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Abstract

MaxSAT reasoning is an effective technology used in mod-
ern branch-and-bound (BnB) algorithms for the Maximum
Weight Clique problem (MWC) to reduce the search space.
However, the current MaxSAT reasoning approach for MWC
is carried out in a blind manner and is not guided by any
relevant strategy. In this paper, we describe a new BnB algo-
rithm for MWC that incorporates a novel two-stage MaxSAT
reasoning approach. In each stage, the MaxSAT reasoning
is specialised and guided for different tasks. Experiments on
an extensive set of graphs show that the new algorithm im-
plementing this approach significantly outperforms relevant
exact and heuristic MWC algorithms in both small/medium
and massive real-world graphs.

Introduction

In a vertex-weighted graph G = (V,E,w), where V is the
set of vertices and E is the set of edges, the weight function
w assigns a positive integer, called weight, to each vertex.
A clique C is a subset of V in which every two vertices
are adjacent in G. The size of a clique C is its cardinality.
The Maximum Clique Problem (MC) is to find a clique of
maximum size in G. The weight of a clique C is defined to
be the total weight of vertices in C. The Maximum Weight
Clique Problem (MWC), an important generalization of MC,
is to find a clique of maximum weight in G, and its weight is
denoted by ωv(G).

MC and MWC are NP-hard problems (Garey and Johnson
1979) with applications in areas as diverse as coding the-
ory (Zhian et al. 2013), protein structure prediction (Mascia
et al. 2010), combinatorial auctions (Wu and Hao 2015b),
computer vision (Zhang, Javed, and Shah 2014) and ge-
nomics (Butenko and Wilhelm 2006). Given their practical
importance, considerable efforts have been devoted to de-
velop both exact and heuristic algorithms for them.

There exist a remarkable number of algorithms for MC.
We highlight the exact branch-and-bound (BnB) algorithms
described in (Tomita et al. 2010; Li and Quan 2010; San et
al. 2011; Jiang, Li, and Manyà 2016; Li, Jiang, and Manyà
2017), and the heuristic local search algorithms described
in (Wu and Hao 2013; Benlic and Hao 2013; Pullan, Mascia,
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and Brunato 2011). See (Wu and Hao 2015a) for a review on
MC algorithms. Compared with the number of algorithms for
MC, there are relatively fewer algorithms available for MWC.
This is partially due to the fact that MWC is generally harder
to solve than MC because of the different weight values of
the vertices (Cai and Lin 2016; Jiang, Li, and Manyà 2017).

In this paper, we focus on algorithms for MWC. The most
efficient heuristic algorithms for MWC are FastWClq (Cai
and Lin 2016), MN/TS (Wu, Hao, and Glover 2012),
LSCC+BMS (Wang, Cai, and Yin 2016), ReTS (Zhou, Hao,
and Goëffon 2017) and RRWL (Fan et al. 2017). The most
representative exact algorithms for MWC are Cliquer (Os-
tergard 2002), Kumlander’s algorithm (Kumlander 2008),
VCTable (Shimizu et al. 2012), OTClique (Shimizu et al.
2013), MWCLQ (Fang, Li, and Xu 2016) and WLMC (Jiang,
Li, and Manyà 2017). Among them, we identify MWCLQ
and WLMC as two of the most competitive algorithms. Both
implement the BnB scheme and apply MaxSAT reasoning to
improve the upper bound estimation. To our best knowledge,
MWCLQ is specially good in small/medium dense graphs
while WLMC exhibits the best performance in massive sparse
graphs.

MaxSAT reasoning has been proven to be effective to re-
duce the search space in BnB algorithms for MWC. The
current MaxSAT reasoning implemented in MWCLQ and
WLMC relies on an upper bound (UBIS) derived from the
computation of an independent set (IS) partition of the ver-
tices of the graph. However, as stated in (Jiang, Li, and Manyà
2017), UBIS is very conservative. Moreover, the MaxSAT
reasoning for improving UBIS implemented in both MW-
CLQ and WLMC is carried out in a brute-force manner: It
repeatedly and blindly applies unit IS propagation to detect
disjoint subsets of conflicting ISs.

To overcome the conservativeness of UBIS and improve
the efficiency of MaxSAT reasoning on BnB algorithms, we
propose a novel two-stage MaxSAT reasoning approach to
reducing the search space. In each stage, MaxSAT reasoning
is specialised and guided for different tasks. As a result, we
develop a new MWC algorithm called TSM-MWC.

The conducted experiments on an extensive set of in-
stances show that the two-stage MaxSAT reasoning approach
is very effective on reducing the search space, and TSM-
MWC greatly outperforms relevant MWC algorithms in both
small/medium and massive real-world graphs. To our best

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1338



knowledge, this is the first exact algorithm that reaches the
best performance in both types of graphs.

The paper is organized as follows: Section 2 gives some
basic graph definitions and reviews previous MaxSAT reason-
ing approaches for MWC. Section 3 presents the two-stage
MaxSAT reasoning approach and the algorithm TSM-MWC.
Section 4 reports on the empirical results. Section 5 gives the
conclusions.

Preliminaries

Let G = (V,E,w) be a vertex-weighted undirected graph,
where V = {v1, . . . , vn} is a set of n vertices, E is a set of m
edges, and w is a weight function that assigns to each vertex
vi of V a non-negative integer w(vi) representing its weight.
We also use v

w(vi)
i to represent that vertex vi has weight

w(vi). The density of G is 2m/(n(n− 1)). Two vertices vi
and vj of V are adjacent, or neighbors, if (vi, vj) ∈ E. The
set of neighbors of a vertex vi in G is denoted by Γ(vi) =
{vj |(vi, vj) ∈ E}. The cardinality of Γ(vi) is the degree
of vi. The subgraph of G induced by the subset V ′ of V ,
denoted by G[V ′], is defined as G[V ′] = (V ′, E′, w), where
E′ = {(vi, vj) ∈ E|vi, vj ∈ V ′}. The maximum weight in
V ′, maxvi∈V ′(w(vi)), is denoted by w∗(V ′), and w∗(∅) =
0. A clique in G = (V,E,w) is a subset C of V such that
every two vertices in C are adjacent. The weight of C is
w(C) =

∑
vi∈C w(vi). An independent set (IS) of G is a

subset D of V in which no two vertices are adjacent. An IS
partition of G is a partition of the vertices of V into ISs such
that each vertex belongs to exactly one IS.

