The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

Revisiting Immediate Duplicate
Detection in External Memory Search

Shunji Lin, Alex Fukunaga
Graduate School of Arts and Sciences
The University of Tokyo

Abstract

External memory search algorithms store the open and closed
lists in secondary memory (e.g., hard disks) to augment lim-
ited internal memory. To minimize expensive random access
in hard disks, these algorithms typically employ delayed du-
plicate detection (DDD), at the expense of processing more
nodes than algorithms using immediate duplicate detection
(IDD). Given the recent ubiquity of solid state drives (SSDs),
we revisit the use of IDD in external memory search. We pro-
pose segmented compression, an improved IDD method that
significantly reduces the number of false positive access into
secondary memory. We show that A*-IDD, an external search
variant of A* that uses segmented compression-based IDD,
significantly improves upon previous open-addressing based
IDD. We also show that A*-IDD can outperform DDD-based
A* on some domains in domain-independent planning.

1 Introduction

Graph search algorithms, such as breadth first search, Di-
jkstra’s algorithm, and A*, are constrained by the memory
available to store the open list and the closed list. The open
list acts as a priority queue for nodes to be expanded, while
the closed list keeps track of previously expanded nodes in
order to prevent the reexpansion of nodes via an operation
known as duplicate detection. Without duplicate detection,
there can be an exponential increase in the number of states
visited by graph search, as the same states can be reached by
many different paths.

In order to deal with large search problems that exhaust
internal memory, external memory search algorithms have
been developed using secondary memory such as hard disk
drives (HDDs). The main hurdle in designing such algo-
rithms is the need to overcome/avoid the latency of random
read/write access into secondary memory, which is orders of
magnitude slower than accessing RAM. Most previous ex-
ternal memory search algorithms were developed with the
use of HDDs, using the method of delayed duplicate detec-
tion (DDD) (Korf 2003). In DDD, all generated nodes are
first stored on disk and duplicate detection is performed us-
ing a separate duplicate elimination phase that removes du-
plicates in a single batch operation. This is in contrast to

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1347

RAM-based graph search, where duplicate detection is per-
formed on each node expansion or generation by immediate
duplicate detection (IDD). However, in view of recent im-
provements in solid state drive (SSD) performances, capac-
ities and cost per byte, it is natural to consider the use of
SSDs as an alternative to HDDs in external memory search.
The key difference between SSDs and HDDs is that SSDs
allow much faster random access because they do not use
a physical read/write head. Although there have been some
past work on SSD-based external memory search (Edelkamp
and Sulewski 2008), to our knowledge, DDD and IDD have
not been compared empirically using SSDs, and the feasibil-
ity of IDD in SSD-based external memory search remains an
open question (Edelkamp 2016).

We propose a method for IDD in external memory search,
segmented compression, which improves upon the hash-
based IDD method of compression (Edelkamp, Schrodl, and
Koenig 2010) by adding a mapping structure that allows us
to significantly reduce expensive lookups incurred by false
positive probes into secondary memory. Using this method,
we implement and evaluate A*-IDD, an external memory
search variant of A*.

This paper is organized as follows. First, we review dupli-
cate detection in external memory search. Then, we describe
the new segmented compression strategy and A*-IDD. We
evaluate A*-IDD on domain-independent planning using In-
ternational Planning Competition (IPC) benchmarks, and
first show that segmented compression significantly outper-
forms compression. Then, we compare A*-IDD to Exter-
nal A* (Edelkamp, Jabbar, and Schrédl 2004) and A*-DDD
(Korf 2004; Hatem 2014), two DDD-based A* algorithms,
and show that A*-IDD is competitive with DDD-based ap-
proaches in domain-independent planning.

2 Background: Duplicate Detection in
External Memory Search

Secondary memory can be used in duplicate detection when
the number of nodes expanded exceeds main memory capac-
ity. However, a naive implementation (e.g., simply storing
the closed list as a file on disk) is impractical, as each query
of the closed list incurs a random I/O access into secondary
memory, which is orders of magnitude slower than accessing
an in-memory closed list. To circumvent this problem, sev-

eral external memory search duplicate detection techniques
have been proposed.

2.1 Delayed Duplicate Detection (DDD)

Delayed duplicate detection (DDD) (Korf 2003) defers du-
plicate checking so that it can be conducted sequentially on
batches of nodes, instead of immediately on each generated
node, thereby minimizing costly random access to disk. In
general, DDD alternates between an expansion phase and
a duplicate elimination phase. In each expansion phase, all
nodes of the current expansion layer are expanded, and child
nodes are appended to their respective files in secondary
memory based on some partitioning of the search space.
In the duplicate elimination phase, the removal of duplicate
nodes through DDD is performed on files containing nodes
in the next expansion layer. There are two main approaches
to DDD: sorting and hashing (Korf 2004).

In sorting-based DDD, the file containing nodes in the
next expansion phase is first sorted using external mergesort
(time complexity of O(nlogn), where n is the # of nodes
sorted) so that duplicate nodes are consecutive. Then in one
pass, duplicate elimination is done both within nodes in the
selected file and between nodes in the selected file and pre-
viously sorted files which contain closed list nodes of ap-
propriate scope. Sorting-based duplicate detection has been
used in complete breadth-first search (Korf 2003), as well as
External A* (Edelkamp, Jabbar, and Schrodl 2004).

