = argmax
x

log p(y|x) + log p(x).

(13)
Here we follow typical choices to consider �2-fidelity
(i.e., p(y|x) ∝ exp(− 1

2‖D(x) ⊗ k − D(y)‖2)) and �p-
regularization (i.e., p(x) ∝ exp(−λ‖D(x)‖pp), 0 ≤ p ≤ 1),
where λ is the parameter. We adopt results in (Zuo et al.
2013) to calculate the proximal operation of general �p-
minimization. In following deconvolution experiments, we
always use the set of 400 images of size 180 × 180 built in
(Chen and Pock 2017) as our training data. Two commonly
used image deblurring benchmarks respectively collected by
Levin et. al. (Levin et al. 2009) (32 blurry images of size
255× 255) and Sun et. al. (Sun et al. 2013) (640 blurry im-
ages with 1% Gaussian noises, sizes range from 620× 1024
to 928× 1024) are used for testing.

Convergence Behaviors on Gradient Domain The gra-
dient of images plays very important role in image structure
analysis. Here we first consider deconvolution on gradient
domain to verify the convergence behaviors of our designed
deep models to a given energy with a simple prior. Specifi-
cally, the energy in gradient domain is defined as

min
g

1

2
‖g ⊗ k−D(y)‖2 + λ‖g‖pp, (14)

where g denotes the gradient of the latent image. We first
build the basic architecture G as cascade of two convolu-
tions with one RBF nonlinearity (Schmidt and Roth 2014)
between them. Then we perform Alg. 2 based on Eq. (14)
with p = 0, 0.8, 1 to respectively design three EPADNet
models. We also establish an IPADNet model from Alg. 2

with only the fidelity f = 1
2‖g⊗k−D(y)‖2. To compare it-

eration behaviors with conventional optimization strategies,
we also perform popular ADMM and Half-Quadratic Split-
ting (HQS) (Zuo et al. 2013) algorithms on Eq. (14) with the
same �p-regularizer and parameters.

The averaged convergence results of compared algorithms
on Levin et. al.’ benchmark are reported in Tab. 1. As IP-
DANet does not depend on �p functions, we just repeated its
results for three cases (i.e., p = 0, 0.8, 1) in this table.

It can be seen that our designed deep models (i.e., one
IPADNet and three EPADNets) need extremely less iter-
ations but obtain more accurate estimations than conven-
tional optimization schemes. Moreover, the performance of
IPDANet is better than EPADNets regularized by �0 and �1,
but a little worse than the �0.8 energy. These results make
sense because the prior learned from training data should
perform better than the relatively improper handcrafted pri-
ors (e.g., �0 and �1 norms in this task). If the prior func-
tion can fit the data distribution well (e.g., �0.8 norm here),
the critical-point convergence guarantee of EPADNet will
definitely result better performance, compared with the rel-
atively weak fixed-point convergence of IPADNet.

We also plot curves of relative errors (i.e., iteration er-
ror ‖gk+1 − gk‖/‖gk‖ and reconstruction error ‖gk −
ggt‖/‖ggt‖) and error condition (referring to ‖Ek(gk+1)‖
and CE‖gk+1−gk‖) on an example image from this bench-
mark in Fig. 1, where ggt denotes the ground-truth image
gradient. To provide more readable illustrations of conver-
gence behaviors, here all relative errors are plotted starting
from k = 1. We also show zoomed in curve comparisons of
our two deep models in Fig. 1 (b). Notice that we indeed only
have one implicit deep model for this task. But to compare
its performance with methods based on different �p energies,
we just repeatedly plot its relative errors (as green curves) in
multiple subfigures.

It is observed in Fig. 1 (a) that our deep models always
converged within 5-6 iterations, while both ADMM and
HQS needed dozens of steps to stop their iterations. The
dashdot curves in Fig. 1 (a) show that the designed EPADNet
satisfied the constraint of errors in Condition 1 all the time,
thus the global convergence to the critical-point of Eq. (14)
can be experimentally guaranteed. All these results verified
our proved theories. We can further see in Fig. 1 (b) that
propagations of our two deep models (solid red and green
curves) had obtained significantly lower reconstruction er-
rors than conventional algorithms even just after the first iter-
ation (i.e., the initial points of these curves). This is because
built-in networks actually learned a direct descent direction
toward the desired solutions, which demonstrated the supe-
riority of our framework again.

Explicit / Implicit PADNet on Image Domain Non-blind
deconvolution on image domain is commonly formulated
as the following energy minimization task (Li et al. 2013;
Krishnan and Fergus 2009; Schmidt and Roth 2014)

min
x,g

1

2
fim(x,g;y) + λ‖g‖pp, (15)

1375

Table 1: Averaged convergence results of ADMM, HQS, IPADNet and EPADNet on Eq. (14).

