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Abstract

Counting the linear extensions of a given partial order is a
#P-complete problem that arises in numerous applications.
For polynomial-time approximation, several Markov chain
Monte Carlo schemes have been proposed; however, little is
known of their efficiency in practice. This work presents an
empirical evaluation of the state-of-the-art schemes and in-
vestigates a number of ideas to enhance their performance. In
addition, we introduce a novel approximation scheme, adap-
tive relaxation Monte Carlo (ARMC), that leverages exact
exponential-time counting algorithms. We show that approx-
imate counting is feasible up to a few hundred elements on
various classes of partial orders, and within this range ARMC
typically outperforms the other schemes.

1 Introduction

A partially ordered set or poset is a set of elements coupled
with a binary relation that defines the mutual order between
some pairs of elements while leaving other pairs incompara-
ble. A fundamental property of a poset is the set of its linear
extensions, the possible ways to extend the poset into a lin-
ear order, where all pairs of elements are comparable. This
paper concerns the problem of counting the linear extensions
of a given poset, which arises in various applications such
as sorting (Peczarski 2004), sequence analysis (Mannila and
Meek 2000), convex rank tests (Morton et al. 2009), prefer-
ence reasoning (Lukasiewicz, Martinez, and Simari 2014),
partial order plans (Muise, Beck, and McIlraith 2016), and
learning graphical models (Wallace, Korb, and Dai 1996;
Niinimäki, Parviainen, and Koivisto 2016).

Computing the number of linear extensions of a given
poset is #P-complete (Brightwell and Winkler 1991) and
thus likely to be intractable in the general case. The fastest
known algorithms are based on dynamic programming and
require exponential time and space (De Loof, De Meyer, and
De Baets 2006; Kangas et al. 2016). Polynomial-time algo-
rithms are known for certain notable special cases such as
when the poset is series-parallel (Möhring 1989), when its
Hasse diagram is a tree (Atkinson 1990), or when a certain
structural parameter is bounded, such as the width (De Loof,
De Meyer, and De Baets 2006), the treewidth of the Hasse
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diagram (Kangas et al. 2016), or the treewidth of the incom-
parability graph (Eiben et al. 2016).

If an approximation with given probability is sufficient,
the problem admits a polynomial-time solution for all posets
using Markov chain Monte Carlo (MCMC) methods. The
first fully-polynomial time approximation scheme of this
kind for was based on algorithms for approximating the vol-
umes of convex bodies (Dyer, Frieze, and Kannan 1991).
The later improvements were based on rapidly mixing
Markov chains in the set of linear extensions (Karzanov
and Khachiyan 1991; Bubley and Dyer 1999) combined
with Monte Carlo counting schemes (Brightwell and Win-
kler 1991; Banks et al. 2017). The mixing times of the
Markov chains were recently studied empirically by Talvitie,
Niinimäki and Koivisto (2017) and found to be often much
better than the worst-case bounds. However, when approxi-
mation guarantees are desired, the degrees of the polynomial
worst-case bounds can be prohibitively high. It is thus cur-
rently unclear to what extent the MCMC-based schemes are
usable in practical applications, especially in comparison to
the recent improvements in exact counting.

In this work we investigate the feasibility of approxi-
mate counting of linear extensions in practice by present-
ing what is to our knowledge the first empirical evaluation
of the state-of-the-art approximation schemes. In addition to
this empirical review, we present two algorithmic contribu-
tions: First, we propose practical amendments to improve
the performance of certain MCMC-based schemes. Second,
we extend the exact exponential-time algorithms to approxi-
mate counting via a suitable relaxation of the problem, com-
bined with a Monte Carlo approach. As a result, we obtain
a novel approximation scheme, adaptive relaxation Monte
Carlo (ARMC). Through the empirical evaluation, we show
that approximate counting is feasible on posets up to a few
hundred elements. We also demonstrate that within this fea-
sible region our ARMC scheme vastly outperforms the other
approximation schemes.

