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Abstract

Programming by example (PBE) systems allow end users to
easily create programs by providing a few input-output ex-
amples to specify their intended task. The system attempts
to generate a program in a domain specific language (DSL)
that satisfies the given examples. However, a key challenge
faced by existing PBE techniques is to ensure the robustness
of the programs that are synthesized from a small number of
examples, as these programs often fail when applied to new
inputs. This is because there can be many possible programs
satisfying a small number of examples, and the PBE system
has to somehow rank between these candidates and choose
the correct one without any further information from the user.
In this work we present a different approach to PBE in which
the system avoids making a ranking decision at the synthe-
sis stage, by instead synthesizing a disjunctive program that
includes the many possible top-ranked programs as possible
alternatives and selects between these different choices upon
execution on a new input. This delayed choice brings the im-
portant benefit of comparing the possible outputs produced
by the different disjuncts on a given input at execution time.
We present a generic framework for synthesizing such dis-
junctive programs in arbitrary DSLs, and describe two con-
crete implementations of disjunctive synthesis in the practical
domains of data extraction from plain text and HTML docu-
ments. We present an evaluation showing the significant in-
crease in robustness achieved with our disjunctive approach,
as illustrated by an increase from 59% to 93% of tasks for
which correct programs can be learnt from a single example.

Introduction

The vast majority of computer users and knowledge work-
ers today are not computer programmers, and yet commonly
face challenges for which programming skills are required.
Many examples of such tasks can be seen in the domain of
data manipulation, such as extracting substrings of text from
a column in a spreadsheet, or extracting important data fields
from a collection of richly formatted emails or web pages.
Such tasks may be performed by professional programmers
by writing custom extraction scripts using regular expres-
sions, Excel macros or CSS expressions, but are out of the
reach of the common computer user. This is where Program-
ming by example (PBE) approaches (Lieberman 2001) can
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be extremely beneficial in helping end users to automate the
generation of such scripts. A PBE system allows the user
to specify their intent by giving a few input-output exam-
ples of the desired task, from which the system attempts to
automatically generate a program in an underlying domain-
specific language (DSL) that satisfies the given examples.
Instead of opaquely automating one-off tasks, PBE produces
lightweight scripts in common programming languages that
can saved and reused by users in different environments, in-
dependently of the learning techniques used to infer those
scripts.

PBE approaches have seen significant interest and
progress in recent years (Lau et al. 2003; Gulwani, Har-
ris, and Singh 2012; Devlin et al. 2017; Balog et al. 2017;
Manshadi, Gildea, and Allen 2013; Singh 2016; Raza and
Gulwani 2017), as well as notable commercial successes
such as the Flash Fill feature in Microsoft Excel (Gulwani
2011). However, a key challenge faced by current systems
is that the programs inferred from a few examples gen-
erally lack robustness and easily fail on new inputs. This
is because the state space of possible programs (defined
by the DSL) is large, since we need to support expressive
programs covering different tasks, and hence there can be
many possible programs satisfying a given set of exam-
ples provided by the user. This expressivity vs. correctness
trade-off is a central challenge in the design of PBE sys-
tems, which is why there has been a strong effort in the
synthesis community to improve the ranking used in PBE
systems to choose the most likely program the user may
want out of the large set of candidates that logically satisfy
the given examples (Singh and Gulwani 2015; Singh 2016;
Ellis and Gulwani 2017).

However, no matter how good the ranking technique is,
this approach by definition restricts the system to choose a
single option from a set of many likely possibilities (and this
is true for synthesis at every sub-program level, not just fowr
final programs). In this work we explore a philosophically
different approach to this issue of robustness based on the
idea that we need not prematurely commit to a single choice
of program at synthesis time. Instead, it would be benefi-
cial to delay this ranking decision to the execution of the
program when we have more information: the actual input
on which the program is to be executed. We illustrate this
idea with scenarios from two practical application domains
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Input Desired output
12 units PID 24122 Laptop PID 24122
43 units PID 98311 Wireless keyboard PID 98311
7 units PID 21312 Memory card PID 21312
22 units PID 23342 Docking station v2 PID 23342
6 units PID 64232 Mouse with pad PID 64232
. . . . . .

Figure 1: Text extraction task to extract product ID

of text extraction and web extraction.
Figure 1 shows a data cleaning scenario where the user

would like to remove the arbitrary description that occurs
after the product ID in the input column, as shown in the
desired output column. Let us assume that the user provides
the first row as an input-output example. With this one ex-
ample a PBE system based on regular expressions such as
Flash Fill can generate many possible satisfying programs
that employ different substring extraction logics.

For instance, the possible logics to detect the end of the
extracted substring could include “the end of the last num-
ber” (P1), “the end of the second number” (P2) , “the end of
the first number that occurs after capital letters and whites-
pace” (P3) and many other more complex expressions. As
simplicity is commonly favoured by the ranking in most
PBE systems, in this case the system chooses the logic P1.
However, this particular logic fails on row 4, where there
happens to be another number occurring at the end of the
input, and so the system incorrectly outputs the string “PID
23342 Docking station v2” in this case. Hence the programs
P2 or P3 would have been better suited to this task, but
we only become aware of this when we encounter the non-
conforming input on row 4, which in practice could have
been anywhere in the data or even in a different dataset.
Moreover, the user has no way of knowing which examples
to provide to the system to ensure that it learns better pro-
grams.