Let S = {vw(v1)
1 , v

w(v2)
2 , . . . , v

w(vr)
r } be a subset of

vertices of V with w(v1) ≥ · · · ≥ w(vk) > β ≥
w(vk+1) ≥ · · · ≥ w(vr), where β is an integer.
The weight splitting operation split(S, β) returns the sets
S′ = {vβ1 , vβ2 , . . . , vβk , vw(vk+1)

k+1 , . . . , v
w(vr)
r } and S′′ =

{vw(v1)−β
1 , v

w(v2)−β
2 , . . . , v

w(vk)−β
k }. In other words, for

each vertex vi ∈ S with w(vi) > β, split(S, β) splits the
weight w(vi) into β and w(vi)− β.

MaxSAT reasoning for MWC

To solve MWC with a BnB algorithm, it is crucial to
compute a tight upper bound (UB) of ωv(G) for a vertex-
weighted graph G = (V,E,w). Given an IS partition
Π = {D1, D2, . . . , Dr} of G, the UB of ωv(G) based on
ISs is defined to be UBIS =

∑r
i=1 w

∗(Di), because a clique
of G contains at most one vertex from each IS. However,
UBIS is very conservative. It is tight only in the very special
case where there is a maximum weight clique that contains
the most weighted vertex of each IS in Π.

A subset of k ISs that cannot form a clique of size k is said
conflicting (the k ISs are also said conflicting). A special case
is k = 2: two ISs S1 and S2 are conflicting iff S1 ∪ S2 is an
IS. If {S1, S2, . . . , Sk} is a conflicting subset of ISs of Π and
β = min(w∗(S1), w

∗(S2), . . . , w
∗(Sk)), then UBIS − β is

an improved UB of ωv(G). This follows from the fact that,
for every possible clique C, there is at least one IS S in
{S1, S2, . . . , Sk} such that C ∩ S = ∅.

To increase the number of disjoint conflicting subsets of
ISs, we split the ISs of the already detected conflicting sub-
sets of ISs. Concretely, each Si (1 ≤ i ≤ k) of a conflicting
subset {S1, S2, . . . , Sk} of ISs can be split, using the oper-
ation split(Si, β), into two ISs: S′i and S′′i . Note that the
subset Π1 = {S′1, S′2, . . . , S′k}, where w∗(S′1) = w∗(S′2) =· · · = w∗(S′k) = β, is conflicting. Additional conflicting
subsets of ISs, which are disjoint with {S′1, S′2, . . . , S′k}, can
be identified in (Π \ {S1, S2, . . . , Sk}) ∪ {S′′1 , S′′2 , . . . , S′′k}.

Since each conflicting subset of k ISs implies the split-
ting of k existing ISs, we finally obtain a set of ISs
{D1, D2, . . . , Dq} that is the union Π1∪Π2∪. . .∪Πp−1∪Πp,
and each Πi, 1 ≤ i ≤ p − 1, is a conflicting subset of ISs.
Since each vertex v of G belongs to at most one of the ISs
of Πi, we define a weight function wi(v) for each Πi as
follows: wi(v) is 0 if v does not belong to any IS of Πi;
otherwise wi(v) is the weight of v in the IS of Πi in which v
appears. Obviously, each v of G can belong to several sub-
sets of Π1 ∪ Π2 ∪ . . . ∪ Πp−1 ∪ Πp and it must hold that
w(v) =

∑p
i=1 wi(v).

Each Πi induces a graph Gi that has the same set of ver-
tices and the same set of edges as G, but with a different
weight function wi(v). Let C be a clique of G, then w(C) =∑

v∈C w(v) =
∑

v∈C
∑p

i=1 wi(v) =
∑p

i=1

∑
v∈C wi(v).

Note that C is also a clique in each Gi and Gi can be par-
titioned into a set of ISs {S′1, S′2, . . . , S′ki

}. We have that
∑

v∈C wi(v) ≤
∑ki

j=1 w
∗
i (S

′
j) − βi for i < p, because the

ISs are conflicting. So, w(C) ≤ ∑p−1
i=1 (

∑ki

j=1 w
∗
i (S

′
j) −

βi) +
∑kp

j=1 w
∗
p(S

′
j) =

∑p
i=1

∑ki

j=1 w
∗
i (S

′
j) −

∑p−1
i=1 βi =

∑q
i=1 w

∗
i (Di)−

∑p−1
i=1 βi.

The improved upper bound UBMaxSAT , obtained by
identifying and splitting conflicting ISs, is defined to be
∑q

i=1 w
∗
i (Di)−

∑p−1
i=1 βi. It is implemented in the two best

performing exact MWC algorithms, MWCLQ and WLMC.
Let C∗ be the clique of the greatest weight found so

far in G. If UBMaxSAT is not sufficient for pruning (i.e.,
UBMaxSAT > w(C∗)), further search is required to find a
better clique in G. In this case, the effort spent to compute
UBMaxSAT in MWCLQ is lost. To overcome this drawback,
the algorithm WLMC first identifies a subset A of V in such
a way that G[A] has an IS partition Π and its UBIS is not
greater than w(C∗). Let B = V \ A = {b1, b2, . . . , b|B|}.
If B = ∅, the search is pruned, because G does not con-
tain any clique of weight greater than w(C∗). Otherwise,
WLMC successively adds bi as a unit IS {bi} to Π for
i = |B|, |B| − 1, . . . , 1. For each bi, WLMC employs
MaxSAT reasoning to compute UBMaxSAT for G[A ∪ {bi}].
If the computed UBMaxSAT is not greater than w(C∗), bi
is removed from B and added to A, because a clique of
weight greater than w(C∗) cannot be found in G[A ∪ {bi}].
In this way, the number of vertices of B is greatly reduced by
MaxSAT reasoning. Finally, WLMC only needs to branch on
the vertices remaining in B to find a clique better than C∗.

Note that the computation of UBMaxSAT in MWCLQ and
WLMC is based on UBIS , which is very conservative. More-
over, MWCLQ and WLMC identify a conflicting subset of
ISs by repeatedly and blindly applying unit clause propaga-
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tion or unit IS propagation, which is a brute force approach
and might impede the computation of a tighter UB.

TSM-MWC: A BnB MWC Algorithm with

Two-stage MaxSAT Reasoning

In this section, we describe the new BnB MWC algorithm
TSM-MWC. We first present the basic BnB search proce-
dure that TSM-MWC implements, and then describe a novel
two-stage MaxSAT reasoning procedure (TSM) to reduce
the number of branching vertices of the search procedure.
Finally, we define TSM-MWC, which combines an efficient
preprocessing and the novel two-stage MaxSAT reasoning.

