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Abstract

The performance of many hard combinatorial problem
solvers depends strongly on their parameter settings, and
since manual parameter tuning is both tedious and subopti-
mal the AI community has recently developed several algo-
rithm configuration (AC) methods to automatically address
this problem. While all existing AC methods start the config-
uration process of an algorithm A from scratch for each new
type of benchmark instances, here we propose to exploit in-
formation about A’s performance on previous benchmarks in
order to warmstart its configuration on new types of bench-
marks. We introduce two complementary ways in which we
can exploit this information to warmstart AC methods based
on a predictive model. Experiments for optimizing a flexible
modern SAT solver on twelve different instance sets show
that our methods often yield substantial speedups over exist-
ing AC methods (up to 165-fold) and can also find substan-
tially better configurations given the same compute budget.

Introduction

Many algorithms in the field of artificial intelligence rely
crucially on good parameter settings to yield strong perfor-
mance; prominent examples include solvers for many hard
combinatorial problems (e.g., the propositional satisfiability
problem SAT (Hutter et al. 2017) or AI planning (Fawcett
et al. 2011)) as well as a wide range of machine learn-
ing algorithms (in particular deep neural networks (Snoek,
Larochelle, and Adams 2012) and automated machine learn-
ing frameworks (Feurer et al. 2015)). To overcome the te-
dious and error-prone task of manual parameter tuning for a
given algorithm A, algorithm configuration (AC) procedures
automatically determine a parameter configuration of A with
low cost (e.g., runtime) on a given benchmark set. General
algorithm configuration procedures fall into two categories:
model-free approaches, such as ParamILS (Hutter et al.
2009), irace (López-Ibáñez et al. 2016) or GGA (Ansótegui,
Sellmann, and Tierney 2009), and model-based approaches,
such as SMAC (Hutter, Hoos, and Leyton-Brown 2011) or
GGA++ (Ansótegui et al. 2015).

Even though model-based approaches learn to predict the
cost of different configurations on the benchmark instances
at hand, so far all AC procedures start their configuration
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process from scratch when presented with a new set of
benchmark instances. Compared with the way humans ex-
ploit information from past benchmark sets, this is obviously
suboptimal. Inspired by the human ability to learn across dif-
ferent tasks, we propose to use performance measurements
for an algorithm on previous benchmark sets in order to
warmstart its configuration on a new benchmark set. As we
will show in the experiments, our new warmstarting meth-
ods can substantially speed up AC procedures, by up to a
factor of 165. In our experiments, this amounts to spending
less than 20 minutes to obtain comparable performance as
could previously be obtained within two days.

Preliminaries

Algorithm configuration (AC). Formally, given a target
algorithm with configuration space Θ, a probability distri-
bution D across problem instances, as well as a cost metric c
to be minimized, the algorithm configuration (AC) problem
is to determine a parameter configuration θ∗ ∈ Θ with low
expected cost on instances drawn from D:

θ∗ ∈ argmin
θ∈Θ

Eπ ∼D[c(θ, π)]. (1)

In practice, π ∼ D is typically approximated by a finite
set of instances Π drawn from D. An example AC prob-
lem is to set a SAT solver’s parameters to minimize its av-
erage runtime on a given benchmark set of formal verifica-
tion instances. Througout the paper, we refer to algorithms
for solving the AC problem as AC procedures. They execute
the target algorithm with different parameter configurations
θ ∈ Θ on different instances π ∈ Π and measure the result-
ing costs c(θ, π).