We also note that it is not just a matter of improving the
ranking system to choose a better program, because in gen-
eral there is no single ranking strategy that can work in all
cases. Depending on the variability in the data set, it is pos-
sible that there is no single logic that can satisfy all rows, but
that different logics may apply to different rows to solve the
overall task. For example, on an input row such as “22 units
PID 23342 Docking station VERSION 2” the program P3

would fail, or on a row “22 to 25 units PID 23342 Docking
station v2” the program P2 would fail. Hence, in such situ-
ations any one ranking scheme chosen by the PBE system
would fail on some inputs.

Thus we observe that the fragility comes from restrict-
ing to a particular choice of extraction logic at the synthesis
stage. In this paper we propose that rather than prematurely
enforcing a single choice Pi from the list of top-ranked pro-
grams P1, . . . , Pn in the synthesis algorithm, we can instead
learn a more robust disjunctive program that includes all of
the choices P1, . . . , Pn and selects between these different
options when it is executed on a new input. Hence, with this
disjunctive approach, we can delay the choice of which par-

ticular logic to use until we have the important information
of what the execution input is and can compare the outputs
that are produced by the different logics on this input.

We consider another example from the domain of web ex-
traction. In this case the user’s extraction task may be to ex-
tract a particular data field from a structured HTML doc-
ument, such as extracting the flight number from an email
containing a flight itinerary. In existing PBE systems for
web extraction (Le and Gulwani 2014; Polozov and Gul-
wani 2015) the user can perform such a task by giving ex-
amples of the desired field on a few emails, from which the
system will synthesize node selection expressions based on
languages such as XPath or CSS selectors to extract nodes
in the HTML DOM (Document Object Model). For exam-
ple, assume the user example of the desired field refers to
the following SPAN element node in the HTML markup:

<span style="color: gray" class="c1">
BA052

</span>

The challenge comes in choosing which properties of the
example nodes to include or exclude in the node selection
logic, as it is not known which of these properties would be
varying in other inputs. For example, in this case we may
have a choice between selection logics “color is gray” (P1),
“class is c1” (P2) or the more restrictive conjunction of the
two properties “color is gray and class is c1” (P3). Rank-
ing schemes often choose to be conservative and choose
the most specific logics, but these logics tend to impose too
many constraints and overfit the examples, and therefore fail
to return any result on new inputs. Choosing more general
logics has the pitfall of losing important properties and iden-
tifying incorrect nodes.

Thus again we observe that it will be beneficial to use a
disjunctive approach to maintain a set of these different pos-
sible selection logics in the synthesized program and only
choose between them at execution time when we have the
new input available. For example, the program may first try
the most specific logic and if that fails to return any result
then it may try less restrictive logics. However, another is-
sue in this case is that the set of possible logics grows ex-
ponentially with the number of properties that a node may
have, as possible conjunctions of the predicates correspond
to all possible subsets. Including all of these possibilities in
a disjunctive program would not be viable, both in terms of
performance of the learning algorithm as well as the size
and execution time of the learnt program. In this work we
describe a technique to compute the maximal (the most spe-
cific) as well as a set of minimal (least restrictive) programs
that satisfy the example extractions and together cover all the
properties of the example nodes. We show how these candi-
dates covering all of the observed properties can be chosen
as effective disjuncts by the synthesis algorithm to yield ef-
ficient and robust disjunctive programs.

The scenarios we describe in both the text and web extrac-
tion domains illustrate how PBE systems generate programs
that can easily fail on new inputs. However, we also note
that is not simply a matter of providing more examples to
learn better programs. Even if users are willing to give many
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@start string res := sub | Const(s) | Concat(res, res)
string sub := Substr(p, p)

int p := Pos(r , r , k) | Pos(k)
Regex r := ε | t | ConcatReg(r , r)

@input string inp int k string s Regex t

Figure 2: The DSL Lt for text processing

examples, they cannot know which examples to give: if they
are representative of their target data and are the ones re-
quired by the PBE system to learn a correct program. This is
an especially important concern in situations where the user
cannot recover from the problem by attempting to relearn
a different program when the failure case is encountered.
This is because the failure may occur at any point in future
in a different execution environment (or for a different user
of the program) where access to the learning system is no
longer possible.

The key idea behind our disjunctive synthesis approach is
to move the top-program selection from ranking in the syn-
thesis phase to the semantics of the program itself, by main-
taining multiple disjuncts in the final program. The main
challenges we address in implementing this idea is the tech-
nique for deciding which disjuncts to include, as well as the
nature of the selection mechanism that decides between the
disjuncts at execution time. These design choices are guided
by the goals of correctness as well as performance of the
synthesized programs. As well as concrete implementations
of the disjunctive approach for the text and web application
domains, in this work we also present a generic framework
in which arbitrary DSLs and synthesis algorithms can be ex-
tended to support the learning of disjunctive programs and
we formulate the components required for such a system in
an abstract setting.

In the next section we begin with the general form of
DSLs we consider and present concrete DSLs for the text
and web domains that are based on the standard regular ex-
pression and CSS selector languages. We then describe the
extensions required for arbitrary DSLs to support disjunctive
programs, and illustrate this with the disjunctive extensions
we make to the text and web DSLs. In the following section
we describe the generic synthesis algorithm, as well as the
implementations of domain-specific components of the al-
gorithm for particular DSLs. We then describe the evaluation
of our technique over a set of extraction scenarios obtained
from a product team. We illustrate the improvement in ro-
bustness by considering the number of scenarios in which
a correct program can be learnt from a single example, and
show how this improves from 59.6% to 93.6% from the non-
disjunctive to the disjunctive case. We end with a discussion
of related work and conclusions.