The basic BnB search procedure

Algorithm 1 presents the basic BnB search procedure that
TSM-MWC implements. Given a graph G = (V,E,w), a
vertex ordering O over V , a growing clique C, a candidate
set of vertices P in which every vertex is adjacent to every
vertex in C, and the clique C∗ of the greatest weight found
so far in G, the algorithm calls the GetBranches function to
partition P into A and B in such a way that ωv(G[A]) ≤
w(C∗) − w(C) and B = V \ A = {b1, b2, . . . , b|B|} is
the returned set of branching vertices. If B is empty, the
current search is pruned, because the clique C cannot be
grown to a clique of weight greater than w(C∗) with the
vertices of P . Otherwise, the algorithm recursively branches
on bi, for i = |B|, |B| − 1, . . . , 1, to search for a clique
containing bi of weight greater than w(C∗) in G[Γ(bi) ∩
({bi+1, . . . , b|B|} ∪ A)]. If the initial call to the algorithm
is SearchMWC(G, V,O, ∅, ∅), it returns a maximum weight
clique of G after exploring the whole search space.

The crucial component of Algorithm 1 is the GetBranches
function. The smaller the cardinality of the set of branching
vertices B returned by GetBranches, the lower the number
of branches that need to be explored to find an optimal solu-
tion. So, in the sequel, we will focus on developing a better
GetBranches function based on MaxSAT reasoning.

Algorithm 1: SearchMWC(G,P,O,C,C∗), a
generic BnB algorithm for MWC

Input: G = (V,E,w), a candidate set P , an ordering O
over P , a growing clique C, and the greatest weight
clique C∗ found so far in G.

Output: C ∪ C′, where C′ is a maximum weight clique of
G[P ], if w(C ∪ C′) > w(C∗); C∗ otherwise.

1 begin
2 if P = ∅ then return C ;
3 B ← GetBranches(G[P ], w(C∗)− w(C), O);
4 if B = ∅ then return C∗ ;
5 Let B = {b1, . . . , b|B|}, b1 < · · · < b|B| w.r.t. O;
6 A ← V \B;
7 for i := |B| downto 1 do

8 P ′ ← Γ(bi) ∩ ({bi+1, . . . , b|B|} ∪A);
9 C1 ← SearchMWC(G,P ′, O, C ∪ {bi}, C∗) ;

10 if w(C1) > w(C∗) then C∗ ← C1 ;

11 return C∗;

Two-stage MaxSAT Reasoning to Minimize the
Number of Branches

We describe a two-stage MaxSAT reasoning approach that
considers in priority conflicting subsets containing two or
three ISs, allowing to reduce more branches than previous
MaxSAT reasoning approaches.

Stage 1. Given a vertex-weighted graph G = (V,E,w),
a lower bound t of ωv(G) and a vertex ordering O : v1 <
v2 < · · · < vn, Algorithm 2 defines a simplified MaxSAT
reasoning approach to computing an initial set of branching
vertices B and a set Π of ISs of V \B so that ωv(G[V \B]) ≤∑

D∈Π w∗(D) ≤ t. Thus, to search for a clique of weight
greater than t, it suffices to branch on the vertices of B.

Initially, B and Π are empty. For i = n to 1, if every
IS of Π contains at least one neighbor of vi, Algorithm 2
adds the new IS {vi} to Π if

∑
D∈Π w∗(D) + w(vi) ≤ t

(lines 10–11). Otherwise, the algorithm splits the weight
w(vi) among some ISs S1, S2, . . . , Sk of Π not containing
any neighbor of vi by applying the following lemma.

Lemma 1. Let G = (V,E,w) be a vertex-weighted graph,
let Π = {D1, D2, . . . , Dr} be a set of ISs, let V (Π) be
the set of vertices occurring in Π, let vi be a vertex of
V \ V (Π), and let S1, S2, . . . , Sk be ISs of Π not containing
any neighbor of vi (i.e., conflicting with {vi}). Then,
∑

D∈Π w∗(D) + max(w(vi) − ∑k
j=1 w

∗(Sj), 0) is an
upper bound of ωv(G[V (Π) ∪ {vi}]).

Proof. Let C be a maximum weight clique in G(V (Π)∪{vi}).
If vi ∈ C, then C cannot contain any vertex from S1, S2,
. . ., Sk and

∑
D∈Π\{S1,S2,...,Sk} w

∗(D) + w(vi) =
∑

D∈Π w∗(D) + w(vi) − ∑k
j=1 w

∗(Sj) is an upper
bound of ωv(G[V (Π) ∪ {vi}]). If vi /∈ C,

∑
D∈Π w∗(D)

is an upper bound of ωv(G[V (Π) ∪ {vi}]). Hence,
∑

D∈Π w∗(D) + max(w(vi) − ∑k
j=1 w

∗(Sj), 0) is an
upper bound of ωv(G[V (Π) ∪ {vi}]) in both cases. �

Let ub =
∑

D∈Π w∗(D) and let δ = w(vi). If ub +

max(δ − w∗(S1), 0) ≤ t, then Algorithm 2 inserts vδi into
S1 and updates ub to ub + max(δ − w∗(S1), 0), because
G[V (Π) ∪ {vi}] cannot contain any clique of weight greater
than t in this case according to Lemma 1. Otherwise, Al-
gorithm 2 inserts v

w∗(S1)
i into S1 in order not to increase

w∗(S1), updates δ to δ − w∗(S1), and tries to insert vδi into
S2, and so on (lines 16–23). In a word, Algorithm 2 splits
v
w(vi)
i into v

w∗(S1)
i , v

w∗(S2)
i , . . . , v

w∗(Sk′−1)

i , vδi , where δ =

w(vi) −
∑k′−1

j=1 w∗(Sj) and k′ is the smallest integer such

that k′ ≤ k and ub+max(w(vi)−
∑k′

j=1 w
∗(Sj), 0) ≤ t. It

adds vw
∗(Sj)

i to Sj for j = 1 to k′ − 1, inserts vδi into Sk′ ,
and updates ub to ub + max(w(vi) −

∑k′

j=1 w
∗(Sj), 0). If

such a k′ does not exist, the algorithm inserts vi into B and
restores Π to the values it had before considering vi (line 24).
Finally, it returns the set B, the set Π of ISs on V \B and an
upper bound ub of ωv(G[V \B]).
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Algorithm 2: BinaryMaxSAT(G, t, O)
Input: G = (V,E,w), an integer t and an ordering O
Output: a set B of branching vertices, a set Π of ISs and an

upper bound ub of ωv(G[V \B])
1 begin
2 ub ← 0; B ← ∅; Π ← ∅; /* Π is a set of ISs*/
3 Let V = {v1, . . . , vn}, v1 < · · · < vn w.r.t. O;
4 for i := n downto 1 do