We introduce some central concepts of partially ordered
sets in Section 2. In Section 3 we review the state-of-the-art
MCMC schemes and present our practical improvements. In
Section 4 we review the exact exponential-time algorithms
and present our ARMC scheme that leverages them for ap-
proximate counting. Section 5 presents an empirical evalua-
tion of the schemes described in Sections 3 and 4.
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2 Preliminaries

A partial order ≺ is an irreflexive and transitive binary rela-
tion. A partially ordered set or poset is a pair P = (A,≺),
where A is a set and ≺ is a partial order on A. A pair
(x, y) ∈ ≺ is called an (ordering) constraint and denoted
x ≺ y for short; we say that x is a predecessor of y and y is
a successor of x. A pair of elements x, y ∈ A are compara-
ble if x ≺ y or y ≺ x; otherwise they are incomparable. If
all pairs of elements are comparable, we say that P is a lin-
ear order. We visualize a poset as a directed acyclic graph
with A as the vertex set and ≺ as the arc set (Fig. 1). For all
x ≺ y ≺ z, the arc x → z is implied by transitivity and can
be omitted for clarity, producing the cover graph of P .

A poset P ′ = (A,≺′) is an extension of P = (A,≺)
if x ≺ y implies x ≺′ y for all x, y ∈ A; dually, in this
case we say that P is a relaxation of P ′. An extension that
is also a linear order is called a linear extension. We denote
by L(P ) the set of linear extensions and by �(P ) = |L(P )|
the number of linear extensions of P . When there is no am-
biguity about P , we may extend this notation to any subset
B ⊆ A, denoting �(B) := �(B,≺B) for short, where ≺B is
the restriction of ≺ to the set B.

Throughout the paper, we consider the problem of pro-
ducing an (ε, δ)-approximation of �(P ): For given ε, δ > 0
and poset P , produce an estimate �̄ of �(P ) such that

Pr
(
(1 + ε)−1 < �̄/�(P ) < 1 + ε

) ≥ 1− δ .

The approximation schemes considered yield slight varia-
tions of this error bound, but they can be parameterized to
satisfy the above problem statement.

Reduction Rules

Let P = (A,≺) be a poset. We attribute to folklore the fol-
lowing equalities that reduce the problem of computing �(P )
to counting linear extensions in subsets of A.

First, if {A1, A2} is a partition of A such that no element
in A1 is comparable with an element in A2, then

�(P ) =

( |A|
|A1|

)
�(A1)�(A2) . (1)

Second, if {A1, A2} is a partition of A such that a1 ≺ a2
for all a1 ∈ A1 and a2 ∈ A2, then

�(P ) = �(A1)�(A2) . (2)

Third, if A is non-empty, then, denoting by minP the set
of elements of P with no predecessors, we have that

�(P ) =
∑

x∈minP

�(A \ {x}) . (3)

3 Markov Chain Monte Carlo

The state-of-the-art polynomial-time randomized schemes
for approximate counting of linear extensions have been de-
signed from the viewpoint of asymptotic worst-case time
complexity. The traditional approach was to build a tele-
scopic product estimator based on self-reducibility and
rapidly mixing Markov chains (Brightwell and Winkler

Figure 1: An eight-element poset (left) and its cover graph.

1991; Huber 2006; Bubley and Dyer 1999). A more recent
approach, the Tootsie Pop algorithm, is based on random
sampling from an embedding of the set of linear extensions
into a continuous space (Banks et al. 2017; Huber and Schott
2010). We next review these approaches. For the former ap-
proach, we also present a number ideas to enhance the exist-
ing schemes when the interest is in practical performance.

The Telescopic Product Estimator

Brightwell and Winkler (1991) presented the following re-
duction to (approximately) uniform sampling. Construct a
sequence of posets (Pi)

k
i=0, starting from P0 = P and end-

ing in a linearly ordered set Pk, such that each Pi is ob-
tained from the previous poset Pi−1 by adding an appro-
priately chosen ordering constraint ai ≺ bi and those that
follow by transitivity. Now, write �(P )−1 as a telescopic
product

∏k
i=1 μi where μi = �(Pi)/�(Pi−1). For each fac-

tor μi, use the zero–one Monte Carlo estimate μ̄i obtained
by drawing s independent samples from L(Pi−1) (almost)
uniformly at random, and computing the proportion of sam-
ples that fall in L(Pi). This yields an estimator μ̄ =

∏k
i=1 μ̄i

whose expected value is �(P )−1. The smaller the factors μi

are, the higher the number of samples s per factor has to be
to estimate them up to sufficient relative error. Supposing
the factors μi are bounded from below by a positive con-
stant, putting s = O(ε−2k log δ−1) guarantees that 1/μ̄ is
a (ε, δ/2)-approximation of �(P ) (Talvitie, Niinimäki, and
Koivisto 2017, proof of Thm. 1).