Empirical performance models (EPMs). A core ingre-
dient in model-based approaches for AC is a probabilistic
regression model ĉ : Θ × Π → R that is trained based on
the cost values 〈x = [θ, π], y = c(θ, π)〉 observed thus far
and can be used to predict the cost of new parameter config-
urations θ ∈ Θ on new problem instances π ∈ Π. Since this
regression model predicts empirical algorithm performance
(i.e., its cost), it is known as an empirical performance model
(EPM; Leyton-Brown, Nudelman, and Shoham; Hutter et
al. 2009; 2014b). Random forests have been established as
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Algorithm 1: Model-based Algorithm Configura-
tion

Input : Configuration Space Θ, Instances Π,
Configuration Budget B

1 θinc,H ← initial design(Θ, Π);
2 while B not exhausted do
3 ĉ ← fit EPM based on H;
4 Θchall ← select challengers based on ĉ and H;
5 θinc,H ← race(Θchall ∪ {θinc},Π,H);
6 return θinc

the best-performing type of EPM and are thus used in all
current model-based AC approaches.

For the purposes of this regression model, the instances π
are characterized by instance features. These features reach
from simple ones (such as the number of clauses and vari-
ables of a SAT formula) to more complex ones (such as
statistics gathered by briefly running a probing algorithm).
Nowadays, informative instance features are available for
most hard combinatorial problems (e.g., SAT (Nudelman et
al. 2004), mixed integer programming (Hutter et al. 2014b),
AI planning (Fawcett et al. 2014), and answer set program-
ming (Hoos, Lindauer, and Schaub 2014)).

Model-based algorithm configuration. The core idea of
sequential model-based algorithm configuration is to itera-
tively fit an EPM based on the cost data observed so far
and use it to guide the search for well-performing param-
eter configurations. Algorithm 1 outlines the model-based
algorithm configuration framework, similarly as introduced
by Hutter, Hoos, and Leyton-Brown (2011) for the AC pro-
cedure SMAC, but also encompassing the GGA++ approach
by Ansótegui et al. (2015). We now discuss this algorithm
framework in detail since our warmstarting extensions will
adapt its various elements.

First, in Line 1 a model-based AC procedure runs the al-
gorithm to be optimized with configurations in a so-called
initial design, keeping track of their costs and of the best
configuration θinc seen so far (the so-called incumbent). It
also keeps track of a runhistory H, which contains tuples
〈θ, π, c(θ, π)〉 of the cost c(θ, π) obtained when evaluat-
ing configuration θ on instance π. To obtain good anytime
performance, by default SMAC only executes a single run
of a user-defined default configuration θdef on a randomly-
chosen instance as its initial design and uses θdef as its ini-
tial incumbent θinc. GGA++ samples a set of configurations
as initial generation and races them against each other on a
subset of the instances.

In Lines 2-5, the AC procedure performs the model-based
search. While a user-specified configuration budget B (e.g.,
number of algorithm runs or wall-clock time) is not ex-
hausted, it fits a random-forest-based EPM on the existing
cost data in H (Line 3), aggregates the EPM’s predictions
over the instances Π in order to obtain marginal cost predic-
tions ĉ(θ) for each configuration θ ∈ Θ and then uses these
predictions in order to select a set of promising configura-

Π1 Configurator Algorithm

θ, π

c(θ, π)

Π2 Configurator Algorithm

θ, π

c(θ, π)

Π3 Configurator Algorithm

θ, π

c(θ, π)

H1 := 〈θ, π, c(θ, π)〉ΘΠ1

inc

H1 ∪H2ΘΠ1

inc ∪ΘΠ2

inc

Figure 1: Control flow of warmstarting information

tions Θchall to challenge the incumbent θinc (Line 4) (SMAC)
or to generate well-performing offsprings (GGA++). For this
step, a so-called acquisition function trades off exploitation
of promising areas of the configuration space versus explo-
ration of areas for which the model is still uncertain; com-
mon choices are expected improvement (Jones, Schonlau,
and Welch 1998), upper confidence bounds (Srinivas et al.
2010) or entropy search (Hennig and Schuler 2012).

To determine a new incumbent configuration θinc, in
Line 5 the AC procedure races these challengers and the cur-
rent incumbent by evaluating them on individual instances
π ∈ Π and adding the observed data to H. Since these evalu-
ations can be computationally costly the race only evaluates
as many instances as needed per configuration and termi-
nates slow runs early (Hutter et al. 2009).