Ave. Number of Iterations (denoted as K) ‖gK − ggt‖/‖ggt‖
Alg. ADMM HQS IPADNet EPADNet ADMM HQS IPADNet EPADNet

�1 29 33 6 5 1.3146 1.3354 0.4291 0.4516
�0.8 28 32 6 5 1.2069 1.2215 0.4291 0.4140
�0 40 54 6 6 1.7114 1.7598 0.4291 0.6005

(b)

(a)

Figure 1: Convergence curves of ADMM, HQS, IPADNet and EPADNet on Eq. (14). (a) Iteration Error (“Iter. Error”). (b)
Reconstruction Error (“Recon. Error”). Error Condition (“Error Cond.”) referring to EPADNet is illustrated by dashdot curves
with right and top axises on subfigures in (a). “Recon. Error” of the auxiliary variable (i.e., u) of our deep models are plotted
by relatively thin dotted curves on subfigures in (b). All horizontal axises denote the number of iterations.

in which the fidelity fim can be formulated as

fim(x,g;y) := inf
x

{‖x⊗ k− y‖2 + β‖D(x)− g‖2} .
(16)

Here β is a penalty parameter, x and g are variables in image
and gradient domains, respectively.

In this part, we build an explicit PADNet using Eq. (15)
to pursuit x, in which we set p = 0.8 and introduce an ad-
ditional linear layer derived by ∇xfim = 0 to transfer vari-
ables from gradient domain to image domain. In contrast, by
simply defining fex(x;y) =

1
2‖x⊗ k− y‖2 and discarding

explicit �p-priors, we can also design an implicit PADNet to
learn priors from training data for this task. Here the basic
architecture G (used in our deep models) consists of 7 con-
volution layers. The ReLU nonlinearities are added between
each two linear layers accordingly and batch normalizations
(BN) (Ioffe and Szegedy 2015) are also introduced for con-
volution operations from 2-nd to 6-th linear layers.

We compare performances of our two deep models
against state-of-the-art algorithms, including TV (Li et
al. 2013), HL (Krishnan and Fergus 2009), EPLL (Zo-
ran and Weiss 2011), IDD-BM3D (Danielyan, Katkovnik,
and Egiazarian 2012), MLP (Schuler et al. 2013) and
CSF (Schmidt and Roth 2014) on both standard Levin et.

al.’ and more challenging Sun et. al.’ benchmarks. The av-
eraged quantitative results (i.e., PSNR and SSIM), are re-
ported in Tab. 2, in which “(E)” and “(I)” denote algorithms
based on explicit and implicit PADNet, respectively. We can
recognize that “Ours (E)” and the works in (Li et al. 2013;
Krishnan and Fergus 2009) actually all address this task
by optimizing Eq. (15). Thanks to built-in networks, we
achieved much better performance than conventional opti-
mization approaches. We further observed that discrimina-
tive learning approaches (Schmidt and Roth 2014; Schuler
et al. 2013) also performed well as they learn adaptive net-
works from training data. Overall, the results of our two
algorithms are better than other compared approaches. The
PSNR score of “Ours (E)” is even higher than that of “Ours
(I)” on standard Levin et. al.’s dataset. We argue that this
is reasonable because �0.8 prior actually has been power-
ful enough for relatively simple test images. While “Ours
(I)” obtained the best quantitative results on Sun et. al.’s
dataset, which demonstrated that our prior-and-data aggre-
gated framework is especially more efficient on real-world
challenging applications (see Remark 4).

1376

Table 2: Averaged non-blind deconvolution results on Levin et. al.’ and Sun et. al.’ benchmarks.
Alg. TV HL Ours (E) EPLL IDD-BM3D MLP CSF Ours (I)

Levin PSNR 29.38 30.12 33.41 31.65 31.53 31.32 32.74 33.37
SSIM 0.88 0.90 0.95 0.93 0.90 0.90 0.93 0.95

Sun PSNR 30.67 31.03 32.69 32.44 30.79 31.47 31.55 32.71
SSIM 0.85 0.85 0.89 0.88 0.87 0.86 0.87 0.89

Table 3: Averaged single image haze removal results on Fattal’s benchmark.
Alg. He et. al. Meng et. al. Chen et. al. Berman et. al. Li et. al. Ren et. al. Cai et. al. Ours

PSNR 27.11 26.13 26.47 26.09 25.54 24.40 21.63 28.47
SSIM 0.96 0.95 0.93 0.95 0.94 0.94 0.89 0.96

Time (s) 17.20 6.95 272.07 3.73 62.67 5.87 5.77 2.74

Single Image Haze Removal

Finally, we evaluate PADNet on the task of single image
haze removal, which is a challenging real-world vision ap-
plication. Most existing works address this task as estimat-
ing the latent scene radiance J from given hazy observation
I from the following linear interpolation formula

I(x) = t(x)J(x) + (1− t(x))A, (17)

where t is transmission, A is global atmospheric light and x
denotes the pixel index.