Domain Specific Languages

The design of the domain specific language (DSL) is an im-
portant requirement for any synthesis system. It needs to
strike the right balance between expressiveness (to handle a

@start Node n := Select(fl , k)

Node[] fl := Filter(sel , c)

Node[] sel := All() | Children(fl)
Func〈Node, bool〉 c := Tag(s) | Class(s) | ID(s) | Text(r)

| NthChild(k) | NumChild(k)

| Style(s, s) | Attr(s, s) | Conj(c, c)
@input DomTree inp string s int k Regex r

Figure 3: The DSL Lw for node extraction from HTML

range of common tasks in the target domain) and tractability
(for the synthesis algorithm to learn correct programs effi-
ciently). In this section we describe a general form of DSLs
and provide instances of two concrete DSLs that we use for
the text and web domains. We then describe the notion of
a disjunctive program operator at an abstract level, and de-
scribe how to extend an arbitrary DSL with disjunctive sup-
port for any of its components. We illustrate with examples
of disjunctive components in both the text and web DSLs.

A DSL is defined as a context-free grammar of the form
(ψ̃N , ψ̃T , ψst , ψin ,R), where ψ̃N is a set of non-terminal
symbols, ψ̃T is the set of terminal symbols, ψst is the start
symbol, ψin is the input symbol and R is the set of produc-
tion rules of the grammar. Each symbol ψ is semantically
interpreted as ranging over a set of values �ψ�, which can
be standard programming types such as integers, strings, ar-
rays, lambda expressions, etc. Each production rule r ∈ R
represents an operator in the programming language, and is
of the form ψh := Op(ψ1, . . . , ψn), where Op is the name
of the operator, which takes parameter types given by the
body symbols ψi ∈ ψ̃N ∪ ψ̃T and returns a value of type
given by the head symbol ψh ∈ ψ̃N . Hence the formal se-
mantics of the DSL is given by an interpretation of each rule
r as a function

�r� : �ψ1�× . . .× �ψn� → �ψh�

where ψh is the head symbol and ψ1, ..., ψn are the body
symbols of the rule operator. A program P of type ψ is any
concrete syntax tree defined by the DSL grammar with root
symbol ψ. A complete program has the root symbol ψst .
Any derivation from a non-root symbol is a sub-program.
The input symbol ψin is a terminal symbol that represents
the input to the overall program, and is a global variable that
is available to the semantics of all operators in the program-
ming language.

Text extraction

Figure 2 shows the DSL Lt for text manipulation, which is
based on the Flash Fill language (Gulwani 2011; Polozov
and Gulwani 2015) for string processing using regular ex-
pressions. The symbols of the grammar are shown with their
associated semantic types with the start and input symbols
explicitly marked. The input inp in this case is a string and
the output of any complete program res is also a string, e.g.,
a substring of the input as in the extraction scenario in Fig-
ure 1. At the top level, the output is a concatenation Concat
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...

@disj{f} string sub := Substr(p, p)

Func〈string, obj〉 f := NotNull() | NumChars()

| NumNonWS() | SpecialChars()
...

Figure 4: Disjunctive DSL DLt which extends Lt

of constant strings Const or some substrings of the input de-
fined by sub. A substring expression Substr(p1, p2) extracts
the substring between two positions p1 and p2 in the input
string. Position expressions are defined as either constant po-
sitions Pos(k), or Pos(r1, r2, k) which determines the kth
position in the input string whose left and right sides match
regular expressions r1 and r2 respectively. For example, the
program for the task in Figure 1 that extracts the substring
from the first capital letter to the last number is given as

Substr(Pos(ε,Caps, 0),Pos(Num, ε,−1)) 〈∗〉
where the negative k indicates occurrence from the end of

the string. An alternative program for the same task that ex-
tracts until the end of the second number rather than the last
number is given as

Substr(Pos(ε,Caps, 0),Pos(ε,Num, 1)) 〈∗∗〉

Web extraction

Figure 3 shows the DSL Lw for extracting nodes from an
HTML document. Lw is based on path expressions and filter
predicates similar to CSS selectors. The input inp in this
case is the DOM tree of the entire HTML document and
the output n of any complete program is a particular node
in this tree, e.g. the node containing the flight number in
a flight itinerary, as in the extraction task described in the
introduction.

The top level operator Select(fl , k) selects the k th node
from a filtered collection of nodes fl in document order. The
Filter(sel , c) operator filters all nodes in a selection sel us-
ing a condition c. The sel can be all the nodes in the docu-
ment (All) or the children of any nodes obtained by another
filter operation as given by Children(fl). The condition c
used for filtering is a boolean function on nodes defined by a
range of atomic predicates (constraints including tag type of
the node, its ID, class, regular expression matches in the text
content, number of children, style and attributes) as well as
any conjunctions Conj(c, c) of these predicates.

For example, a program to extract the 3rd node in the doc-
ument that has class “c1” and is the child of a “TD” element
is given as
Select(Filter(Children(Filter(All(),Tag(“TD”))),Class(“c1”)), 3)

Disjunctive Programs

In this section we describe the notion of a disjunctive pro-
gram and how to extend any DSL to support disjunctive pro-
grams. The DSL designer can choose to provide disjunctive

...

@disj{f} Node[] fl := Filter(sel , c)

Func〈string, obj〉 f := NonEmpty()

...