Construction by Sorting. For the reduction to be effi-
cient, Brightwell and Winkler (1991) choose the pairs of el-
ements (ai, bi) such that k is small while ensuring that the
factors μi are bounded from below by a positive constant.
This is achieved by simulating any O(n log n)-time compar-
ison sorting algorithm on the set of elements A, iteratively
constructing the sequence (Pi)

k
i=0 starting from the original

poset P . For each comparison between a pair of elements
(x, y) made by the algorithm, we look up the ordering from
the currently last element Pi in the sequence. If the elements
are incomparable, then we use the Monte Carlo method
with a sufficient number of samples to find out which or-
der between the elements is more probable in the linear
extensions of Pi, and add Pi augmented with that order-
ing constraint to the end of the sequence, i.e., (ai+1, bi+1)
is either (x, y) or (y, x). An analysis shows that in total
O(ε−2n2 log2n log δ−1) samples from the uniform distribu-
tion of linear extensions (of the varying posets) suffice for
an (ε, δ)-approximation of �(P ) (Talvitie, Niinimäki, and
Koivisto 2017); if the samples are from an almost uniform
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distribution, then the bound becomes slightly larger. Using
Huber’s (2006) perfect sampler that generates a random lin-
ear extension in O(n3 log n) expected time, the whole algo-
rithm runs in O(ε−2n5 log3n log δ−1) expected time.

Structure Decomposition. We next propose a way to im-
prove the performance of the telescopic product scheme.
The idea is to take into account the special structure that
appears in the posets in the tail of the sequence (Pi)

k
i=0,

provided that we use Quicksort as the sorting algorithm: In
the first at most m = O(n) operations, Quicksort chooses
a pivot element p ∈ A and compares all other elements
to it. Thus after m operations, p divides the rest of the el-
ements into its predecessors and successors, and we can
use the reduction rule (2) to continue the algorithm in the
set of predecessors and successors separately. This idea re-
peats recursively, and using a variant of Quicksort that al-
ways uses the median element as the pivot, the structure
is divided in half every O(n) comparisons. The time com-
plexity of obtaining a single sample after h halvings is
O(2h(2−hn)3 log(2−hn)), which decays geometrically as h
increases. Thus the time complexity of the O(n log n) com-
parisons is dominated by the first O(n) comparisons, which
saves a factor of log n in the running time and yields the best
worst-case bound we currently are aware of:

Proposition 1. There is a randomized algorithm that given
ε, δ > 0 and a poset on n elements, computes an (ε, δ)-
approximation of the number of linear extensions of the
poset in O(ε−2n5 log2n log δ−1) expected time.

In practice, we can often significantly expedite the algo-
rithm by decomposing the poset into disjoint parts as soon
as it is possible using reduction rules (1) and (2). For ex-
ample, in the (extreme) case of series–parallel posets the
reduction rules are enough to completely decompose the
poset without adding new ordering constraints. To avoid the
O(n) comparisons required to find the median element, we
choose the pivot for Quicksort heuristically based on the cur-
rent poset instead. The heuristic chooses the element with
largest minimum of the number of predecessors and succes-
sors in the current poset. This choice of heuristic aims to
reduce the number of steps required to decompose the poset
into two parts. Theoretically, choosing pivot this way may
cause Quicksort to reach its worst case of O(n2) compar-
isons, causing a near-linear slowdown in the algorithm, but
we found this choice of pivot work well in practice. An ex-
ample of the algorithm is shown in Fig. 2.