5 Π′ ← Π, δ ← w(vi);
6 remove all non-neighbors of vi from their ISs;
7 if no empty IS is produced then
8 restore all removed vertices into their ISs;
9 if ub+ δ ≤ t then

10 create a new IS D = {vδi };
11 Π ← Π ∪ {D}, ub ← ub+ δ;

12 else B ← B ∪ {vi} ;

13 else
14 let S1, S2, . . . , Sk be the empty ISs;
15 restore all removed vertices into their ISs;
16 for j := 1 to k do
17 if ub+max(δ − w∗(Sj), 0) ≤ t then

18 Sj ← Sj ∪ {vδi };
19 ub ← ub+max(δ − w∗(Sj), 0);
20 δ ← 0; break;

21 else

22 Sj ← Sj ∪ {vw
∗(Sj)

i };
23 δ ← δ − w∗(Sj);

24 if δ > 0 then Π ← Π′, B ← B ∪ {vi} ;

25 return (B,Π, ub);

The key of Algorithm 2 is the identification of the ISs
S1, . . . , Sk, which are conflicting with {vi}, and the splitting
of w(vi) among these ISs, which is referred to as binary
MaxSAT reasoning, because {Sj , {vi}} (1 ≤ j ≤ k) is a
binary conflicting subset of ISs. Note that Π is not an IS
partition of G[V \B] in the strict sense, because a vertex can
belong to several ISs of Π.

Let θ be the greatest weight among the vertices of V . Each
vertex v ∈ V has at most w(v) occurrences in Π. So, the
total number of vertices in Π is in O(θ× |V |). The main cost
of inserting a vertex v into Π is the identification of the ISs
S1, S2, . . . , Sk not containing any neighbor of v. So, the time
complexity of inserting a vertex into Π is in O(θ × |V |), and
the time complexity of Algorithm 2 is in O(θ × |V |2).
Stage 2. This stage is implemented in Algorithm 3. Its
aim is to further reduce the set B of branching vertices re-
turned by Algorithm 2 together with the set of ISs Π on
V \B. To remove a vertex b from B, the algorithm checks if
ωv(G[V (Π) ∪ {b}]) ≤ t to prove that branching on b is not
necessary. For this purpose, it identifies conflicting subsets of
ISs in Π ∪ {{b}} in an ordered way: Firstly, the conflicting
subsets containing 2 ISs are identified; secondly, the con-
flicting subsets containing 3 ISs; and finally, the conflicting
subsets containing more than 3 ISs. We refer to this MaxSAT
reasoning approach as ordered MaxSAT reasoning.

Algorithm 3: OrderedMaxSAT(G, t, O,B, Π, ub)
Input: G = (V,E,w), an integer t, an ordering O over V ,

a subset B of V , a set Π of ISs on V \B, and an
upper bound ub of ωv(G[V \B])

Output: a set B of branching vertices
1 begin
2 Let B = {b1, . . . , b|B|}, b1 < · · · < b|B| w.r.t. O;
3 for i := |B| downto 1 do

4 Π′ ← Π, δ ← w(bi);
5 let S1, S2, . . . , Sk be the ISs containing no

neighbor of bi;
6 for j := 1 to k do

7 Sj ← Sj ∪ {bw
∗(Sj)

i }; δ ← δ − w∗(Sj);

8 let U1, U2, . . . , Ur be the ISs containing exactly
one neighbor of bi;

9 for j := 1 to r do
10 let Γ(bi) ∩ Uj = {u};
11 if there is an IS Dq such that

Dq ∩ Γ(bi) ∩ Γ(u) = ∅ then
12 β ← min(δ, w∗(Uj), w

∗(Dq));
13 (U ′

j , U
′′
j ) ← split(Uj , β);

14 (D′
q, D

′′
q ) ← split(Dq, β);

15 Π ← (Π \ {Uj , Dq}) ∪ {U ′′
j , D

′′
q };

16 δ ← δ − β;
17 if ub+ δ ≤ t then break;

18 if ub+ δ > t then

19 Π ← Π ∪ {{bδi }};
20 while there is a unit IS {v} in Π do
21 remove the non-neighbors of v from ISs;
22 if there is an empty IS S0 then
23 let S1, . . . , Sp be the ISs responsible
24 of removing all the vertices of S0;
25 restore the removed vertices into ISs;
26 β ← min(w∗(S0), . . . , w

∗(Sp));
27 for each Sj in {S0, S1, . . . , Sp} do

28 (S′
j , S

′′
j ) ← split(Sj , β);

29 Π ←
(Π\{S0, . . . , Sp})∪{S′′

0 , . . . , S
′′
p };

30 δ ← δ − β;
31 if ub+ δ ≤ t then break;

32 if ub+ δ ≤ t then
33 B ← B \ {bi}, ub ← ub+ δ;

34 else Π ← Π′ ;

35 return B;

Concretely, let B = {b1, b2, . . . , b|B|} with b1 < b2 <
· · · < b|B| w.r.t. the ordering O and let ub =

∑
D∈Π w∗(D).

For each bi (1 ≤ i ≤ |B|), note that ub+ w(bi) is an upper
bound of ωv(G[V (Π) ∪ {bi}]). Algorithm 3 improves this
upper bound by first identifying a set of ISs {S1, S2, . . . , Sk}
in Π not containing any neighbor of bi, splitting w(bi) into
w∗(S1), w

∗(S2), . . . , w
∗(Sk), and δ, where δ = w(bi) −

∑k
j=1 w

∗(Sj), and inserting b
w∗(Sj)
i into Sj (1 ≤ j ≤ k)

(lines 6 and 7). After these insertions, the upper bound of
ωv(G[V (Π) ∪ {bi}]) is improved to ub+ δ. Note that δ > 0
because bi was not entirely inserted into Π in Stage 1.
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Then, Algorithm 3 identifies a set of ISs {U1, U2, . . . , Ur}
containing exactly one neighbor of bi. For each Uj (1 ≤
j ≤ r), let u be the unique neighbor of bi in Uj . The al-
gorithm tries to identify an IS Dq such that Dq ∩ Γ(bi) ∩
Γ(u) = ∅. Thus, {{bδi }, Uj , Dq} is conflicting. Let β =

min(δ, w∗(Uj), w
∗(Dq)), the algorithm splits bδi into bβi and

bδ−β
i , and Uj (Dq) into U ′j (D′

q) and U ′′j (D′′
q ) using the oper-

ation split(Uj , β) (split(Dq, β)) defined in Section Prelimi-
naries. Note that the maximum weight in both U ′j and D′

q is
β, and the upper bound of ωv(G[V (Π) ∪ {bi}]) is improved
to ub + δ − β with the conflicting subset {{bβi }, U ′j , D′

q}.
Note that U ′j and D′

q cannot be used for other improvements
and are excluded from Π together with Uj and Dq (line 15).
After the improvement, δ is updated to δ − β (line 16).