Figure 5: Disjunctive DSL DLw which extends Lw

support for any symbols defined in their DSL. Figure 4 illus-
trates the extension we have made to the text DSL to support
disjunctive programs at the substring operator level. This is
indicated by the @disj{f} annotation before the sub sym-
bol. This annotation includes a reference to a new symbol f
that we have added to the grammar, which defines a number
of feature calculators in the DSL that will be used to choose
between different substring logics at execution time. The an-
notation @disj{f} indicates that a disjunctive subprogram
for symbol sub is of the form:

Disj([P1, . . . , Pn], [F1, . . . , Fm], [v1, . . . , vm])

where [P1, . . . , Pn] is an array of disjuncts of type sub,
[F1, . . . , Fm] is an array of feature programs of type f , and
[v1, . . . , vm] is an array of objects of type obj. The dis-
junction operator Disj chooses between possible disjuncts
P1, . . . , Pn by computing a feature vector on the output of
each Pi using the feature functions [F1, . . . , Fm], and then
choosing the output that has feature vector most similar to
the target feature values [v1, . . . , vm]. As an example, let us
consider the following disjunctive program that addresses
the task in Figure 1

Disj([P1, P2], [NotNull(),NumChars()], [True, 9])

where P1 and P2 are the substring programs defined in 〈∗〉
and 〈∗∗〉 respectively (P1 extracts up to the last number in
the input while P2 extracts up to the second number). In this
case, the disjunctive program is using only two feature cal-
culators: NotNull() which computes a boolean value indi-
cating if the output substring is non-null, and NumChars()
which computes the number of characters in the output sub-
string. The target feature values expected for these two fea-
tures are True and 9, since the output string should be non-
null and the product ID strings are of length 9. Hence, when
executing this disjunctive program on the inputs in Figure 1,
both disjuncts P1 and P2 will produce equally scoring out-
puts on the first three inputs, but on the fourth input it will
be P2 that produces the higher scoring output for the target
feature vector.

Note that a disjunctive program need not use all the
feature calculators available in the DSL as only some of
them may be relevant to the particular situation. The above
example program uses two of the calculators, though the
DSL also supports other features such as NumNonWS()
and SpecialChars() which compute the number of non-
whitespace characters and the set of special characters oc-
curing in the output. The DSL designer can choose any fea-
ture calculators to include in the language, but as we de-

1406



scribe in the next section, it is the task of the synthesis al-
gorithm to select which features and the target value vector
to include in the disjunctive program based on the provided
examples.

We next consider another example of a disjunctive DSL
in Figure 5, which shows the extensions made to the web
DSL. As discussed in the introduction, in this case a great
uncertainty lies in what logic to use to filter nodes down to
the target extraction. Hence we choose to support disjunctive
programs for the fl symbol in order to consider alernative
filtering logics in the final program. In this case we have
a single feature calculator NonEmpty() that checks if the
filtered set contains at least one node.

As an example, the following disjunctive program ad-
dresses the flight number extraction task described in the
introduction:

Disj([P1, P2, P3], [NonEmpty()], [True])

where

P1 = Filter(All(),Conj(Style(“color”,“gray”),Class(“c1”)))

P2 = Filter(All(),Class(“c1”))

P3 = Filter(All(), Style(“color”, “gray”))

The idea behind this disjunctive program is to try the most
restrictive conditions first, and if they fail to be satisfied by
any nodes then we consider less restrictive conditions. This
example also illustrates that the Disj() operator uses the
ordering on the disjuncts to select the first disjunct if there
are ties in the feature scores for different disjuncts.

Although our sample DSLs for the both the text and web
domains have disjunctive support for only one symbol in
each DSL, in general our framework supports any number
of disjunctive symbols in the language. One example of a
DSL including disjunctive support for two different symbols
is the language DLtw, which combines both grammars DLt

and DLw along with a top-level operator that first extracts
the node from an HTML document and then performs a sub-
string extraction on the text content of this node.

Formal definition

We now describe the formal semantics of the Disj() op-
erator and the formulation of disjunctive DSLs in the
abstract framework. A disjunctive DSL is of the form
(ψ̃N , ψ̃T , ψst , ψin ,R,Δ), which extends the definition of
a standard DSL given in the last section with the one addi-
tional parameter Δ. This parameter Δ : ψ̃N ⇀ ψ̃N maps
certain symbols for which we require disjunctive support
to the symbols that represent their feature calculators. The
well-formedness constraint on this map is that if Δ[ψ] = ψf

then the type of ψf is Func〈ψ, obj〉. For example, for the
text DSL we have Δ[sub] = f mapping the single substring
symbol to its feature calculator symbol in the grammar.

Given ψ for which we have disjunctive support with
Δ[ψ] = ψf , let T = �ψ� be the semantic type of ψ. The se-
mantics of the disjunction operator for ψ is defined in Figure
6. The operator takes as parameters the outputs produced by

Disj (T[] disjuncts , Func〈T, obj〉[] features , obj[] v) {
for each d in disjuncts

let s = {i | features[i](d) == v[i]}
let score[d] =

∣
∣s
∣
∣

return the first d in disjuncts where score[d] = Max(score)

}

Figure 6: Disjunction operator semantics for symbol ψ,
where T=�ψ� is the semantic type of ψ

a list of disjuncts (disjuncts), the list of feature calculators
to compute relevant features on these outputs (features) and
the target vector v of values for each of the features (which
is expected to be of the same length as the features array).

The operator computes the given features on each of the
disjunct outputs and returns the output on which the most
feature values match the target values in v. While we use this
very simple similarity measure in this work, in theory the
scoring function used to select between different disjuncts
may incorporate weights associated with different features
or use more sophisticated similarity measures than simple
equality of feature values.

Also, in some situations it could be the case that only
minimal thresholds of feature values need to be satisfied
to accept a disjunct, in which case we need not necessar-
ily compute all disjunct outputs but use a more performant
lazy evaluation in which the first disjunct that satisfies the
given thresholds can be selected. In our empirical investiga-
tions in this work we did not require such developments, but
they may be relevant in other application domains which we
leave for future work.