In hash-based DDD, two hash functions Ay and ho are
employed. In the expansion phase, h; is used to hash gen-
erated nodes to files according to their states, such that du-
plicate nodes reside in the same file. In the duplicate elimi-
nation phase, ho is used to hash all nodes from a file to en-
tries of an in-memory hash table, such that duplicate entries
are eliminated. h; has to be designed such that the largest
file fits into main memory. Hash-based duplicate elimina-
tion has an amortized time complexity of O(n). Hash-based
duplicate detection has been used in complete breadth-first
search (Korf 2016), best-first frontier search (Korf 2004), as
well as in A*-DDD (Korf 2004; Hatem 2014).

2.2 Issues With DDD-Based A*

In order to implement duplicate detection as an I/O-efficient,
batch operation, DDD-based approaches make the following
tradeoffs compared to standard, RAM-based A*:

Compatibility with Various Classes of Domains and
Heuristics It is sometimes difficult to adapt DDD-based
A* algorithms to new domains and heuristic functions be-
cause DDD variants often make strong assumptions about
the search space. External A* works by expanding nodes
in (f, g) expansion layers, and limits its duplicate detection
scope to a select few (f, g) expansion layers. Although ef-
ficient for small-integer cost domains, the number of (f, g)
expansion layers, and hence files, that have to be read dur-
ing the duplicate detection phase is quadratic in the max-
imum edge cost of the problem graph (Edelkamp, Jabbar,
and Schrodl 2004), rendering External A* inefficient for do-
mains with a large range of edge costs. In addition, Exter-
nal A* does not allow for the reopening of nodes, and thus

1348

can only use consistent heuristics (in the case of optimal
search). In DDD-based A*, nodes that are generated within
the same expansion layer have to be recursively expanded.
Thus, if there are duplicates within an expansion layer, both
External A* and A*-DDD have to expand more nodes than
necessary, and may even traverse infinite paths (e.g. in do-
mains with zero-cost reversible actions) as duplicate detec-
tion is not performed within an expansion phase in DDD. In
such cases, an in-memory transposition table can be used to
cache and prune duplicate nodes within the expansion layer.

Preprocessing of Nodes in DDD A* progresses by ex-
panding nodes in expansion layers of increasing f values.
In DDD, all nodes in the final expansion layer must be pro-
cessed for duplicate detection. As a result, in External A*
and A*-DDD! all nodes in the final f layer — that is the set
of expansion layers that have an f value equivalent to the op-
timal solution cost — are processed for duplicate detection,
assuming no recursive expansions. In contrast, the number
of nodes expanded in the final f layer by RAM-based A*
varies significantly according to the tie-breaking rule (Asai
and Fukunaga 2016). This penalty is sizeable in domains
where duplicate nodes make up a significant proportion of
generated nodes, and consequently of the final f layer.

Furthermore, in the duplicate elimination phase of A*-
DDD, all nodes in the open list are processed whether or
not they belong to the next f layer to be expanded, and this
overhead is pronounced in domains that have many unique
f values (Hatem 2014).

Tie-breaking Due to constraints imposed by DDD, DDD-
based A* algorithms do not prioritize tie-breaking rules dur-
ing the expansion phase. External A* breaks ties among
minimum f value nodes by selecting nodes with the low-
est g value, which is often a very poor tie-breaking policy
(in general, nodes with higher g values tend to be closer to
the goal). A*-DDD does not perform tie-breaking other than
selecting nodes with the minimum f value for expansion'.
The consequence of poor tie-breaking on the final f layer is
that DDD-based A* typically expands and generates more
nodes in the final f layer than RAM-based A*.

2.3 Immediate Duplicate Detection (IDD)

In contrast to DDD, immediate duplicate detection (IDD)
does not perform duplicate processing as a separate, batch
operation and instead performs duplicate detection as each
node is processed. Unlike DDD, the search behavior of ex-
ternal memory search using IDD can mimic standard, RAM-
based A*, and thus, IDD does not suffer the issues described
above for DDD. Instead, IDD poses the problem of expen-
sive random access to secondary memory.

Although IDD is impractical for external memory search
using HDDs, the advent of SSDs has made IDD a feasible

'Tt is possible to implement A*-DDD with tie-breaking on g
values such that not all nodes in the final f layer have to be pro-
cessed in the duplicate elimination phase, but this comes at the ex-
pense of processing all open list nodes on each (f, g) expansion
layer instead of each f expansion layer.

proposition, as SSDs provide up to 100x faster random ac-
cess compared to HDDs, while providing similar sequential
read/write performance.

Although SSDs are significantly faster than HDDs, they
are still orders of magnitude slower than RAM, so a naive
IDD method which simply maps the closed list to the SSD
is impractical. In addition, care is required when writing
to SSDs. While reads and writes can be done at the page
(2KiB-16 KiB) level, overwrites are performed at the block
(128-256 pages) level. Excessive random writes thus cause
internal fragmentation, and lead to a phenomenon known as
write-amplification (Hu et al. 2009), whereby the physical
size of writes is much larger than the logical size of writes
requested by the client. Write-amplification is undesirable as
it reduces write performance and the life of flash cells.

Edelkamp, Schrodl, and Koenig (2010, Chapter 8) pro-
pose three IDD methods for external memory search using
SSDs — mapping, compression and flushing — that use
open address hashing for external hash tables located on
SSDs. These methods use in-memory write buffers and/or
hash tables to avoid unnecessary access to the external hash
tables. The main issue with these methods is inherent in open
addressing — as the load factor of the hash table grows, the
expected number of probes into the hash table for each query
operation increases due to collisions, and each probe into the
external hash table incurs the cost of an expensive I/O access
into the SSD. We focus on compression rather than flush-
ing and mapping, because of the three methods, compres-
sion is the only method that mitigates write-amplification by
ensuring that nodes are written to the external hash table in
a buffered and contiguous manner. To our knowledge, there
is no published empirical comparisons of these three meth-
ods, and a deeper investigation of flushing and mapping is
an avenue for future work.