After working on all ISs in {U1, U2, . . . , Ur}, if ub+ δ is
still greater than t, Algorithm 3 repeatedly detects disjoints
conflicting subsets of ISs to improve ub+ δ; similarly to the
approach implemented in MWCLQ and WLMC. For each
detected disjoint conflicting subset of ISs {S0, S1, . . . , Sp},
let β = min(w∗(S0), w

∗(S1), . . . , w
∗(Sp)). The algorithm

splits every Sj (0 ≤ j ≤ p) into S′j and S′′j with the operation
split(Sj , β) and improves ub+ δ by β (lines 26–30). Finally,
if the improved UB of ωv(G[V (Π) ∪ {bi}]) is not greater
than t, bi is removed from B, because branching on bi is
not necessary for finding a clique of weight greater than
t. Otherwise, the algorithm restores Π to the values it had
before considering bi.

The time complexity of Algorithm 3 is dominated by the
third part (line 18-31) of the detection of the conflicting
subsets containing more than 3 ISs. So, its time complexity
is similar to the MaxSAT reasoning approach in WLMC.

The next example illustrates the benefits of the two-stage
MaxSAT reasoning approach in reducing the number of
branches, and compares it with the standard IS partition ap-
proach and the brute-force MaxSAT reasoning in WLMC.
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Figure 1: Two graphs for Example 1

Example 1. Let G = (V,E,w) be the left graph (a) of
Figure 1, where vwi

i denotes that the weight of vertex vi
is wi, let O: v6<v5<· · ·<v1 be the vertex ordering and
let t = 6. Using the standard IS partition approach, the
vertices v1, . . . , v5 can be sequentially inserted into three
ISs: D1 = {v31 , v23}, D2 = {v22 , v24} and D3 = {v15} with
UBIS = 3 + 2 + 1 = 6 ≤ t. Nevertheless, the last vertex
v46 cannot be inserted into D1 or D2, because then UBIS

would be at least 7, which is greater than t. So, B = {v46}
is the set of branching vertices computed with the standard

IS partition approach. However, with the binary MaxSAT
reasoning in Stage 1 (Algorithm 2), D1 and D2 are identified,
and the algorithm inserts v36 into D1 and v16 into D2 so that
the computed UB= 6 +max{4− (3 + 2), 0} = 6 is not yet
greater than t. As a result, the returned set B of branching
vertices for the left graph (a) of Figure 1 is the empty set.

We illustrate the benefits of the ordered MaxSAT
reasoning in Stage 2 with the right graph (b) of Figure 1.
Let v9<v8<· · ·<v1 be the vertex ordering O and let t = 8.
Using the standard IS partition approach, v1, . . . , v7 can be
partitioned into three ISs: D1 = {v21 , v42 , v14}, D2 = {v23 , v25}
and D3 = {v26 , v17} with UBIS = 4 + 2 + 2 = 8 ≤ t.
Nevertheless, v28 and v29 cannot be inserted into any of the
three ISs. Hence, the initial set of branching vertices is
B = {v28 , v29}. To reduce B, we apply MaxSAT reasoning.
First, we add {v28} to the set of ISs as a unit IS, and
UBIS = 10. The propagation of the unit IS {v28} removes
v21 , v

2
5 and v17 from their ISs, resulting in two new unit ISs:

D2 = {v23} and D3 = {v26}. With brute-force MaxSAT
reasoning, we select D2 = {v23} and propagate it, removing
v14 from D1. We then propagate D3 = {v26}, removing v42
from D1 and making D1 empty. Since {v28}, D2 and D3 are
the reasons for removing v21 , v14 and v42 from D1, respectively,
{D1, D2, D3, {v28}} is a conflicting subset of ISs and UBIS

can be improved to UBIS − β = 10− 2 = 8 ≤ t, where
β = min{w∗(D1), w

∗(D2), w
∗(D3), w

∗({v28})} = 2.
After splitting D1, D2, D3 and {v28} with the operation
split(D,β), the ISs D2, D3 and {v28} are removed from the
partition, because their maximum vertex weight is equal to
β, and D1 is split into D′

1 = {v21 , v22 , v14} and D′′
1 = {v22}

(D′
1 is removed from the partition). After that, we cannot

identify any new conflict subset when we add {v29} to the
set of ISs, because v29 is adjacent to v22 in D′′

1 . Finally, the
returned branching set is B = {v29}.

However, if we use the ordered MaxSAT reasoning in
Stage 2 (Algorithm 3), we can remove v29 from B. In-
deed, after propagating the new unit IS {v28}, we have
two new unit ISs: D2 = {v23} and D3 = {v26}. Ac-
cording to Algorithm 3, the conflicting subsets containing
two or three ISs are detected in priority. Hence, the algo-
rithm identifies the conflicting subset {D1, D3, {v28}}, be-
cause the neighbors of v28 in D1 and D3 are not adjacent,
and UBIS is improved to UBIS − β = 8 ≤ t, where
β = min{w∗(D1), w

∗(D3), w
∗({v28})} = 2. After splitting

D1, D3 and {v28} with the operation split(D,β), the remain-
ing ISs are D′′

1 = {v22} and D2 = {v23 , v25}. We then add
{v29} to the set of ISs, increasing UBIS to 10. Now, we can
easily detect a new conflicting subset of ISs: {D′′

1 , D2, {v29}},
because D2 does not contain any vertex that is adjacent to
both v22 and v29 , and UBIS is improved to UBIS − 2 = 8 ≤ t.
So, v29 is removed from B. Finally, the returned branching
set for the right graph (b) of Figure 1 is the empty set.