Program Synthesis Algorithm

In this section we describe the synthesis algorithm for learn-
ing disjunctive programs from input-output examples, and
its instantiations for the text and web DSLs. The algorithm
we describe is agnostic of any particular DSL, as it takes the
DSL and some other domain-specific properties as configu-
ration parameters for particular domain instantiations.

In summary, the algorithm is based on learning program
expressions in the DSL by propagating example-based con-
straints on any expression to its subexpressions, as in (Polo-
zov and Gulwani 2015), and we describe how to incorpo-
rate disjunctive program learning in this abstract setting. The
constraint propagation is done using domain-specific prop-
erties of DSL operators, which are provided in the config-
uration parameter. We first discuss these properties before
describing the full algorithm.

Domain-specific parameters

The configuration parameter C to the algorithm contains four
domain-specific components that are required by the algo-
rithm: DSL, InferSpec, Synth and Ranker. The DSL is the
domain-specific language in which programs will be synthe-
sized. InferSpec is a map from operator rules in the DSL to
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1: function SynthProg(C, φ, ψ)
2: letC.DSL = (ψ̃N , ψ̃T , ψst , ψin ,R,Δ)
3: Progs ← ∅
4: if C.Synth[ψ] is defined for ψ then
5: Progs ← C.Synth[ψ](φ)
6: else
7: for each r ∈ R where r has head ψ do
8: let r be ψ := Op(ψ1, . . . , ψn)
9: S ← {[]}

10: for i = 1 . . . n do
11: S′ ← ∅
12: for each [P1, ..., Pi−1] ∈ S do
13: φi ←C.InferSpec[r ](φ, ψi, [P1,..., Pi−1])

14: P̃ ←SynthProg(C.DSL, φi, ψi)

15: S′ ←S′ ∪ {[P1,..., Pi−1, P ] | P ∈ P̃}
16: S ← S′

17: Progs ← {Op(P1, ..., Pn) | [P1, ..., Pn] ∈ S}
18: topProgs ← C.Ranker(Progs)
19: if Δ[ψ] not defined then
20: return topProgs
21: else
22: ψf ← Δ[ψ]
23: F ← []
24: V ← []
25: for each r ∈ R where r has head ψf do
26: let r be ψf := Op(ψ)
27: if exists v such that �Op�(P (I)) = v for all
28: P ∈ topProgs and all inputs I in φ then
29: f ← �r�()
30: F ← F · f
31: V ← V · v
32: return {Disj(topProgs, F, V )}

Figure 7: Program synthesis algorithm

a spec inference function for the rule. Spec inference func-
tions are based on the witness functions introduced in more
detail in (Polozov and Gulwani 2015).

The spec inference function for an operator rule in the
DSL is a function that computes specifications on the pa-
rameters of the operator given a specification on the op-
erator itself. For a rule r in the DSL of the form ψ :=
Op(ψ1, . . . , ψn) and an output specification φ on the out-
put of this operator, InferSpec[r] is a function of the form
F (φ, ψi, [P1,..., Pi−1]) that returns a specification φi for the
ith parameter of the operator given the program expressions
already computed for the first i− 1 parameters.

For example, for the Concat(res , res) operator in the text
DSL, assume we have a specification that the output should
be s2 on an input s1. Then a specification inferred for the
first parameter is that it should produce any prefix of s2. If
we learn such a program P producing a prefix s′, then we
can infer a specification for the second parameter with re-
spect to P : that the second parameter should produce any
suffix s′′ such that s2 = s′ + s′′.

As another example of spec propagation, say we have a
spec φ for the substring operator Substr(p, p) that on input
“abcd” it should produce output “bc”. In this case, the spec
φ1 inferred for the first parameter is that it should produce

position 1 on the given input, while the spec φ2 inferred for
the second parameter is that it should produce position 3 on
that input. As an example in the web DSL, assume we have
a spec for the Select(fl , k) operator that the output should be
a node n. The spec inferred for the first parameter fl is that
this should be any collection that contains n, while the spec
for k depends on the first parameter and requires that k be
the index of n in that collection.

Although spec inference functions may be provided for
most operators in a DSL, for some DSL symbols, especially
terminal symbols, we may have domain-specific learning
strategies to infer the programs directly. This is the base
case where we no longer propagate specs downwards. For
example, for an atomic regular expression token t in the text
DSL we may have a spec propagated down from the position
operator that the regex must have a match on input s that
ends at position i in s. In this base case we will not prop-
agate this spec further, but will simply check the possible
atomic regexes in our DSL that satisfy this constraint and
return those regexes. Such domain-specific learning strate-
gies are provided in the Synth component of the configura-
tion parameter C, which is a map from certain DSL symbols
to functions for directly learning programs for that symbol
from the given specification. For such a symbol ψ, we have
Synth[ψ] is a function of the form F (φ) which returns a set
of programs of type ψ that satisfy φ.

The final component of the configuration parameter C is
the ranking function Ranker, which takes a set of programs
and returns a list of top programs ordered according to some
ranking criteria. For the text DSL we use ranking criteria as
defined in (Gulwani 2011) which generally prefer “simpler”
programs. In the web case, previous approaches (Polozov
and Gulwani 2015) (and our baseline comparison) have been
based on preferring the most specific programs for selecting
nodes, but we shall describe an improvement over this in
more detail after an outline of the main algorithm.

Synthesis algorithm

The synthesis algorithm is defined in Figure 7. The
SynthProg(C, φ, ψ) returns a set of top-ranked programs of
type ψ in the provided DSL that satisfy the given specifi-
cation φ. To construct complete programs in the DSL we
simply choose ψ to be the start symbol ψst .