In compression, an in-memory hash table (internal hash
table) stores pointers to nodes in the external hash table,
which can be thought of as a contiguous array stored on the
SSD. When nodes are added to the closed list, they are first
inserted into an in-memory buffer. When the buffer is full,
its nodes are written sequentially (appended) to the external
hash table, and pointers to the nodes are inserted into the in-
ternal hash table according to an appropriate hash function
on the nodes’ states. Checking whether a node n with state
s is a duplicate involves the following: first the in-memory
buffer is checked, and if a node with state s is not found, the
internal hash table is probed (according to an appropriate
open addressing scheme). If the probe into the internal hash
table returns an invalid pointer (empty slot), we come to the
end of our probe sequence and we know that a duplicate
node does not exist in the closed list. In this case we avoid a
false positive probe into the external hash table. On the other
hand, if the probe into the internal hash table returns a valid
pointer, we access the external hash table via the pointer.
If a node with state s is found at the pointer’s location, we
found a duplicate node and the query terminates. Otherwise,
the procedure proceeds to alternate between probing the in-
ternal and external hash tables until either the internal hash
table returns an invalid pointer (duplicate not found) or a
node with state s is found in the external hash table (dupli-

1349

append

append
N -

N
/G : Ml]
NN PR
write buffer . p2

0 — write buffers | 0
0-1(p2
2-3|p0
4-5|

mapping
__table

RAM

2|

=¥

s

b
d

2

internal
hash
table

J

1

internal
hash
table

J

external
hash table

SSD

external
hash table

SSD

(@) (b)

Figure 1: (a) Compression and (b) segmented compression.
The alphabets represent nodes, whose ordering reflect a pos-
sible sequence of insertions. When a write buffer becomes
full, its nodes are written sequentially (appended) to the
external hash table, while their corresponding pointers are
hashed into the in-memory internal hash table. Additionally,
in segmented compression, the mapping table is updated to
reflect the partition value of the appended write segment.

cate found). In case of an unsuccessful query (duplicate not
found), the internal hash table eliminates one false positive
probe into the external hash table, as compared to using a
single hash table on SSD.

If the external hash table has a size of m, a single pointer
requires [lgm]bits, and the internal hash table requires
m[lg m] bits in total. The compression ratio reflects the de-
gree of space saving achieved by storing pointers in memory
instead of nodes, and is given by the size of a node divided
by the size of a pointer; the greater the size of the node, the
greater the magnitude of compression.

As an additional optimization, Edelkamp, Schrodl, and
Koenig (2010, Chapter 8) propose the use of cuckoo hash-
ing (Pagh and Rodler 2004) for the internal hash table to
limit the maximum number of probes into the external hash
table to 2 for any query operation. While effective in reduc-
ing the cost of queries, this introduces new issues. Firstly,
the load factor has to be kept low (< %) in order to prevent
frequent rebuilding of the internal hash table due to cycles
(Pagh and Rodler 2004). Secondly, an insertion may require
a significant number of probes into the external hash table
through the eviction process, in order to compute new hash
values for evicted nodes. In contrast, unoptimized compres-
sion requires no probes into the external hash table during
insertion.

3 Segmented Compression: Reducing False
Positive Probes in IDD

We introduce a method for improving SSD-based duplicate
detection by further limiting the number of false positive
probes into the external hash table per query operation. This
idea is inspired by the mapping tables used in an SSD’s flash
translation layer, which allows for space-efficient logical-
to-physical address mapping (Chung et al. 2009).

We exploit the fact that in compression, each write to the
external hash table is done sequentially and has a fixed size

(the size of the write buffer). By using multiple write buffers,
we can partition writes to the external hash table into write
segments. We introduce a partition function which takes as
its input a node, and outputs a partition value. The partition
values are defined over a fixed, discrete interval correspond-
ing to the number of write buffers (i.e. the number of parti-
tions). Every time a node is inserted into the closed list, it is
first inserted into its corresponding write buffer, according
to its partition value. By maintaining an in-memory map-
ping table which maps write segments to partition values,
we can keep track of the partition value of a node in the ex-
ternal hash table by using its pointer as an index into the
mapping table. When a write buffer becomes full, its nodes
are appended into the external hash table as a write segment,
and the mapping table is updated with the partition value
corresponding to the write buffer. The mapping table then
acts as an additional filter for false positive probes into the
external hash table. If a probe into the internal hash table re-
turns a valid pointer, we check the partition value returned
by the mapping table on the pointer’s write segment. If this
value corresponds to the node of interest’s partition value,
we proceed to probe the external hash table. Otherwise, we
avoid a false positive probe into the external hash table and
we continue with the probe sequence. It can be seen that for
segmented compression to work, for any two nodes with the
same state, the nodes must have the same partition values,
such that false negative probes do not occur.

We can evaluate the reduction in false positive probes by
segmented compression compared to compression as fol-
lows. Let the partition function be a uniformly distributed
random variable with its domain the set of all states, and its
codomain the interval [1, p], where p is the number of par-
titions. Furthermore, assume that the partition function and
the hash function are independent. In compression, a false
positive probe is caused by two nodes with different states
hashing to the same slot in the internal hash table. In com-
pression with partitioning, a false positive probe results from
the subsequent collision of the above two nodes on their par-
tition values. The probability of collision on partition val-
ues for two randomly chosen nodes that have different states
is %, due to uniformity. Hence we see that with segmented
compression, the number of false positive probes into the
external hash table can be reduced by a factor of p.