Warmstarting Approaches for AC

In this section, we discuss how the efficiency of model-based
AC procedures (as described in the previous section) can be
improved by warmstarting the search from data generated
in previous AC runs. We assume that the algorithm to be
optimized and its configuration space Θ is the same in all
runs, but the set of instances Π can change between the runs.
To warmstart a new AC run, we consider the following data
from previous AC runs on previous instance sets Πi:

• Sets of optimized configurations ΘΠi

inc found in previ-
ous AC runs on Πi—potentially, multiple runs were per-
formed on the same instance set to return the result with
best training performance such that ΘΠi

inc contains the final
incumbents from each of these runs;

• We denote the union of previous instances as
Π′ :=

⋃
i∈I Π

i for set superscripts i ∈ I.

• Runhistory data H′ :=
⋃
i∈I Hi of all AC runs on previ-

ous instance sets Πi. 1

1If the set of instances Π and the runhistory H are not indexed,
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To design warmstarting approaches, we consider the fol-
lowing desired properties:

1. When the performance data gathered on previous instance
sets is informative about performance on the current in-
stance set, it should speed up our method.

2. When said performance data is misleading, our method
should stop using it and should not be much slower than
without it.

3. The runtime overhead generated by using the prior data
should be fairly small.

In the following subsections, we describe different warm-
starting approaches that satisfy these properties.

Warmstarting Initial Design (INIT)

The first approach we consider for warmstarting our model-
based AC procedure is to adapt its initial design (Line 1
of Algorithm 1) to start from configurations that performed
well in the past. Specifically, we include the incumbent con-
figurations ΘΠi

inc from all previous AC runs as well as the
user-specified default θdef.

Evaluating all previous incumbents ΘΠi

inc in the initial de-
sign can be inefficient (contradicting Property 3), particu-
larly if they are very similar. This can happen when the pre-
vious instance sets are quite similar, or when multiple runs
were performed on a single instance set.

To obtain a complementary set of configurations that cov-
ers all previously optimized instances well but is not redun-
dant, we propose to use a two step approach. First, we deter-
mine the best configuration for each previous Πi.

Θinc :=
⋃

i∈I
argmin
θ∈ΘΠi

inc

∑

π∈Πi

c(θ, π) (2)

Secondly, we use an iterative, greedy forward search
to select a complementary set of configurations across all
previous instance sets—inspired by the per-instance selec-
tion procedure Hydra (Xu, Hoos, and Leyton-Brown 2010).
Specifically, for the second step we define the mincost c̃(Θj)
of a set of configurations Θj on the union of all previous in-
stances Π′ as

c̃(Θj) :=
1

|Π′|
∑

π∈Π′
min
θ∈Θj

c(θ, π), (3)

start with Θ1 := {θdef}, and at each iteration, add the config-
uration θ′ ∈ Θinc to Θj that minimizes c̃(Θj∪{θ′}). Because
c̃(·) is a supermodular set function this greedy algorithm is
guaranteed to select a set of configurations whose mincost is
within a factor of (1 − 1/e) ≈ 0.63 of optimal among sets
of the same size (Krause and Golovin 2012).

Since we do not necessarily know the empirical cost of
all θ′ ∈ Θinc on all π ∈ Π′, we use an EPM ĉ : Θ×Π → R

as a plug-in estimator to predict these costs. We train this
EPM on all previous runhistory data H′. In order to enable
this, the benchmark sets for all previous AC runs have to be
characterized with the same set of instance features.

we always refer to the ones of the current AC run.

In SMAC, we use this set of complementary configura-
tions in the initial design using the same racing function as
in comparing challengers to the incumbent (Line 5) to ob-
tain the initial incumbent; to avoid rejecting challengers too
quickly, a challenger is compared on at least 3 instances be-
fore it can be rejected. In GGA++, these configurations can
be included in the first generation of configurations.