It is known that transmission t expresses the relative por-
tion of light that managed to survive the entire path between
the observer and a surface point in the scene without being
scattered (Fattal 2014). With Eq. (17), we have that estimat-
ing accurate transmission map t plays the core role in this
task. However, due to multiple solutions exist for a single
hazy image, the problem is highly ill-posed. Recent works
often design their models based on different perspectives on
transmissions within the following prior regularized energy

min
t

1
2‖t− t̃‖2 + λr(t),

e.g.,

⎧⎪⎨
⎪⎩

rTGV(t) = ‖∇t− z‖1 + β‖∇z‖1,
(Chen, Do, and Wang 2016),
rMRF(t) =

∑
j ‖wj (dj ⊗ t) ‖1,

(Meng et al. 2013),

(18)

where t and t̃ respectively denote the discrete transmission
vector and its propagation guidance. The regularization r
can be derived based on different tools, e.g., Total Gener-
alized Variation (TGV) (Chen, Do, and Wang 2016) and
Markov Random Field (MRF) (Meng et al. 2013). In rMRF,
z denotes an auxiliary variable, is Hadamard product and
{wj} are weight vectors for local filters {dj}.

In this part, we first utilize implicit strategy to design
PADNet based on fidelity f(t) = 1

2‖t − t̃‖2 (with the
same guidance t̃ defined in (Meng et al. 2013)) to esti-
mate transmission and then recover the latent scene radi-
ance from Eq. (17) as that in (He, Sun, and Tang 2011;
Chen, Do, and Wang 2016; Meng et al. 2013). We build ba-
sic architecture G with 17 convolution layers (ReLU and BN

operations are incorporated using the same strategy as that
in above image deconvolution task) and train it on synthetic
hazy images (Ren et al. 2016) for our deep model.

We evaluate the performance of our deep model to-
gether with five existing handcrafted-prior based algorithms
(i.e., (He, Sun, and Tang 2011; Meng et al. 2013; Chen,
Do, and Wang 2016; Berman, Avidan, and others 2016;
Li et al. 2014)) and two empirically designed deep net-
works (i.e., (Ren et al. 2016; Cai et al. 2016))5 on the
commonly used Fattal’s benchmark (Fattal 2008), which
consists of 11 challenging hazy images, including architec-
ture, natural scenery and indoor scene. The averaged quan-
titative results, including PSNR, SSIM and running time
in seconds (denoted as “Time (s)”), are given in Tab. 3.
Two empirically designed networks in (Cai et al. 2016;
Ren et al. 2016) performed better than most conventional
prior-based methods. Though obtained good dehazing re-
sults, the work in (Chen, Do, and Wang 2016) has the longest
running time. Our proposed deep model achieved the best
performance among all compared algorithms on this bench-
mark. This is mainly because that PADNet can successfully
fuse cues from both human perspectives and training data to
estimate haze distributions. Furthermore, the speed of PAD-
Net is the fastest among all compared methods, which also
verified the efficiency of our framework.

Conclusions

This paper proposed a novel framework, named proximal al-
ternating direction network (PADNet), to design deep mod-
els for different learning tasks. Our theoretical results first
showed that we can utilize empirically designed architec-
tures to build globally converged PADNet for the given en-
ergy minimization model. We further proved that a con-
verged PADNet can also be designed by learning priors from
training data. At last we experimentally verified our analysis
and demonstrated promising results of PADNet on different
real-world applications.

5In this subsection, we always denote these methods as He et.
al., Meng et. al., Chen et. al., Berman et. al., Li et. al., Ren et. al.
and Cai et. al., respectively.

1377

Acknowledgments

This work is partially supported by the National Natural
Science Foundation of China (Nos. 61672125, 61632019,
61432003, 61572096 and 61733002), and the Hong Kong
Scholar Program (No. XJ2015008). Dr. Liu is also a visiting
researcher with Shenzhen Key Laboratory of Media Secu-
rity, Shenzhen University, Shenzhen 518060