The maximum additional memory cost of segmented
compression compared to compression is equivalent to the
sum of the maximum total size of the write buffers and the
maximum size of the mapping table.

4 A*-IDD

We propose A*-IDD, an external memory search algorithm
which uses segmented compression to perform IDD. Al-
gorithm 1 shows the pseudocode for A*-IDD. The overall
structure of the A*-IDD pseudocode is almost identical to
that of RAM-based A*, except that checking whether a node
is in the closed list and inserting nodes into the closed list
is performed by the find-insert routine, which implements
external memory IDD using segmented compression (Algo-
rithm 2, described more fully below). The key features of

1350

A*-IDD are:

Lazy Duplicate Detection Duplicate detection in A* can
be conducted lazily or eagerly. In lazy duplicate detection,
nodes are checked for duplicates before they are expanded,
against nodes in the closed list. In eager duplicate detec-
tion, nodes are checked for duplicates as they are generated,
against nodes in both the open and closed list in order to en-
sure completeness. Although memory efficient, this requires
more duplicate checks, as the number of generated nodes
is usually much larger than the number of expanded nodes
in A*. We implement lazy duplicate detection in A*-IDD
because: (1) duplicate detection is expensive given that the
SSD has be to accessed; (2) as the open list is a priority
queue backed by files on SSD, it is not efficient to access
nodes in the open list by their state representations. Note
that even though certain domains perform better with lazy
duplicate detection (Burns et al. 2012), in the case where the
memory savings brought about by eager duplicate detection
allows for RAM-based A*, eager duplicate detection should
be used as the latency of accessing secondary memory is
certain to outweigh any gains from lazy duplicate detection.

Open List We arrange nodes in the open list into buck-
ets represented by files on the SSD. Each bucket Open(z, 5)
holds all open list nodes u with f(u) = i and g(u) = 7, sim-
ilar to External A* (Edelkamp, Jabbar, and Schrodl 2004).
Unlike in External A* however, this allows us to select nodes
with the highest g value, among nodes with the lowest f
value. This is a tie-breaking rule that allows for a lower num-
ber of expansions in the final f layer. We also insert and re-
move nodes from the buckets in last-in-first-out order, which
is not only cache-friendly but also an effective deterministic
tie-breaking rule for A* (Asai and Fukunaga 2016).

Closed List The closed list uses segmented compression
to handle duplicate detection, and supports two operations:
find-insert and construct-path.

Find-insert takes a node wu, and returns a boolean value in-
dicating whether u should be expanded. It also inserts u into
the closed list if a duplicate node with lower f value does
not already exist. To handle inconsistent heuristic functions,
find-insert updates an already expanded node v with u if v
has a higher g value than w. In this case find-insert returns
true so that reexpansion can occur.

Construct-path reconstructs the solution path when the
goal node is found. It does so by recursively searching the
hash tables for each node’s parent node, from the goal node
to the initial node. In order to do this efficiently, we store in
each node either the parent node’s state representation or the
parent node’s hash value (whichever uses less space).

To minimize collisions on the external hash table, we need
a good open addressing scheme as well as a good hash func-
tion. We use double hashing, which avoids collisions due to
clustering. We use simple tabulation hashing (Zobrist 1970)
for the hash function as it is efficient, appropriate for hash-
ing state representations and provides probabilistic guaran-
tees similar to fully random hashing (Patrascu and Thorup
2010). Simple tabulation hashing works by initializing and
storing a table of random bitstrings corresponding to each

Algorithm 1 A*-IDD

1: procedure A*-IDD(s, e) > start state s, goal state e
2 Closed « () > closed list
3: Open < n, > open list, initial node ns
4: while Open # () do
5 Remove from Open node w with lowest f value, tie-
breaking on highest g value
6 if State(u) = e then
7: return Construct-Path(u)
8: if Find-Insert(u) returns true then
9: Successors(u) <— Expand(u)
10: for v in Successors(u) do
11: Insert v into Open
12: return ()

Algorithm 2 Find-Insert

1: procedure FIND-INSERT(u)
> p_value is the partition value

2 if w in write_buffers[u.p_value] then

3 if cheaper path to u found then

4: update v in write buffer

S: return true

6

7

8

9

> node u

else
return false
loop
pointer < Probe(internal hash table)

if pointer is invalid then > empty slot
11: return false
12: else
13: if u.p_value = mapping _table|pointer] then
14: if u = Probe(external hash table) then
15: if cheaper path to u found then
16: update u in external hash table
17: return true
18: else
19: return false

value of each state variable. To obtain the hash value of a
state, we XOR all the bitstrings corresponding to the state.
For double hashing, we assign our hash table size m to be
prime, and our initial probe value to be hy (k) = k mod m,
where k is the simple tabulation hash value of the node, and
mod is the modulo operator. Our secondary probe value is
ho(k) = 1+ (k mod (m — 1)). This ensures that ha(k) is
relatively prime to m and our probe sequence never cycles
(Cormen et al. 2001, Chapter 11).

In order to ensure that our partition function approxi-
mates a uniformly distributed random variable that is inde-
pendent of our open address hash function, we use a sepa-
rately initialized simple tabulation hash function for our par-
tition function. The partition value of the node is the simple
tabulation hash value of the node modulo p, where p is the
number of partitions.