In the first phase the algorithm computes the set of pro-
grams Progs that satisfy the spec (lines 3 to 17). If a spe-
cific synthesis function is already provided for this symbol
in C then it simply uses that (line 5). Otherwise, it performs
synthesis using the spec propagation approach. For each op-
erator rule in the DSL with head ψ, we compute possible
programs that use this operator at the top-level (lines 8 to
17). We do this by building the lists of parameter instantia-
tions of the operator (stored in the variable S) until we have
instantiations for all parameters of the operator.

For each parameter we infer a specification for that pa-
rameter using the instantiations of the previous parameters
already computed (line 13). We then use this specification to
synthesize programs for this parameter with a recursive call
to the synthesis algorithm (line 14), and use these programs
to grow the parameter instantiation list S (line 15). At line
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17 we add all the possible programs using this rule operator
to the set Progs . Note that in practice we make various op-
timizations over this general description, including caching
the results of particular synthesis calls for a given specifica-
tion which may often be repeated, clustering programs to-
gether that produce the same outputs, and setting recursion
limits to bound the size of programs considered.

The next phase in the algorithm is to choose the top-
ranked programs and to construct a disjunctive program if
required (lines 18 to 32). We first obtain the top-ranked pro-
gram from the set Progs using the ranking function. If the
symbol ψ is not a disjunctive symbol in the DSL then we
simply return this top-ranked set (line 20). Otherwise we
synthesize a disjunctive program for the symbol ψ.

We first obtain the feature calculator symbol ψf and ini-
tialize the feature calculator vector F and the target feature
values vector V (lines 22 to 24). The synthesizer must now
select the features it will include in the disjunctive program
to choose between different disjuncts. These features are se-
lected as all the ones that yield the same value across all
the training examples provided to the algorithm. This is be-
cause the goal is to synthesize a disjunctive program that will
prefer disjuncts whose result is most similar to the training
examples.

For example, the text DSL includes the NotNull and
NumChars features which indicate whether the output is null
and the size of the output string respectively. Hence a pro-
gram to address the text extraction task in Figure 1 would re-
quire NotNull to be True and NumChars to be 9 since those
feature values are consistent across any example outputs in
Figure 1 that may be given to the synthesizer. Similarly, in
the web case, the failure to return any result (or an empty
result) is just a feature of the output that is handled in the
same way: if all the example outputs given for a task are
non-empty, then the synthesizer will include the NonEmpty
feature in the disjunctive program with target value of True.

Hence for each feature calculator rule in the DSL with
head ψf , the synthesizer checks if the top programs yield
the same value for this feature in all the given example in-
puts (line 27). If such a consistent value v exists then we add
it to the target value vector V and add the feature calculator
function to the vector F . Finally, we return the single dis-
junctive program with the Disj operator using the vectors F
and V , and the top-ranked programs as the disjuncts.

Disjunct learning

The algorithm that we have described chooses the disjuncts
in the final program using the top-ranked programs (in our
experiments we found a cut-off of top 10 disjuncts yields an
effective balance of performance and robustness in practice).
In the case of the text DSL where we performed disjunc-
tive synthesis on the substring operator, we found that the
ranking used by the underlying Flash Fill system (Gulwani
2011) produced effective disjuncts. However, in the case of
web extraction the existing synthesis systems (Polozov and
Gulwani 2015; Le and Gulwani 2014) do not provide ade-
quate disjuncts for the filter operators, as these systems tend
to favor the most specific condition possible or other heuris-
tic techniques to choose the filtering condition, which do not

work well in practice.
With the disjunctive approach we needed to consider more

general conditions as possible disjuncts to guard against
over-fitting, but we cannot include all possibilities because,
as discussed in the introduction, there may be an exponen-
tial number of possible conjunctive conditions c for the filter
operator in the web DSL (Figure 3). Instead we describe a
learning strategy for disjuncts that considers the maximal
(the most specific) as well as a set of minimal (least restric-
tive) conjunctions that satisfy the specification. This disjunct
learning is implemented in the Synth[c](φ) function which
synthesizes conditions for the filter operator.

The spec φ given to this function specifies that the com-
puted condition expression P must hold for a subset N ′ of
the input node set N . The learning function first computes
all the atomic predicates A1, ..., An of symbol c that satisfy
the spec. The top-ranked disjunct it considers is the most
specific condition P1 = A1 ∧ ... ∧An. It then computes the
remaining disjuncts as the smallest conjunctions that pro-
duce the same filtered set of nodes as P1 on the input set
(hence are semantically equivalent programs over the given
input). As this computation of minimals is equivalent to the
minimal set cover problem which is NP-complete, we use a
greedy approximation algorithm (Chvatal 1979) to compute
the minimals efficiently. We also ensure that every atomic
predicate Ai is included in some minimal, in order to pro-
duce an effective set of disjuncts that cover all predicates in
the disjunctive program.

Evaluation

We have implemented our DSLs and algorithm for disjunc-
tive program synthesis for both the text and web extraction
domains using the Microsoft PROSE framework for pro-
gram synthesis1. In this section we report our results over
a set of benchmarks obtained from a product team that is
interested in a PBE technology for extracting information
from emails. Users often get emails regularly from the same
provider such as flight itineraries, hotel bookings or pur-
chase receipts, and the product team would like a PBE fea-
ture that allows users to create work flows for extracting im-
portant content whenever a new email arrives. Users can give
examples to the PBE system by highlighting important fields
in existing emails. However, in this scenario the web extrac-
tion DSL alone does not suffice, as many of the provided
benchmarks include substring extractions from nodes in the
HTML. Hence we addressed these benchmarks with the dis-
junctive DSL DLtw which incorporates both the web and
text DSLs, so the extraction program first selects a node and
then performs a substring extraction on its text content.