Note that, in Stage 1, binary MaxSAT reasoning does not
remove any IS from the set Π of ISs. So, ordered MaxSAT
reasoning can consider all the ISs in Π in Stage 2. This is
beneficial for detecting more disjoint conflicting subsets of
ISs to reduce the number of branches. That is the rationale
behind carrying out MaxSAT reasoning in two stages.
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Combining Algorithm 2 and Algorithm 3, we can eas-
ily implement the GetBranches function in Algorithm 4 to
minimize the number of branching vertices.

Algorithm 4: GetBranches(G, t, O)
Input: G = (V,E,w), an integer t and an ordering O
Output: a set B of branching vertices

1 begin
2 (B,Π, ub) ← BinaryMaxSAT (G, t,O);
3 if B is not empty then
4 B ← OrderedMaxSAT (G, t,O,B,Π, ub);
5 return B;

Algorithm TSM-MWC

Preprocessing is crucial for the efficiency of BnB algorithms
for MWC, especially on massive real-world graphs. Thus, to
obtain the new exact algorithm TSM-MWC (Algorithm 5),
we combine the efficient preprocessing of Algorithm WLMC
with Algorithm 1.

Given G = (V,E,w) and a lower bound t of ωv(G),
the preprocessing procedure Initialize(G, t) of WLMC per-
forms three tasks: it derives a vertex ordering O, seeks an
initial clique C0 and reduces the input graph G to a sim-
pler graph G′. Initialize(G, t) computes the vertex ordering
O : v1 < v2 < · · · < vn as follows: Given a copy H of G, it
removes the vertex with the smallest degree in H and names
it v1; then, it removes the vertex with the smallest degree
in H[V \ {v1}] and names it v2, and so on. After removing
the vertices v1, v2, . . . , vi from H , if the smallest degree in
H[V \{v1, v2, . . . , vi}] is |V |−i−1, then V \{v1, v2, . . . , vi}
becomes the initial clique C0. If w(C0) > t, t = w(C0).
Initialize(G, t) returns (C0, O,G[V ′]), where V ′ = {v |
w({v} ∪ Γ(v)) > t}.

TSM-MWC calls Initialize(G, t) to preprocess the original
graph G (line 2) and all the first level subgraphs G[P ] (line 8),
and then calls SearchMWC (Algorithm 1) to search for a
clique of weight greater than w(C∗) in the reduced subgraph
G′′ (line 12).

Empirical Investigation
We empirically evaluated TSM-MWC and compared it with
two of the most competitive and recent exact algorithms
(also called solvers), MWCLQ (Fang, Li, and Xu 2016) and
WLMC (Jiang, Li, and Manyà 2017), and FastWClq (Cai and
Lin 2016), one of the best heuristic MWC solvers.

TSM-MWC was implemented in C and compiled
using GNU gcc -O3. Its source code is available
at http://home.mis.u-picardie.fr/˜cli/EnglishPage.html. MW-
CLQ, WLMC and FastWClq were compiled using their
Makefiles. Experiments were performed on Intel Xeon CPUs
E5-2680 v4@2.40GHz under Linux with 128GB of memory.
We considered three datasets:
• DIMACS graphs: 80 graphs containing up to 4000 ver-

tices with densities ranging from 0.03 to 0.99.1

1available at http://cs.hbg.psu.edu/txn131/clique.html

Algorithm 5: TSM-MWC(G), an exact algorithm for
MWC

Input: G = (V,E,w)
Output: a maximum weight clique C∗ of G

1 begin
2 (C0, O0, G′) ← Initialize(G, 0);
3 C∗ ← C0, V ′ ← the vertex set of G′;
4 order V ′ w.r.t. the initial ordering O0;
5 for i:= |V ′| downto 1 do
6 C ← {vi}, P ←

Γ(vi)∩{vi+1,vi+2,. . .,v|V ′|};
7 if w(P ) + w(C) > w(C∗) then
8 (C ′0, O′0, G′′)

← Initialize(G[P ], w(C∗)− w(C));
9 if w(C ′0) + w(C) > w(C∗) then

10 C∗ ← C ′0∪C;
11 V ′′ ← the vertex set of G′′;
12 C1 ←

SearchMWC(G′′, V ′′, O′0, C, C
∗);

13 if w(C1) > w(C∗) then C∗ ← C1 ;

14 return C∗;

• Real-world massive graphs: 215 real-world sparse
graphs from the Network Data Repository, containing up
to 66M vertices and 1800M edges.2

• Graphs from MWC practical applications: There are
four groups: The winner determination problem (WDP),
error-correcting codes (ECC), kidney-exchange schemes
(KES) and the research excellence framework (REF). They
contain up to 8900 vertices with densities ranging from
0.04 to 0.98, and were recently recommended in (Mc-
Creesh et al. 2017) to evaluate MWC algorithms.3

The weights in the first two datasets are assigned as in
the most relevant literature. The weights in the third dataset
represent real meanings and can be very large; e.g. the vertex
weight represents the price of a bid in the WDP graphs, and
the paper ranking in the REF graphs.

We first compare TSM-MWC with MWCLQ, WLMC
and FastWClq, and then analyze the effect of the two-stage
MaxSAT reasoning in TSM-MWC. To compare the heuristic
solver FastWClq with the exact solvers, FastWClq solved
each graph 10 times with different seeds. The mean time
to reach the best solution in each run (avgt), and the best
solution found over the 10 runs are reported (best).

Comparison of TSM-MWC with Other Solvers

We solved 80 DIMACS graphs using a cutoff time of 5000s
to evaluate TSM-MWC on small/medium dense graphs. The
exact solvers TSM-MWC, MWCLQ and WLMC solved 66,
61 and 60 DIMACS graphs, respectively. Table 1 shows the
results for the 34 instances resulting of excluding the easy
graphs that all the exact solvers solved within 1s, and the hard

2available at http://networkrepository.com
3https://github.com/jamestrimble/max-weight-clique-instances
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Table 1: Comparison of runtimes in seconds of TSM-MWC
with MWCLQ, WLMC and FastWClq on DIMACS graphs
with a cutoff time of 5000 seconds. The best times are in bold.
”↓” means that the best solutions found by FastWClq are not
optimal.