S Experiments

We compared compression to segmented compression by
evaluating A*-IDD on a set of IPC optimal-track bench-
mark instances. We also compare A*-IDD with two sequen-
tial DDD-based A* variants (External A* and A*-DDD) on

1351

the 15-puzzle domain, as well as on a subset of the IPC
optimal-track benchmark instances. We used a Xeon W3680
3.3 GHz CPU, with a RAM limit of 1.33 GiB (which gives
an available memory of 1.16 GiB when excluding back-
ground processes), running Ubuntu 16.04.3 LTS. We used
a 900 GB SATA 3.0 SanDisk Ultra II consumer-grade TLC
SSD. All programs were implemented in C++ (g++ 5.4.0,
C++11).

For all open list I/O operations, we used C++’s file stream
class, fstream, with buffers of size 16 KiB each. The actual
writing of nodes to the files on SSD is handled by the kernel.
For A*-IDD’s external hash table, we used the POSIX mmap
system call, which maps files on SSD to virtual memory. We
supplied the madvise function with the MADV_RANDOM
advice, which instructs the kernel not to prefetch more pages
than necessary in each mmap page fault. We used a bit vector
for A*-IDD’s internal hash table in order to pack arbitrary-
sized pointers into a contiguous array. Given a memory limit
for the size of the internal hash table, the size of a pointer is
dynamically chosen so as to maximize the capacity of the
external hash table. We used the probabilistic Miller-Rabin
primality test to initialize prime-sized hash tables for double
hashing. The simple tabulation hash functions are initialized
by the Mersenne Twister pseudorandom number generator.

5.1 Evaluating Segmented Compression

In order to compare compression and segmented com-
pression, we implemented A*-IDD on top of Fast Down-
ward (Helmert 2006), a heuristic search-based domain-
independent, classical planner. We used the consistent,
abstraction-based merge-and-shrink heuristic (Helmert et
al. 2014) with the recommended parameters”. We selected
candidate problems from the IPC optimal track domains
(2008, 2011 and 2014), including only problems that ex-
haust 2 GiB to 10 GiB in RAM-based A* with eager du-
plicate detection. We excluded duplicate problems as well
as problems that use more than 1 GiB during the merge-
and-shrink initialization phase, resulting in a set of 34 in-
stances. We ran compression and segmented compression
with p = [10,100, 1000] on the set of problems, ordered
by their memory consumption in RAM-based A*. We used
an internal hash table of size 500 MiB for each run. The ad-
ditional maximum cost incurred by segmented compression
can be calculated to be less than 18.3 MiB (for p = 1000,
assuming nodes of size 64 bytes each). With a 48h time
limit, compression solved 27, segmented compression with
p = 10 solved 31, and segmented compression with p = 100
and p = 1000 solved 33 out of the 34 problems.

For the easier instances, the difference in search times
between compression and segmented compression were
marginal, as the entire closed list could fit in RAM and
thus be cached. For the harder instances, segmented com-

%(merge_and_shrink(shrink_strategy=shrink_bisimulation(gree
dy=false),merge_strategy=merge _sccs(order_of_sccs=topological,
merge_selector=score_based_filtering(scoring_functions=[goal _rel
evance,dfp,total_order])),label_reduction=exact(before_shrinking=
true,before_merging=rfalse),max_states=50000,threshold _before_m
erge=1))

compression

segmented compression (p = 10)

segmented compression (p = 100) segmented compression (p = 1000)

. search FP probes search FP probes FOR in search FP probes FOR in search FP probes FOR in

domain/problem time (s) FP probes total probes time (s) FP probes total probes FP probes time (s) FP probes total probes FP probes time (s) FP probes total probes FP probes
citycar-opt14/p2-2-6-1-1 2663 295523 0.0167 2674 25778 0.0015 11.5 2586 2412 0.0001 122.5 2689 140 0.0000 2110.9
elevators-opt11/p19 2679 5644802 0.0347 2695 560052 0.0036 10.1 2668 54044 0.0003 104.4 2829 4809 0.0000 1173.8
sokoban-opt08/p27 2777 8982443 0.1282 2111 873913 0.0141 10.3 2019 87329 0.0014 102.9 2085 8506 0.0001 1056.0
citycar-opt14/p2-2-5-2-2 4215 1638425 0.0348 4304 150317 0.0033 10.9 4280 14318 0.0003 114.4 4385 1218 0.0000 1345.2
hiking-opt14/ptesting-2-3-5 6785 33021199 0.0684 6105 3239036 0.0072 10.2 5938 311231 0.0007 106.1 6016 29193 0.0001 1131.1
hiking-opt14/ptesting-2-2-7 9419 40879262 0.0943 7569 3972964 0.0100 10.3 7251 380885 0.0010 107.3 7493 32893 0.0001 1242.8
sokoban-opt08/p25 9852 46243553 0.2522 4748 4518384 0.0319 10.2 4100 449323 0.0033 102.9 4250 44549 0.0003 1038.0
transport-opt14/p08 11934 93749442 0.2282 4246 9214471 0.0282 10.2 3487 852041 0.0027 110.0 3506 74981 0.0002 1250.3
barman-opt14/p435-3 44886 276411337 0.4351 18532 27209675 0.0705 10.2 15936 2688840 0.0074 102.8 16451 256806 0.0007 1076.3
barman-opt11/pfile02-005 54440 372339695 0.4834 20466 36585139 0.0842 102 17373 3582056 0.0089 103.9 17783 327519 0.0008 1136.8

Table 1: Results of the 10 most difficult instances from the set of IPC benchmark instances solvable by both A*-IDD with
compression and with segmented compression (p = [10, 100, 1000]). FP probes refer to false positive probes into the external
hash table. FOR in FP probes refers to the factor of reduction in false positive probes relative to compression. Total probes refer
to the sum of write buffer hits, true positive probes and false positive probes.