The benchmarks we obtained covered 47 extraction tasks
from 8 different providers. 34 tasks required substring ex-
tractions on the node content rather than just node selections.
For each extraction task, we had around 10 test instances of
an input and the desired output. In each instance the input
was an email and the output was a text string of the field to
be extracted, e.g. the flight number from a flight confirma-
tion email.

1https://microsoft.github.io/prose/
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Figure 8: Number of examples required for correct synthesis

An important consideration for the product team is for the
system to learn robust programs that do not easily fail on
new inputs. The measure of robustness we use is the mini-
mum number of examples required to learn a correct a pro-
gram for a given task. More precisely, the minimum num-
ber of examples is the minimum number of input-output in-
stances that were required as examples to be given to the
system such that the program it synthesized succeeded on
all the remaining instances.

We evaluated our disjunctive learning system against the
baseline that does not include any disjunctive operators in
the same DSL. Figure 8 shows the comparison of the min-
imum number of examples required by our disjunctive ap-
proach and the baseline. In summary, the proportion of tasks
for which a correct program was learnt from one example in-
creased from 59.6% to 93.6% with our disjunctive approach.

We note that these results show the minimum number of
examples required to learn a correct program, rather than
the number of examples a user may actually give in prac-
tice, which could be many more. This is because a user does
not know which examples will be useful for the system (i.e. a
representative sample covering all “corner cases”) and while
they may make the effort to give many more examples, they
may only encounter the relevant or useful examples when
the system fails to work on some future email. This uncer-
tainty of not knowing which examples to give makes the dif-
ference between requiring one or more examples very im-
portant for the user experience and product quality.

In terms of performance, there was an average of 2.9x
slowdown in the disjunctive case, which is expected since
disjunctive programs perform more computations as they
consider multiple alternative branches. However, most test
instances in the disjunctive case completed in under half a
second and all completed in under 2 seconds.

Related Work

There has been significant work on improving the robust-
ness of program synthesis systems, ranging from approaches
to improve the ranking between candidate programs to ex-
panding on the underlying DSL structures.

Ranking

Examples are a severe under-specification of the user’s in-
tent in many useful task domains. PBE systems address this
challenge by leveraging a ranking scheme to select between
different programs that are consistent with the examples pro-
vided by the user. The ranking can be a function of the pro-
gram structure or additional test inputs. We extend this line
of work by making ranking dynamic, i.e., a function of each
new input, and incorporating it into the execution seman-
tics of programs on that input. This lifts the restriction of
ranking decisions being limited to the synthesis stage and
permits their incorporation in the program semantics in or-
der to make use of the additional information available at
execution time.

Ranking based on program structure Many PBE sys-
tems leverage a ranking scheme over program structures to
pick the highest ranked program from the underlying DSL
that satisfies the examples. The ranking can either be per-
formed in a phase subsequent to the one that identifies the
many programs that are consistent with the examples (Singh
and Gulwani 2015), or it can be in-built as part of the search
process (Menon et al. 2013; Balog et al. 2017). In this work,
we show how to leverage these existing ranking methodolo-
gies and build over them to solve a harder problem of dealing
with new forms of inputs that have not been encountered in
the synthesis phase.

Ranking based on additional inputs In some PBE set-
tings, the synthesizer often has access to some additional
inputs on which the intended program is supposed to be
executed, such as in a spreadsheet column transformation
where the whole input column is available in addition to the
few input-output examples manually provided by the user. In
these cases the PBE system can use semi-supervised learn-
ing approaches to utilise the additional inputs to improve
ranking. Singh showed how to leverage additional inputs to
guess a reduction in the search space with the goal to both
speed up synthesis and rank programs better (Singh 2016).
Ellis and Gulwani observed that the additional inputs can
be used to re-rank programs based on similarity of the out-
puts produced by those programs to the outputs produced on
the training/example inputs provided by the user (Ellis and
Gulwani 2017). Our approach also leverages additional in-
puts, but addresses the settings where additional inputs are
not available at learning time and may only be encountered
on some future execution of the program. Furthermore, our
disjunctive technique allows using different programs (dis-
juncts) for different inputs, since instead of forcing a pre-
mature selection of a program at the synthesis stage, we hold
onto that decision until needed (when the actual execution
input becomes available).
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Synthesis using richer structures

Another line of related work deals with learning over richer
(conditional) program representations or latent (neural) pro-
gram representations, which require many examples for ef-
fective learning. Our work has aspects related to both ap-
proaches in that it learns disjunctive program structures
whose execution semantics depends on a separate feature-
based scoring mechanism. This allows us to learn robust
transformations from very few examples.

Conditional Program Synthesis PBE has been applied
to learning programs that behave correctly over rich input
spaces or types. One strategy is to extend the underlying
DSL that provides the syntactic bias to learn more expressive
conditional tasks with explicit conditional constructs (Kini
and Gulwani 2015). Another approach has been to learn de-
cision trees over multiple DSL expressions, each of which
correctly handles a different sub-class of the inputs (Alur,
Radhakrishna, and Udupa 2017). While these approaches
expand the scope and expressivity of PBE systems to condi-
tional tasks, learning the right predicate or a decision tree of-
ten requires many examples. In contrast to both these lines of
work, we learn multiple DSL expressions (disjuncts), each
of which handles the same set of input-output examples.
This allows us to learn robust programs from a much smaller
set of examples. We also use a feature-based scoring crite-
rion that compares the execution results of the disjuncts on
a new input to make the choice between different disjuncts,
as opposed to learning an independent predicate or decision
tree over the input states only.