Sampling Linear Extensions. Early proposals of the tele-
scopic product scheme relied on sampling from almost uni-
form distribution of linear extensions by simulating a suit-
able Markov chain for given number of iterations. The num-
ber of iterations required depends linearly on the mixing
time of the Markov chain, for which an upper bound has to
be known in advance. For the classical chain of Karzanov
and Khachiyan (1991) the mixing time is known to be
Θ(n3 log n) (Bubley and Dyer 1999; Wilson 2004), which
remains the best known worst-case bound.

Huber’s (2006) perfect sampler runs in O(n3 log n) ex-
pected time and is the fastest known algorithm for sam-
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Figure 2: An illustration of structure decomposition, with the
proposed improvements. The algorithm chooses the pivot
d, and compares it to the only remaining incomparable el-
ement c. After adding the ordering constraint c ≺ d (prob-
ability μ1 = 15/29 ≥ 1/2), the poset is split into three
components using the reduction rule (2). One of the result-
ing components, {e, f, g, h}, is further split into two compo-
nents after adding the ordering constraint e ≺ f (probability
μ2 ≥ 3/5). The remaining subproblems are solved by ap-
plying the reduction rules (1) and (2). The number of linear
extensions is μ−1

1 μ−1
2

(
3
2

)(
3
1

)
= 29

15 × 5
3 × 3× 3 = 29.

pling exactly from the uniform distribution of linear exten-
sions. It currently yields the best asymptotic running time
bound for approximate counting based on the telescopic
product scheme. However, Huber’s (2014) later perfect sam-
pler, which is based on Gibbs sampling, was recently shown
to run significantly faster in various instances of practical
size (Talvitie, Niinimäki, and Koivisto 2017), even if the
sampler is currently not known to run in polynomial time
in the worst case.

The Tootsie Pop Algorithm

Huber and Schott (2010) presented a randomized approxi-
mation scheme, called the Tootsie Pop algorithm, for esti-
mating the measure μ(A′) of a given set A′ in a continuous
space under certain conditions. The algorithm estimates a
ratio μ(A′)/μ(A′′), whereA′′ is another set whose measure
is assumed to be easy to compute, by considering a family
of intermediate sets {Aβ |β ∈ R} such that

• Aβ1
⊂ Aβ2

for all β1 < β2,

• the function β �→ μ(Aβ) is continuous,

• Aβ′ = A′ and Aβ′′ = A′′ for some β′ > β′′,
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• there exists an algorithm that, for a given β ∈ R, draws
from the uniform distribution on Aβ .

The algorithm constructs a random sequence (βi)
∞
i=0 itera-

tively by setting β0 = β′ and βi+1= inf{β ∈ R |Xi∈Aβ},
where Xi is drawn uniformly at random from Aβi . Now the
random variable Z = min{i ≥ 0 |βi+1 ≤ β′′} is Poisson
distributed with expected value log(μ(A′)/μ(A′′)). The ex-
pected value is estimated by averaging multiple independent
realizations of Z.

Banks et al. (2017) apply the Tootsie Pop algorithm to
count linear extensions by embedding the set of linear ex-
tensions into a continuous space. Roughly speaking, they
define the set Aβ as a set of pairs (P ′, [0, w′)), where P ′
is a linear extension and w′ is a distance of P ′ to an arbi-
trarily chosen fixed linear extension; the distance is mod-
ulated by the parameter β. They also give an algorithm
that, for any fixed β, samples exactly from the uniform
distribution on the set Aβ in O(n3 log n) average time,
and prove that it yields an (ε, δ)-approximation for �(P ) in
O(ε−2n3 log2�(P ) log n log δ−1) average time.

4 Adaptive Relaxation Monte Carlo

In this section we present a novel scheme for approximate
counting of linear extensions, which we dub adaptive relax-
ation Monte Carlo (ARMC). This scheme leverages an ex-
act dynamic programming (DP) approach for counting linear
extensions (De Loof, De Meyer, and De Baets 2006), which
can be faster than MCMC schemes on posets of moderate
size, despite its exponential complexity. We begin by briefly
reviewing the DP algorithm and then describe the ARMC
scheme to use it in approximate counting.