References

Andrychowicz, M.; Denil, M.; Gomez, S.; Hoffman, M. W.;
Pfau, D.; Schaul, T.; and de Freitas, N. 2016. Learning
to learn by gradient descent by gradient descent. In NIPS,
3981–3989.
Attouch, H.; Bolte, J.; Redont, P.; and Soubeyran, A. 2010.
Proximal alternating minimization and projection meth-
ods for nonconvex problems: An approach based on the
kurdyka-łojasiewicz inequality. Mathematics of Operations
Research 35(2):438–457.
Berman, D.; Avidan, S.; et al. 2016. Non-local image de-
hazing. In CVPR, 1674–1682.
Cai, B.; Xu, X.; Jia, K.; Qing, C.; and Tao, D. 2016. De-
hazenet: An end-to-end system for single image haze re-
moval. IEEE TIP 25(11):5187–5198.
Chen, Y., and Pock, T. 2017. Trainable nonlinear reaction
diffusion: A flexible framework for fast and effective image
restoration. IEEE TPAMI 39(6):1256–1272.
Chen, C.; Do, M. N.; and Wang, J. 2016. Robust image and
video dehazing with visual artifact suppression via gradient
residual minimization. In ECCV, 576–591.
Chouzenoux, E.; Pesquet, J.-C.; and Repetti, A. 2016. A
block coordinate variable metric forward–backward algo-
rithm. Journal of Global Optimization 66(3):457–485.
Danielyan, A.; Katkovnik, V.; and Egiazarian, K. 2012.
Bm3d frames and variational image deblurring. IEEE TIP
21(4):1715–1728.
Fattal, R. 2008. Single image dehazing. ACM Transactions
on Graphics (TOG) 27(3):72.
Fattal, R. 2014. Dehazing using color-lines. ACM Transac-
tions on Graphics (TOG) 34(1):13.
Gregor, K., and LeCun, Y. 2010. Learning fast approxima-
tions of sparse coding. In ICML, 399–406.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
He, K.; Sun, J.; and Tang, X. 2011. Single image haze re-
moval using dark channel prior. IEEE TPAMI 33(12):2341–
2353.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In ICML, 448–456.
Krishnan, D., and Fergus, R. 2009. Fast image deconvolu-
tion using hyper-laplacian priors. In NIPS, 1033–1041.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS, 1097–1105.

Levin, A.; Weiss, Y.; Durand, F.; and Freeman, W. T. 2009.
Understanding and evaluating blind deconvolution algo-
rithms. In CVPR, 1964–1971.
Li, C.; Yin, W.; Jiang, H.; and Zhang, Y. 2013. An effi-
cient augmented lagrangian method with applications to to-
tal variation minimization. Computational Optimization and
Applications 56(3):507–530.
Li, Y.; Guo, F.; Tan, R. T.; and Brown, M. S. 2014. A con-
trast enhancement framework with jpeg artifacts suppres-
sion. In ECCV, 174–188.
Lin, Z.; Liu, R.; and Su, Z. 2011. Linearized alternating
direction method with adaptive penalty for low-rank repre-
sentation. In NIPS, 612–620.
Meng, G.; Wang, Y.; Duan, J.; Xiang, S.; and Pan, C. 2013.
Efficient image dehazing with boundary constraint and con-
textual regularization. In ICCV, 617–624.
Parikh, N.; Boyd, S.; et al. 2014. Proximal algorithms. Foun-
dations and Trends R© in Optimization 1(3):127–239.
Ren, W.; Liu, S.; Zhang, H.; Pan, J.; Cao, X.; and Yang,
M.-H. 2016. Single image dehazing via multi-scale convo-
lutional neural networks. In ECCV, 154–169.
Rockafellar, R. T., and Wets, R. J.-B. 2009. Variational
analysis, volume 317. Springer Science & Business Media.
Schmidt, U., and Roth, S. 2014. Shrinkage fields for effec-
tive image restoration. In CVPR, 2774–2781.
Schuler, C. J.; Christopher Burger, H.; Harmeling, S.; and
Scholkopf, B. 2013. A machine learning approach for non-
blind image deconvolution. In CVPR, 1067–1074.
Shen, L.; Lin, Z.; and Huang, Q. 2016. Relay backprop-
agation for effective learning of deep convolutional neural
networks. In ECCV, 467–482. Springer.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Sun, L.; Cho, S.; Wang, J.; and Hays, J. 2013. Edge-based
blur kernel estimation using patch priors. In ICCP.
Teh, Y. W.; Welling, M.; Osindero, S.; and Hinton, G. E.
2003. Energy-based models for sparse overcomplete repre-
sentations. JMLR 4(Dec):1235–1260.
Wang, Y.; Liu, R.; Song, X.; and Su, Z. 2017. An inexact
proximal alternating direction method for non-convex and
non-smooth matrix factorization and beyond. arXiv preprint
arXiv:1702.08627.
Xu, C.; Lin, Z.; and Zha, H. 2016. Relaxed majorization-
minimization for non-smooth and non-convex optimization.
In AAAI, 812–818.
Zhao, J.; Mathieu, M.; and LeCun, Y. 2016. Energy-
based generative adversarial network. arXiv preprint
arXiv:1609.03126.
Zoran, D., and Weiss, Y. 2011. From learning models of
natural image patches to whole image restoration. In ICCV,
479–486.
Zuo, W.; Meng, D.; Zhang, L.; Feng, X.; and Zhang, D.
2013. A generalized iterated shrinkage algorithm for non-
convex sparse coding. In ICCV, 217–224.

1378