Neural Program Synthesis Neural program induction in-
volves generating outputs for new inputs by using a latent
program representation induced by learning some form of
neural controller. Various forms of neural controllers have
been proposed such as ones that have the ability to read/write
to an external memory tape (Graves et al. 2016), stack aug-
mented neural controller (Joulin and Mikolov 2015), or even
neural networks augmented with basic arithmetic and logic
operations (Neelakantan, Le, and Sutskever 2015). In con-
trast, we learn multiple program structures and our execution
semantics allows selecting between them after executing all
of them on a new input.

Noise handling Devlin et.al. showed how to train neural
models to deal with noise such as typos in the user-provided
examples (Devlin et al. 2017). Our work instead handles the
rich variation that can occur in the unseen inputs on which
the user intends to run the synthesized program.

Conclusion and Future Work

In this paper, we address the problem of one-shot learning
for programming by example systems when representative
inputs may not be available at learning time, and present a
new computational model for program synthesis from ex-
amples. The key challenge with traditional example-based
synthesis is to deal with the ambiguity that is inherent in the

small number of examples provided by the user, as these ex-
amples may not be representative of all possible variations
in the input domain. Existing synthesis systems need to learn
a program from the limited training data, and are forced to
make a premature decision to select one program over many
others that satisfy the given examples. In contrast, we sug-
gest postponing that decision to when needed: at program
execution time (when the execution input is available) rather
than training or synthesis time. Our computational model is
that of a disjunction of programs, in which ranking decisions
are made at program execution time as a choice between dif-
ferent disjuncts that is controlled by a scoring function that
picks disjuncts based on the outputs they generate on the
given input. The feature-based scoring function picks the
program in the disjunction of programs that yields an out-
put that is most similar to the training outputs, based on the
set of features that are included in the DSL.

We have presented a generic, domain-agnostic framework
in which DSL designers may add disjunctive support for ap-
propriate components in arbitrary DSLs. Our framework is
designed to save them the algorithmic and engineering effort
to otherwise implement disjunctive programs and their syn-
thesis. The DSL designer simply needs to provide a DSL,
specify which language components to make disjunctive,
and the features of the outputs that would be required to
choose between different disjuncts. These design choices are
commonly informed by empirical studies in a concrete ap-
plication domain, based on investigating which components
of the program the ranking usually gets wrong in the test sce-
narios and what properties of the outputs usually distinguish
the correct results from incorrect ones. We have investigated
instantiations of our framework in the concrete domains of
extracting fields from web pages and extracting substrings
from text strings, and reported the significant reduction in
the number of examples required to learn correct programs.

Although the basic idea behind the disjunctive approach
is to maintain top-ranked synthesized programs and choose
between them at execution time, an important aspect of our
approach is the ability to have disjunctive support at arbi-
trary sub-program levels in the DSL rather than only for
complete programs. This is because (1) disjuncts are nor-
mally required for certain DSL operators—simulating them
only at the top level would lead to a combinatorial explosion
(e.g., 10 disjuncts for substring and 10 for node selection in
DLtw leads to 100 possible complete programs) which can
either cause performance issues or discarding of potentially
correct disjuncts. (2) More importantly, features are required
on the sub-program outputs rather than the final outputs of
the program in order to effectively choose between different
disjuncts.

Our computational model is also related to common soft-
ware engineering concepts such as exception handling and
assertion checking, which are designed to improve the ro-
bustness and quality of programs. Programmers use excep-
tion handling mechanisms to take care of cases that are dif-
ferent or to recover gracefully from unexpected executions.
They also make assertions on the output of certain opera-
tions in order to ensure that certain desirable properties hold,
as it is often easier to check the results of a computation than
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to prove the computation correct in all possible input sce-
narios. Our computational model consists of a disjunction
of programs, with a feature-based scoring function to select
between different disjuncts based on the outputs they gen-
erate. In this respect the various disjuncts can be seen as a
collection of exception handling routines, and the features
computed on the outputs of disjuncts are akin to assertions a
programmer may make in certain parts of their code.

An interesting direction for future work is to research sce-
narios that require more sophisticated scoring functions that
may leverage various features of the disjunctive programs
and their outputs, perhaps using weighted combinations of
feature values. Another direction to explore is generalizing
the expressiveness of disjunctive programs to handle more
complex conditional tasks. In our technique for synthesiz-
ing disjunctive programs we select a subset of disjuncts that
satisfy all examples, but in theory we may investigate relax-
ations of this constraint to also consider program disjuncts
that may not each satisfy all the examples. With appropriate
selection mechanisms, these disjuncts may be combined in
ways to guarantee that the overall disjunctive program satis-
fies all training examples, while at the same time addressing
more expressive tasks that would otherwise require condi-
tional operators in the DSL.

Finally, it would be interesting to explore the applica-
bility of the disjunctive approach to other application do-
mains. In theory, the disjunctive approach is applicable to
any PBE domain since choosing between top-ranked pro-
grams is a common challenge. Broad categories of practical
domains include extraction from different data formats (e.g.
extracting fields, lists or tables from PDF, JSON, XML or
other formats) and transformations between different data
formats (e.g. transformations between different JSON/XML
formats, table to table, number/date transformations, or even
code transformations such as refactoring, formatting, etc).
Many of these domains involve standard operations for se-
lection, pattern matching or filtering, which often yield nu-
merous candidate expressions that can satisfy a small set of
examples. For instance, filtering regions in a PDF document
by certain properties is very similar to selecting DOM nodes
in a web document. We therefore expect DSLs in such do-
mains to also benefit significantly from disjunctive support.
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