Exact Dynamic Programming

Given a poset P = (A,≺), the DP algorithm computes �(P )
by applying the reduction rule (3) recursively. This computa-
tion involves solving the subproblem �(U) exactly for each
upset U of P , a set such that x ∈ U and x ≺ y imply
y ∈ U . By caching the subproblem solutions the algorithm
can be made to run in O(|U|w) time, where U is the set of
upsets and w is the width of P . Dilworth’s theorem (1950)
notably implies the bound |U| = O(nw) on the number of
upsets, though in the worst case we still have |U| = 2n.
Kangas et al. (2016) note further that U can often be pruned
with the reduction rule (1): Whenever through application
of rule (3) the cover graph of a subproblem becomes dis-
connected, rule (1) can be applied to solve the problem in-
dependently for each connected component. This modifica-
tion brings the worst-case running time to O(2nn2) for find-
ing the connected components but may in return reduce the
number of subproblems exponentially.

Importantly, once the DP algorithm has finished, it also
enables straightforward sampling of linear extensions from
the uniform distribution: If A is connected, the first element
x of the linear extension is drawn from minP , with the prob-
ability p(x) = �(A \ {x})/�(A), and the order on the re-
maining elements is sampled by recursing on A \ {x}. If A
is not connected, a linear extension is sampled recursively
for each connected component and the sampled extensions

are then interleaved uniformly at random. In this manner a
single sample can be drawn in O(n2) time.

Monte Carlo via Exact Counting

We now propose a way to apply the DP algorithm to ap-
proximate counting. Given a poset P , the basic idea is to
relax P by removing ordering constraints until the counting
problem becomes feasible for the DP algorithm. We then
estimate the error introduced by the removal of constraints
using Monte Carlo, similarly to Section 3 where constraints
were added instead. Specifically, let R be a relaxation of P ,
and let μ = �(P )/�(R) be the probability that a linear order
sampled uniformly from L(R) is also in L(P ). To approx-
imate �(P ), we first use the DP algorithm to compute �(R)
and then sample m linear orders from L(R) to compute the
estimate μ̄ = 1

m

∑m
i=1 Xi, where Xi = 1 if the ith sample is

in L(P ) and Xi = 0 otherwise. As m grows, μ̄ concentrates
around μ and thus μ̄ �(R) concentrates around �(P ). Again,
the smaller μ is, the more samples we need for an accurate
approximation. The efficiency of this scheme thus depends
crucially on how the relaxation R is chosen, as it determines
both μ and the time required to run the DP algorithm.

Before discussing the choice of R in detail, consider the
number of samples required to reach the desired approxima-
tion guarantees. Chebyshev’s inequality yields that

Pr(1− ε ≤ μ̄/μ ≤ 1 + ε) ≥ 1− δ (4)

if we take m to be at least 
(1− μ)/(ε2δμ)�. However, this
quantity depends on the unknown μ and therefore cannot
be used directly as a stopping criterion. We use instead an
algorithm by Dagum et al. (2000), which adaptively deter-
mines when to stop sampling, based on the samples it has
seen so far. For any random variable X distributed in [0, 1]
with expected value μ > 0 this algorithm requests a num-
ber of samples and eventually outputs an approximation μ̄
with the guarantee (4). The number of samples requested is
guaranteed to be optimal within a constant factor among all
algorithms that achieve the same error bound. In our case we
may use a simpler precursor of the general algorithm, which
additionally requires that X be a Bernoulli variable. This al-
gorithm stops as soon as it has seen mε,δ samples that fall in
L(P ), where mε,δ only depends on ε and δ. Under the prac-
tical assumption that both ε and δ are bounded from above
by a constant, we have that mε,δ = O(ε−2 log δ−1).