pression showed significant speedups compared to compres-
sion. Table 1 shows the search times for the most diffi-
cult instances solvable by all algorithms. The most diffi-
cult instance solved by both compression and segmented
compression (barman-opt11/pfile02-005) took 15.1h, 5.3h
(p = 10),4.8h (p = 100) and 4.9 h (p = 1000) respectively,
and had an external hash table load factor of 0.75 (4.7 GiB)
at the end of search. The differences in search times between
compression and segmented compression can be attributed
to the reduction in false positive probes® into the external
hash table by the mapping table. The minimum and median
values for the factor of reduction in false positive probes
by segmented compression are: (10.0, 10.3), (100.0, 107.3)
and (988.0,1173.8) for p = 10, 100 and 1000 respectively.
The results are consistent with the predicted reduction factor
for p. For the set of problems, a partition number of p = 100
was able to reduce the number of false positive probes from
a significant to an insignificant proportion (< 3 %) of to-
tal probes (see Table 1), effectively suppressing wasted 1/O
access into the SSD. For p = 1000, the additional reduc-
tion in in false positive probes was not worth the overhead
of managing additional buffers, as the average search time
increased (compared to p = 100).

5.2 Comparing A*-IDD and DDD-based A* on
the 15-puzzle domain

We compared A*-IDD to two sequential DDD-based A*
algorithms, External A* (Edelkamp, Jabbar, and Schrodl
2004) (sorting-based) and A*-DDD (Korf 2004; Hatem
2014) (hash-based) on the 15-puzzle domain with the con-
sistent, Manhattan distance heuristic. The 15-puzzle is a unit
cost domain and hence compatible with External A*. We
evaluated both algorithms on the set of 100 random 15-
puzzle instances from Korf (1985). The largest instance in
this set required 27 GB to solve in a highly optimized im-
plementation of RAM-based A* using lazy duplicate detec-
tion (Burns et al. 2012), which is sufficiently large for our
RAM limit. For A*-IDD, we used segmented compression
(p = 100), with 950 MiB for the internal hash table, in or-
der to achieve an external hash table size that is big enough
to fit the closed list of the largest problem. For the external
mergesort operation in External A*, we used a chunk size

3Probe statistics are upper bounds as the kernel’s page cache
provides an additional layer of buffering given enough memory.

1352

of 950 MiB, and we perform a k-way mergesort, where k is
simply the number of chunks read in that iteration. This is
as random seeks are efficient in SSDs, and the dynamic &
value helps to reduce the number of merge pass runs to just
one. For A*-DDD, we used simple tabulation hashing for
assigning nodes to files, with a hash value range of [1, 20].
Each hash value is backed by three files — Open, Next and
Closed — for nodes in the current expansion layer, next ex-
pansion layer and closed list respectively.

To solve all 100 instances, A*-IDD took 17.6 h, expanded
1.6 x 10° nodes and generated 3.1 x 109 nodes; External
A* took 3.8h, expanded 5.7 x 10? nodes and generated
1.1 x 10'° nodes; A*-DDD took 3.0 h, expanded 3.3 x 10°
nodes and generated 6.4 x 10° nodes.

The results show that A*-IDD performs poorly compared
to DDD-based A* in the 15-puzzle domain. The likely ex-
planation is that in the 15-puzzle domain, not only is node
generation inexpensive, the reduction in nodes processed in
the final f layer by tie-breaking in A*-IDD is not signifi-
cant enough as there are relatively few duplicates compared
to other domains (Burns et al. 2012). Thus the overhead in-
curred by DDD-based A* in the final f layer is not substan-
tial compared to the expensive random access probes into
SSD by A*-IDD. Nevertheless, the results on the 15-puzzle
domain give further evidence on segmented compression’s
ability to suppress false positive probes even on load factors
that would cripple standard open addressing methods — the
maximum fraction of false positive probes to total probes for
the instances is 0.16 for a load factor of 0.97 (closed list of
size 4.82 GiB) at the end of search.

5.3 Comparing A*-IDD and DDD-based A* on
Domain-independent Planning

Next we compared A*-IDD to External A* and A*-DDD
on domain-independent planning. This is as in domain-
independent planning, the cost of expanding a node is expen-
sive compared to in the 15-puzzle domain, and certain prob-
lems may contain a significant number of duplicates (e.g. in
grid pathfinding).

We first evaluated External A*, A*-DDD and A*-IDD on
only the subset of unit cost instances from the IPC bench-
mark instances used in Section 5.1. This is as External A*
does not generalize well to non-unit cost domains (see Sec-
tion 2.2). We then evaluated A*-DDD and A*-IDD on the

External A* A*-DDD A*-IDD A*-IDD with poor tie-breaking
domain/problem search time (s) expanded generated search time (s) expanded generated search time (s) expanded generated search time (s) expanded generated
nomystery-opt11/p19 1902 61675963 459918590 1999 47585468 377746156 2123 22228851 168660014 3106 60813817 453369620
nomystery-opt11/p09 6770 86313769 660087182 2674 59116115 480645587 2929 27018183 207393051 5339 85296578 652244754
hiking-opt14/ptesting-2-3-5 43164 34173715 807807459 6756 52051539 1459011981 6552 26276862 624733774 6916 34173715 807807459
hiking-opt14/ptesting-2-2-7 9665 80503020 1984917277 7784 41198523 890211751 12134 74368649 1517350852
barman-opt14/p435-3 23562 282986075 1362756736 17750 105511695 481776292 11439 108191657 494280872
hiking-opt14/ptesting-2-4-5 38673 232898180 7915465779 36262 90966582 2699027855 44646 119116405 3528672811

Table 2: Results of External A*, A*-DDD and A*-IDD on the set of unit cost IPC benchmark instances. Includes A*-IDD with
poor tie-breaking (i.e. select nodes with lowest g value among minimum f value nodes).