Instance ωv(G)
TSM-
MWC

MW-
CLQ

W-
LWC

FastWClq
best avgt

brock400 1 3422 112.4 123.6 426.5 3422 188.3
brock400 2 3350 140.9 113.4 542.9 3350 43.7

brock400 3 3471 82.9 91.9 356.2 3471 7.13

brock400 4 3626 139.4 71.7 595.6 3626 1.20

brock800 1 3121 1714 1294 – 3121 74.17

brock800 2 3043 2336 1874 – 3043 317.3

brock800 3 3076 1930 1378 – 3076 18.3

brock800 4 2971 2410 1878 – 2971 1558

C250.9 5092 18.6 34.8 83.7 5092 3.11

DSJC1000 5 2186 81.1 75.1 219.6 2186 98.9
DSJC500 5 1725 1.34 0.79 2.98 1725 6.32
gen200 p0.9 44 5043 0.61 6.24 2.78 5043 0.25

gen200 p0.9 55 5416 0.70 2.43 2.74 5416 11.3
gen400 p0.9 75 8006 356.6 – – 8006 2047
hamming10-2 50512 34.2 841.4 1393 50512 8.85

MANN a27 12283 4.24 – 1.02 12258↓ 106.9
MANN a45 34265 1323 – 357.1 34121↓ 1041
p hat1000-2 5777 13.8 2103 86.2 5777 2748
p hat1500-1 1619 2.88 3.46 5.54 1619 33.8
p hat1500-2 7360 660.2 – – 7355↓ 79.6
p hat300-3 3774 0.37 2.24 1.39 3774 3.22
p hat500-2 3920 0.34 2.17 0.64 3920 46.5
p hat500-3 5375 12.8 803.6 113.2 5375 2265
p hat700-2 5290 1.04 40.2 2.47 5290 12.1
p hat700-3 7565 29.6 – 276.9 7565 102.6
san1000 1716 7.32 163.5 1.58 1716 10.6
san200 0.9 2 6082 0.24 1.29 4.30 6082 0.25
san200 0.9 3 4748 2.53 12.9 7.81 4748 12.6
san400 0.7 1 3941 1.32 2.99 2.97 3941 1.69
san400 0.7 2 3110 3.75 4.29 12.8 3110 1.18

san400 0.7 3 2771 2.88 5.64 9.72 2771 2126
san400 0.9 1 9776 70.9 1001 1893 9776 0.99

sanr200 0.9 5126 1.71 5.57 5.44 5126 1.98
sanr400 0.7 2992 25.4 24.0 74.4 2992 12.5

graphs that were not solved by any exact solvers within 5000s.
Among the 34 instances, FastWClq did not find the optimal
solution of three instances (marked with ’↓’). In general,
TSM-MWC greatly outperforms the compared solvers on the
DIMACS graphs.

To evaluate TSM-MWC on massive graphs, we solved 215
real-world graphs from the Network Data Repository (Rossi
and Ahmed 2015), including the 52 graphs used to evaluate
WLMC in (Jiang, Li, and Manyà 2017), the 90 graphs used
to evaluate FastWClq in (Cai and Lin 2016), and 25 hard
graphs of brain networks. MWCLQ is not compared because
it was not designed for massive graphs. The cutoff time was
set to 1000s except for 3 biological graphs and the 25 graphs
of brain networks, which used a cutoff time of 10000s. All
the times, in seconds, include the preprocessing and search
times, but not the time to read the input graphs.

Table 2 excludes the 168 graphs that were solved by both
TSM-MWC and WLMC within 10s, and shows results for the

Table 2: Comparison of runtimes in seconds of TSM-MWC
with WLMC and FastWClq on real-world massive graphs.

Instance
ωv(G)

TSM-
MWC

W-
LWC

FastWClq
#cutoff=1000s best avgt
aff-digg 3836 218.1 756.0 2967↓ 948.1
aff-orkut-user2groups 971 279.0 375.5 848↓ 819.3
dbpedia-link 5062 25.94 26.67 4973↓ 560.5
rec-dating 1699 14.48 15.23 1568↓ 554.9
rec-libimseti-dir 1938 11.30 13.36 1938 468.5
rec-movielens 3777 24.48 35.80 3420↓ 954.4
rgg n 2 24 s0 2514 14.05 12.25 2514 9.33

scc twitter-copen 58699 31.06 8.38 58699 0.12

sc-TSOPF-RS-b2383 960 8.95 43.28 960 230.9
socfb-konect 981 13.42 11.07 981 33.29
soc-flickr-und 10127 49.52 170.5 10126↓ 514.9
soc-livejournal
-user-groups

1054 50.93 59.62 991↓ 608.8

soc-orkut-dir 6147 49.58 47.93 6147 64.36
soc-orkut 5452 45.42 39.94 5452 65.73
soc-sinaweibo 4759 40.98 52.31 4545↓ 922.2
tech-p2p 18897 748.1 – 17250↓ 871.8
twitter mpi 13524 246.7 – 11801↓ 639.6
web-wikipedia-growth 4741 10.39 11.39 4741 72.62
web-wikipedia link it 89947 140.4 80.27 2500↓ 4.15
#cutoff=10000s for 28 hard instances of biological and brain networks
bio-human-gene1 134713 6804 2637 134362↓ 4571
bio-human-gene2 135310 5970 1474 135059↓ 1097
bio-mouse-gene 59952 1722 4024 59855↓ 1840
bn...864 session 1-bg 32294 1764 – 31496↓ 7609
bn...864 session 2-bg 27190 1238 – 27190 176.6

bn...865 session 1-bg 29370 1157 1391 28544↓ 7467
bn...865 session 2-bg 29870 951.8 – 29381↓ 4688
bn...867 session 1-bg 29425 907.5 676.2 29208↓ 5491
bn...867 session 2-bg 36021 1008 711.9 35428↓ 7571
bn...868 session 1-bg 31940 1113 – 31940 249.7

bn...868 session 2-bg 29548 2403 – 29548 107.7

bn...869 session 1-bg 27957 1121 3075 27453↓ 3555
bn...869 session 2-bg 29250 1814 – 29009↓ 4823
bn...870 session 1-bg 28810 1047 – 28810 126.0

bn...870 session 2-bg 35415 1329 – 33944↓ 2228
bn...871 session 1-bg 37828 1271 1357 37828 383.5

bn...871 session 2-bg 32835 1848 – 32835 104.5

bn...872 session 2-bg 35698 1691 – 35515↓ 4000
bn...873 session 1-bg 29944 5801 – 29400↓ 1537
bn...873 session 2-bg 32445 765.3 1277 32064↓ 5330
bn...874 session 2-bg 30885 1309 1779 30885 152.2

bn...876 session 1-bg 50355 1282 – 50355 584.6

bn...876 session 2-bg 33085 1506 – 30829↓ 5907
bn...878 session 1-bg 27775 675.7 4972 27775 135.7

bn...886 session 1 26281 1211 – 25548↓ 610.4
bn...889 session 1 27500 3153 – 27003↓ 5607
bn...889 session 2 24771 807.0 822.8 24497↓ 7363
bn...912 session 2 35063 848.9 3110 35063 33.1

remaining 47 graphs. The best times are in bold (FastWClq
times are not in bold if the best solution found is not optimal).
TSM-MWC solved the 47 instances of the table, and is faster
than WLMC and FastWClq on 27 instances. WLMC did
not solve 17 hard instances and FastWClq did not find the
optimum of 29 instances (marked with ’↓’) within the cutoff
time. Overall, TSM-MWC significantly outperforms WLMC
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Table 3: The number of solved graphs (#) and the mean
runtimes in seconds (avgt) of TSM-MWC, MWCLQ, WLMC
and FastWClq for practical applications of MWC. The total
number of graphs in each group is displayed between brackets
in the first column.