Partition Relaxations

We now address the crucial step of choosing the relaxation
R. The choice of R is effectively a tradeoff between the time
spent running the DP algorithm (DP phase) and the time
spent drawing the samples (sampling phase). If R is taken
to be close to P , then μ is large and the expected number of
samples required until mε,δ samples hit L(P ) is small. On
the other hand, the more we allow R to deviate from P , the
more constraints we can remove to speed up the DP phase.
Since finding an optimal balance between the two phases
is presumably intractable, we propose an adaptive heuristic
strategy for selecting the relaxation.
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Figure 3: Two relaxations of the poset in Fig. 1, obtained by
partitioning the elements into two sets of size k = 4 (shown
in black and white) and removing all constraints between the
sets (dashed arcs). The original poset has 88 linear exten-
sions while the relaxations have 140 and 1260, respectively.

First, consider choosing R so as to restrict the time spent
in the DP phase. A natural way to accomplish this is to re-
move a subset of ordering constraints such that the cover
graph is split into multiple connected components. Specif-
ically, we partition A into sets A1, A2, . . . , A�n/k� of size
k (the last set may be smaller) and then take R = (A,≺′),
where x ≺′ y if and only if x ≺ y and x and y are in the
same set Ai (Fig. 3). To compute �(R), the DP algorithm
may now immediately apply the reduction rule (1) and thus
solves the problem in O(2k k2) time for each of the 
n/k�
components. The parameter k controls the tradeoff: increas-
ing k causes the DP phase to take longer, but typically brings
R closer to P and thus saves time in the sampling phase.

Assume for now that we are able to choose a good value
for k and consider the problem of choosing a partition so
that μ is maximized. This is equivalent to minimizing �(R),
which may vary by orders of magnitude between different R
even for a fixed value of k, as illustrated in Fig. 3. Aiming to
minimize �(R), we employ a search in the space of possible
partitions. Since computing �(R) is still relatively expen-
sive, we require a more computationally feasible function
for comparing candidate partitions. We choose the number
of ordering constraints removed in the relaxation as the func-
tion to minimize, since removing a constraint from a poset
always increases the number of linear extensions. While the
number of constraints induced by a partition is easy to com-
pute, minimizing the number subsumes the minimum bisec-
tion problem, which is NP-complete (Garey, Johnson, and
Stockmeyer 1976). Instead of attempting an optimal solu-
tion, we resort to greedy hillclimbing that starts at a random
partition and iteratively swaps pairs of elements between dif-
ferent Ai that yield the greatest decrease in the number of
removed constraints. We find that this strategy works well in
practice, even if it may not converge to a global optimum.

Adaptive Balancing

To complete the ARMC scheme, we design an adaptive
strategy for choosing the parameter k. While various strate-
gies could be used for different types of posets, our focus
here is on an “average” poset of relatively uniform (random)
structure and varying width and density. For such posets, a
typical empirical trend is that increasing k will exponentially
increase the time spent in the DP phase while decreasing k
may exponentially increase the time spent in the sampling

Figure 4: The time spent in the DP phase and the sampling
phase as a function of k on two randomly generated posets
on 64 elements, a bipartite poset (left) and a poset of average
degree 5 (right). The lines show the median and the quartiles
over 99 runs. The variance is due to hillclimbing starting at
random partitions and converging to different relaxations.

phase. Figure 4 illustrates this behavior on two posets used
in the experiments in Section 5. We rely on the empirical
observation that a good choice of k for minimizing the total
running time tends to be where the two phases take roughly
the same amount of time. To find such a point, we propose
the following procedure that starts at a low value of k and
iteratively increases it until the phases are in balance:

1. Choose a partition relaxation R with the parameter k.

2. Run the DP algorithm on R to obtain �(R) and to enable
efficient sampling from L(R).

3. Try running the sampling phase for R tentatively, but stop
sampling after time αT2, where T2 is the time spent in
step 2 and α ≤ 1 is a constant.

4. Let t3 = mε,δ T3/m be estimated time to run the sam-
pling phase in full, where T3 is the time spent sampling in
step 3, and m is the number of samples that fell in L(P ).

5. Let t2 = β T2 be estimated time to run the DP algorithm
for a larger k, where β > 1 is a constant.

6. If t3 < t2, accept R and run the sampling phase in full,
otherwise increase k by a constant κ and go to step 1.

The procedure increases k until the sampling phase is em-
pirically estimated to run at least as fast as the DP phase. By
the choice of α, the time spent in step 2 bounds the time
spent in step 3. Since the time required by the other steps
is negligible by comparison and the time required in step 2
increases exponentially in k, the final iteration of step 2 is
likely to dominate the total running time. Combining this
time with the expected time spent in the sampling phase, we
obtain the following rough characterization.