A*-DDD A*-IDD A*-IDD with poor tie-breaking
domain/problem search time () expanded generated search time (s) expanded generated scarch time (s) expanded generated
floortile-opt1 1/0pt-p02-003 1243 24289484 169984014 1303 12270544 84061147 852 15592326 105676348
transport-opt14/p08 14309 62337371 425026742 5354 58275211 392447045 5038 58364000 393073722
floortile-opt1 1/0pt-p03-005 5937 109485715 810638870 5852 45144345 331711820 4178 65572481 476920099
barman-opt1 1/pfile02-006 29519 300049236 1440411576 18165 114433246 521645539 13342 115163358 525004590
barman-opt11/pfile02-005 29648 299602752 1438362774 18373 114433260 521645580 12163 115163358 525004590

barman-opt1 1/pfile02-008

114668287 522755574 13278 115372409 525980278

Table 3: Results of A*-DDD and A*-IDD on the set of non-unit cost IPC benchmark instances (without zero cost actions).
Includes A*-IDD with poor tie-breaking (i.e. select nodes with lowest g value among minimum f value nodes).

subset of non-unit cost instances, excluding instances with
zero-cost actions, as these can lead to A*-IDD traversing
infinite paths during the expansion phase (see Section 2.2).
This gave us two sets of six instances, which we ordered
by difficulty in terms of A*-IDD’s search times. Addition-
ally, on both evaluations, we included A*-IDD with poor
tie-breaking, a modified version of A*-IDD that breaks ties
among minimum f value nodes by selecting nodes with the
lowest g value, in the manner of External A*.

We use the merge-and-shrink heuristic with the same pa-
rameters as in Section 5.1, and the same implementations of
the search algorithms as in Section 5.2, with minor mod-
ifications. For A*-IDD, we used segmented compression
(p = 100), with 900 MiB for the internal hash table, to limit
any speedups from page caching while provisioning enough
space for Fast Downward. For External A*, we used a chunk
size of 900 MiB. For A*-DDD, we used a hash value range
of [1,20]. Preliminary tests showed that A*-DDD was un-
able to solve the easiest of instances in a reasonable amount
of time, as the number of duplicates due to recursive ex-
pansions is significant in many IPC benchmark instances.
Hence we equipped A*-DDD with a 900 MiB transposition
table (deallocated during the duplicate elimination phase)
that used an always-evict policy. We set a 24 h time limit
for each algorithm for both the unit cost and non-unit cost
evaluations.

On the unit cost test set, External A* solved 3 instances,
A*-DDD solved 5 instances while both versions of A*-IDD
solved all 6 instances. For the non-unit cost test set, A*-
DDD solved 5 instances while both versions of A*-IDD
solved all 6 instances. The results are shown in Table 2 and
Table 3 respectively.

For both the unit cost and non-unit cost evaluations, A*-
IDD outperformed A*-DDD in terms of search times on the
harder instances, as the difference between the number of
expanded and generated nodes by A*-DDD and A*-IDD
grew. This is in spite of the fact that A*-DDD had a higher
expansion and generation rate for most of the instances (the
exception being transport-opt14/p08, an instance that re-
quired exploring a large range of unique f values). Further-

1353

more, except for the two easiest instances in the unit cost
test set, A*-DDD expanded and generated more nodes than
A*-IDD with poor tie-breaking, showing that recursive ex-
pansions can amount to a significant overhead in A*-DDD*.
This overhead is likely to grow in proportion with the search
tree — i.e. exponentially — as the factor of reduction in
duplicates by the memory-limited transposition table is ex-
pected to diminish as the instances become harder.

On the unit cost test set, External A* performs poorly,
as it pays both the price of ineffective tie-breaking and the
O(nlogn) factor for preprocessing nodes in the duplicate
elimination phase.

Interestingly, while A*-IDD with good (maximum g-
value based) tie-breaking expanded and generated fewer
nodes than A*-IDD with poor (minimum g-value based)
tie-breaking in all of the instances, A*-IDD with poor tie-
breaking had consistently higher node expansion and gener-
ation rates, which resulted in better search times in many of
the instances. This suggests that the impact of tie-breaking
strategies in A*-IDD is not as straightforward as in RAM-
based A*, as a tie-breaking strategy which is “better” with
respect to search effiency can result in poorer locality with
regards to the page cache.

6 Discussion and Conclusion

We proposed and evaluated segmented compression, an im-
proved approach to open addressing-based immediate du-
plicate detection in external memory search. Our evaluation
of segmented compression showed that it is is possible to
reduce the number of expensive, false positive probes into
secondary memory by two orders of magnitude compared to
compression, with minimal memory overhead. On the do-

We also evaluated a version of A-DDD that breaks ties among
minimum f value nodes by selecting nodes with the highest g
value. This version of A*-DDD performed poorly, solving only 1
and O problems from the unit cost and non-unit cost test sets re-
spectively. In this case, the overhead of preprocessing every open
list node on each (f, g) expansion layer outweighed the gains from
better tie-breaking and the elimination of recursive expansions.

mains we evaluated, false positive probes into the external
hash table are no longer a significant overhead, resulting in
signficantly improved runtime performance of IDD.