Group
TSM-MWC MWCLQ WLMC FastWClq
# avgt # avgt # avgt # avgt

WDP (499) 499 5.35 499 10.1 499 14.6 350 48.2
ECC (15) 15 11.3 14 46.4 15 13.1 15 3.82

KES (100) 82 23.4 69 63.3 80 20.7 70 105
REF (129) 106 2.21 106 12.3 106 2.79 105 0.15

and FastWClq on the tested real-world massive graphs.
Table 3 compares the number of instances solved (i.e. an

optimal solution was found) within a cutoff time of 3600s and
the mean runtimes of TSM-MWC, MWCLQ, WLMC and
FastWClq in the four groups of graphs coming from practical
applications of MWC. TSM-MWC solves the most number
of instances in every group, and is generally faster than the
other solvers. For example, TSM-MWC solves 13, 2 and 12
KES graphs more than MWCLQ, WLMC and FastWClq,
and is almost 2, 3 and 9 times faster than MWCLQ, WLMC
and FastWClq on WDP graphs, respectively. Overall, TSM-
MWC shows the best performance on the graphs coming
from practical applications of MWC.

Table 4 compares the number of instances solved by TSM-
MWC, MWCLQ and WLMC within the cutoff time of each
group of instances, as well as the mean search tree size of
the solved instances in each group. TSM-MWC solves the
greatest number of instances in each group and its search
trees are also the smallest, showing that the new two-stage
MaxSAT reasoning approach implemented in TSM-MWC
is more effective than the brute-force MaxSAT reasoning of
MWCLQ and WLMC in reducing the search space. Note that
the mean search tree size of TSM-MWC for the DIMACS
graphs is greater than that of WLMC, because TSM-MWC
solves six hard DIMACS graphs more than WLMC within
the cutoff time and the mean search tree size is computed
among the solved graphs.

Table 4: The number of solved graphs (#) and mean search
tree size in 105 (tree) of TSM-MWC, MWCLQ and WLMC.

Group
TSM-MWC MWCLQ WLMC

# tree # tree # tree
DIMACS (80) 66 60.6 61 144.9 60 15.5
MASSIVE (47) 47 8.66 - - 30 16.6
WDP (499) 499 1.92 499 18.6 499 6.02
ECC (15) 15 14.2 14 168.3 15 20.5
KES (100) 82 13.9 69 351.1 80 27.8
REF (129) 106 3.78 106 70.4 106 4.22

Effects of the Two-stage MaxSAT Reasoning

To evaluate the individual effect of the two-stage MaxSAT
reasoning (Algorithm 2 and Algorithm 3), we conducted an
experiment with the following variants of TSM-MWC:

Table 5: The number of solved graphs (#) and the mean
search tree size in 105 (tree) of BIS , BBinary , BMaxSAT and
BOrdered.

Group
BIS BBinary BMaxSAT BOrdered

# tree # tree # tree # tree
DIMACS (80) 54 305 64 198 60 24.1 66 164
MASSIVE(47) 15 7.51 34 30.4 30 11.5 35 13.1
WDP (499) 499 74.2 499 6.05 499 8.69 499 4.36

ECC (15) 15 66.0 15 25.0 15 33.4 15 26.1

KES (100) 80 43.3 82 21.4 80 33.0 81 30.2

REF (129) 106 10.7 106 5.89 106 8.88 106 8.48

BBinary: It is TSM-MWC, but the set B of branching
vertices of Algorithm 1 is generated using only binary
MaxSAT reasoning; i.e., the lines 3 and 4 of Algorithm 4
are removed.

BIS: It is BBinary, but the set B of branching vertices of
Algorithm 1 is generated using the standard IS partition
approach as in WLMC and MWCLQ: Let v1 < · · · < vn
be an ordering over the vertices of the input graph and let
the colors be represented by positive integers. For i = n
downto 1, it assigns the smallest possible color to vi. An
IS consists of the vertices with the same color.

BOrdered: It is BIS , but the set B generated by the stan-
dard IS partition approach is further reduced using ordered
MaxSAT reasoning (Algorithm 3). Unlike TSM-MWC,
BOrdered does not use binary MaxSAT reasoning.

BMaxSAT : It is BIS , but the set B generated by the standard
IS partition approach is further reduced using brute-force
MaxSAT reasoning as in WLMC, instead of using ordered
MaxSAT reasoning as in TSM-MWC.

Table 5 compares the number of solved instances and
the mean search tree size (in 105) of the four solvers us-
ing the graphs of Tables 1-3 and the same cutoff times.
BBinary solves more DIMACS, massive and KES graphs
than BIS , and generates smaller search trees, showing that bi-
nary MaxSAT reasoning generates smaller sets of branching
vertices than the common IS partition approach. Similarly,
BOrdered solves more DIMACS, massive and KES graphs
than BMaxSAT and its search trees are generally smaller,
showing that ordered MaxSAT reasoning is more efficient
than brute-force MaxSAT reasoning in reducing the number
of branching vertices. Note that TSM-MWC implements both
binary and ordered MaxSAT reasoning and is substantially
better than the four variants in Table 5.

Conclusions

We proposed TSM-MWC, a new exact algorithm for MWC
that incorporates a novel two-stage MaxSAT reasoning
approach to minimizing the number of branches: binary
MaxSAT reasoning to generate an initial set of branching
vertices and ordered MaxSAT reasoning to further reduce
the number of branching vertices. The reported experiments
show that the two-stage MaxSAT reasoning approach is very
effective in reducing the search space, and that TSM-MWC
outperforms relevant exact and heuristic MWC algorithms on
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small/medium graphs, real-world massive graphs and graphs
from practical applications of MWC.
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