Proposition 2. The expected running time of the ARMC
scheme is O(2k k n+ n2μ−1ε−2 log δ−1).

The first term follows from the analysis of the DP phase,
while μ−1ε−2 log δ−1 is the expected number of samples re-
quired and n2 is the time spent in drawing each sample. The
latter factor is in practice much smaller as often the first few
elements already show that the sample is not in L(P ).
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In the experiments we set α = 0.1, β = 10, and κ = 5,
observed to perform well on average. As a practical op-
timization, we also keep the previous relaxation found in
step 2 if it has fewer linear extensions than the new relax-
ation. Further, if k becomes so large that the DP algorithm
starts running out of memory, we proceed directly to the
sampling phase with the best relaxation found so far.

While the adaptive strategy enjoys empirical success, it
can perform poorly in certain extreme cases. In particular, it
fails to quickly detect cases where relaxations offer no ben-
efit over the exact DP algorithm (posets of very low width).
and k = n is thus best choice. Very skewed structures may
also cause t2 to be underestimated and thus k to be increased
too much. Depending on the application, these flaws can be
partially remedied by employing hybrid solutions that apply
specialized algorithms for edge cases and ARMC otherwise.

5 Experiments

We empirically evaluated the following MCMC schemes
and the ARMC scheme for counting linear extensions de-
scribed in the previous sections:

Telescopic Product. The basic scheme due to Brightwell
and Winkler (1991), revisited by Talvitie et al. (2017).

Decomposition Telescopic Product. Like the Telescopic
Product scheme but with structure decomposition.

Decomposition Telescopic Product w/ Gibbs. Like the De-
composition Telescopic Product scheme, but replacing
Huber’s (2006) O(n3 log n) average time linear extension
sampler by Huber’s (2014) newer Gibbs sampler.

Tootsie Pop. The scheme due to Banks et al. (2017).

Exact Dynamic Programming. The algorithm obtained by
combining the reduction rules (3) and (1) as presented by
Kangas et al. (2016).

Adaptive Relaxation Monte Carlo. The scheme presented
in Section 4.

We evaluated the schemes on instances of different sizes
generated from the following classes of posets:

• AvgDeg(k) for k ∈ {3, 5}: The poset is generated as the
transitive closure of a directed acyclic graph with vertices
{1, 2, . . . , n} with expected average degree k generated
by adding each edge (i, j) where 1 ≤ i < j ≤ n with
probability k/(n− 1).

• Bipartite(p) for p ∈ {0.2, 0.5}: Poset where the set of el-
ements are split into two equally sized parts X and Y ,
and an ordering constraint x ≺ y is added for each pair
(x, y) ∈ X × Y with probability p.

• Posets extracted from benchmark Bayesian networks, ob-
tained from the Bayesian Network Repository (www.cs.
huji.ac.il/∼galel/Repository). We consider five networks
of varying structure: Andes, Diabetes, Link, Munin, and
Pigs. Each poset is generated as the transitive closure of
a random subgraph of a base network. The subgraph is
induced from a subset of nodes, chosen by starting at a
random node and iteratively adding random nodes that al-
ready have at least one neighbor in the set.

We generated five posets from each instance class and size
between 8 and 512 elements. We will make these instances
as well as all algorithm implementations publicly available.1

We ran each algorithm on each instance in single thread.
Each run was limited to 24 hours of CPU time and 8 GB
of RAM; all running times were measured. Each algorithm
was instantiated to produce a (1, 1/4)-approximation for the
number of linear extensions, i.e., an estimate within a factor
of 2 with probability at least 3/4. Note that this particular
choice of the parameters ε and δ enables extrapolation also
to other pairs of values: for all algorithms, except for exact
dynamic programming, the running times are roughly mul-
tiplied by ε−2 log4 δ

−1. Figure 5 summarizes the results.
The results are generally very similar on all instance

classes. The Tootsie Pop algorithm is faster than the ba-
sic telescopic product scheme, but the structure decompo-
sition optimization improves the performance significantly,
enough to make it faster than Tootsie Pop in most cases. The
curves for the MCMC algorithms resemble straight lines in
the logscale plots, which means that their growth is roughly
polynomial. Both the structure decomposition optimization
and the Gibbs sampler reduce the slope of the curve, both ef-
fectively improving the performance by 1–2 orders of mag-
nitude in the largest cases solved by the MCMC algorithms.