We also showed that in domain-independent planning,
A*-IDD, which performs IDD using segmented compres-
sion, can significantly outperform DDD-based external A*
on some domains when an SSD is used as secondary mem-
ory. Given the increasing ubiquity of SSDs and the rapidly
diminishing gap in the cost per byte of storage in SSDs
vs. HDDs, our results suggest that although delayed dupli-
cate detection-based approaches have been the primary fo-
cus of research in external memory search, immediate dupli-
cate detection is a promising approach for external memory
search in some domains, particularly when the overheads as-
sociated with DDD are significant. Our results with the 15-
puzzle show that in some domains, DDD-based approaches
continue to dominate IDD-based approaches. It should be
noted that in the domains used for our experiments, the node
sizes (< 64 bytes) are significantly smaller than the smallest
SSD read unit of a page (2 KiB-16 KiB), resulting in high
constant overheads associated with paging in unnecessary
nodes in each probe into the external hash table. In applica-
tions with larger node sizes, this overhead is reduced, and
should make IDD-based approaches more even more attrac-
tive. A deeper understanding of these tradeoffs is an inter-
esting direction for future work.

A*-IDD tends to be simpler and more convenient to im-
plement than previous DDD-based approaches because it re-
quires fewer assumptions about the domain to which it is
applied (e.g., consistent vs. inconsistent heuristic, unit cost
vs. non-unit cost edges) in order to provide performant be-
havior. This is because A*-IDD is simply standard A*, ex-
cept that the low-level management of the closed list in ex-
ternal memory is handled by segmented compression. Un-
like DDD, IDD allows the search strategy to be mostly
separated from the details of the duplicate detection strat-
egy. That being said, there are still some significant limita-
tions to the orthogonality of the search strategy in A*-IDD.
For example, although 3-level tie-breaking strategies which
have been shown to be effective for RAM-based A* (Asai
and Fukunaga 2016) can be implemented efficiently in A*-
IDD, implementations of cache-friendly tie-breaking strate-
gies, as well as more complex strategies such as depth-based
and distance-to-go-based tie-breaking (Asai and Fukunaga
2017) pose directions for future work.

Acknowledgments

We thank the reviewers for their helpful comments and
suggestions. This work was supported by Kakenhi grants
2533053, 17K00296, and a scholarship from the Konosuke
Matsushita Memorial Foundation.

References

Asai, M., and Fukunaga, A. S. 2016. Tiebreaking strategies
for A* search: How to explore the final frontier. In AAAI,
673-679.

Asai, M., and Fukunaga, A. 2017. Tie-breaking strategies

1354

for cost-optimal best first search. Journal of Artificial Intel-
ligence Research 58:67—121.

Burns, E. A.; Hatem, M.; Leighton, M. J.; and Ruml, W.
2012. Implementing fast heuristic search code. In Fifth An-
nual Symposium on Combinatorial Search.

Chung, T.-S.; Park, D.-].; Park, S.; Lee, D.-H.; Lee, S.-W.;
and Song, H.-J. 2009. A survey of flash translation layer.
Journal of Systems Architecture 55(5):332 — 343.

Cormen, T. H.; Stein, C.; Rivest, R. L.; and Leiserson, C. E.
2001. Introduction to Algorithms. McGraw-Hill Higher Ed-
ucation, 2nd edition.

Edelkamp, S., and Sulewski, D. 2008. Flash-efficient LTL
model checking with minimal counterexamples. In 2008
Sixth IEEE International Conference on Software Engineer-
ing and Formal Methods, 73-82.

Edelkamp, S.; Jabbar, S.; and Schrodl, S. 2004. External
A*, KI 4:226-240.

Edelkamp, S.; Schrodl, S.; and Koenig, S. 2010. Heuristic
Search: Theory and Applications. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Edelkamp, S. 2016. External-Memory State Space Search.
Cham: Springer International Publishing. 185-225.

Hatem, M. 2014. Heuristic search with limited memory.
Ph.D. Dissertation, University of New Hampshire.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gen-
erating lower bounds in factored state spaces. J. ACM
61(3):16:1-16:63.

Helmert, M. 2006. The fast downward planning system. J.
Artif. Int. Res. 26(1):191-246.

Hu, X.-Y.; Eleftheriou, E.; Haas, R.; Iliadis, I.; and Pletka, R.
2009. Write amplification analysis in flash-based solid state
drives. In Proceedings of SYSTOR 2009: The Israeli Experi-
mental Systems Conference, SYSTOR ’09, 10:1-10:9. New
York, NY, USA: ACM.

Korf, R. E. 1985. Depth-first iterative-deepening. Artificial
Intelligence 27(1):97 — 109.

Korf, R. E. 2003. Delayed duplicate detection: Extended
abstract. In Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence, IICAT’03, 1539—-1541. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Korf, R. E. 2004. Best-first frontier search with delayed du-
plicate detection. In Proceedings of the 19th National Con-
ference on Artifical Intelligence, AAAT’04, 650-657. AAAI
Press.

Korf, R. E. 2016. Comparing search algorithms using sort-
ing and hashing on disk and in memory. In Proceedings of
the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJICAT’ 16, 610-616. AAAI Press.

Pagh, R., and Rodler, F. F. 2004. Cuckoo hashing. J. Algo-
rithms 51(2):122—-144.

Patrascu, M., and Thorup, M. 2010. The power of simple
tabulation hashing. CoRR abs/1011.5200.

Zobrist, A. L. 1970. A new hashing method with application
for game playing.