Within our time limit, adaptive relaxation Monte Carlo is
clearly the fastest: it solves in seconds instances that take
hours with MCMC. However, by extrapolating the curves it
seems likely that the fastest MCMC scheme will overtake
the exponential algorithms if the computations are allowed
to take weeks. In small instances, even the exact dynamic
programming algorithm is very fast compared to the approx-
imate MCMC algorithms.

6 Conclusions

We have investigated the problem of approximate count-
ing of linear extensions from a practical perspective. We
presented several ideas to enhance state-of-the-art MCMC
schemes, and as a side result, improved the best known
worst-case bound (Proposition 1). We also introduced a
novel scheme, adaptive relaxation Monte Carlo (ARMC),
which exploits the fact that small instances can often be
handled very fast by dynamic programming (Kangas et al.
2016). Our empirical evaluation on various instances that
can be solved in matter of hours showed that, whereas the
enhancements expedite the MCMC schemes by 1–2 or-
ders of magnitude, ARMC is multiple orders of magnitude
faster. Altogether, the presented improvements are expected
to translate to more efficient applications where counting lin-
ear extensions is a crucial step, such as in learning Bayesian
networks (Niinimäki, Parviainen, and Koivisto 2016).

It is worth noting that our study only concerned se-
rial computation using a single thread. Unlike the ARMC
scheme, the MCMC schemes allow straightforward paral-
lelization to multiple multi-core machines; a related advan-
tage is that they require relatively little (i.e. polynomial)
space. Thus in some circumstances, the enhanced MCMC
scheme may be the best option for approximate counting.

1github.com/ttalvitie/le-counting-practice
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Figure 5: The running times of approximation algorithms for counting linear extensions on different classes of posets as func-
tions of the number of elements in the poset. All algorithms estimate the count within a factor of 2 with probability at least
3/4. The markers show the median of five independent runs, and the surrounding shaded area shows the range of the values.
The time limit of 24 hours is always the limiting factor for all other algorithms except for exact dynamic programming, which
always reaches the memory limit first. Both axes are logarithmic, which means that polynomials should appear as straight lines.
Very small running times are outside the visible area.

We believe our instantiation of the ARMC scheme leaves
room for further improvements. The key step in the scheme
is the choice of the relaxation R, which determines the time
required by the two main phases: computing �(R) and sam-
pling from L(R). The present work employed a simple lo-
cal search in a subspace of relaxations, but we surmise that
a more intelligent search strategy could improve the choice
substantially. Further, to compute �(R) we relied on the ex-

ponential dynamic programming algorithm, which is appli-
cable to all posets. Alternatively, one could choose a special
R that admits polynomial-time counting and sampling, such
as a tree or a series–parallel poset; though our tentative ex-
periments suggest such relaxations tend to require impracti-
cally many samples, a more careful analysis is warranted.

Our results on counting linear extensions raise questions
about other intractable counting problems. On one hand,
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can existing MCMC schemes for which known worst-case
bounds are impractical be enhanced by ideas similar to the
present work? On the other hand, do other problems admit
practical exponential-time schemes analogous to ARMC?

Finally, we note that there has been recent progress
in alternative paradigms for approximate counting, which
leverage the power of modern SAT and ILP solvers for
hard decision and optimization problems (Gomes, Sabhar-
wal, and Selman 2006; Chakraborty, Meel, and Vardi 2014;
Chakraborty et al. 2015; Kim, Sabharwal, and Ermon 2016).
We find it as an intriguing open question, whether such tools
can be successfully applied to counting linear extensions.
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