Data-Driven Model-Warmstarting (DMW)

Since model-based AC procedures are guided by their EPM,
we considered to warmstart this EPM by including all cost
data H′ gathered in previous AC runs as part of its training
data. In the beginning, the predictions of this EPM would
mostly rely on H′, and as more data is acquired on the cur-
rent benchmark this would increasingly affect the model.

However, this approach has two disadvantages:

1. When a lot of warmstarting data is available it requires
many evaluations on the current instance set to affect
model predictions. If the previous data is misleading, this
would violate our desired Property 2.

2. Fitting the EPM on H ∪ H′ will be expensive even in
early iterations, because H′ will typically contain many
observations. Even by using SMAC’s mechanism to in-
vest at least the same amount of time in Lines 3 and 4 as
in Line 5, in preliminary experiments this slowed down
SMAC substantially (violating Property 3).

For these two reasons, we do not use this approach for warm-
starting but propose an alternative. Specifically, to avoid the
computational overhead of refitting a very large EPM in each
iteration, and to allow our model to discard misleading pre-
vious data, we propose to fit individual EPMs ĉi for each
Hi once and to combine their predictions with those of an
EPM ĉ fitted on the newly gathered cost data H. This relates
to stacking in ensemble learning (Wolpert 1992); however
in our case, each constituent EPM is trained on a different
dataset. Hence, in principle we could even use different in-
stance features for each instance set.

To aggregate predictions of the individual EPMs, we pro-
pose to use a linear combination:

ĉDMW(θ, π) := w0 + wĉ · ĉ(θ, π) +
∑

i∈I
wi · ĉi(θ, π) (4)

where w are weights fitted with stochastic gradient de-
scent (SGD) to minimize the combined model’s root mean
squared error (RMSE). To avoid overfitting of the weights,
we randomly split the current H into a training and valida-
tion set (2 : 1), use the training set to fit ĉ, and then compute
predictions of ĉ and each ĉi on the validation set, which are
used to fit the weights w. Finally, we re-fit the EPM ĉ on all
data in H to obtain a maximally informed model.

In the beginning of a new AC run, with few data in H,
ĉ will not be very accurate, causing its weight wĉ to be low,
such that the previous models ĉi will substantially influence
the cost predictions. As more data is gathered in H, the pre-
dictive accuracy of ĉ will improve and the predictions of the
previous models ĉi will become less important.
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Besides weighting based on the accuracy of the individ-
ual models, the weights have the second purpose of scal-
ing the individual model’s predictions appropriately: these
scales reflect the different hardnesses of the instance sets
they were trained on and by setting the weights to minimize
RMSE of the combined model on the current instances Π,
they will automatically normalize for scale.

The performance predictions of DMW can be used in any
model-based AC procedure, such as SMAC and GGA++.

Combining INIT and DMW (IDMW)

Importantly, the two methods we propose are complemen-
tary. A warmstarted initial design (INIT) can be easily
combined with data-driven model-warmstarting (DMW) be-
cause both approaches affect different parts of model-based
algorithm configuration: where to start from and how to in-
tegrate the full performance data from the current and the
previous benchmarks to decide where to sample next. In
fact, the two warmstarting methods can even synergize to
yield more than the sum of their pieces: by evaluating strong
configurations from previous AC runs in the initial design
through INIT, the weights of the stacked model in DMW can
be fitted on these important observations early on, improving
the accuracy of its predictions even in early iterations.

Experiments

We evaluated how our three warmstarting approaches im-
prove the state-of-the-art AC procedure SMAC.2 In particu-
lar, we were interested in the following research questions:

Q1 Can warmstarted SMAC find better performing config-
urations within the same configuration budget?

Q2 Can warmstarted SMAC find well-performing configu-
rations faster than default SMAC?

Q3 What is the effect of using warmstarting data Hi from
related and unrelated benchmarks?

Experimental Setup To answer these questions, we ran
SMAC (0.5.0) and our warmstarting variants3 on twelve
well-studied AC tasks from the configurable SAT solver
challenge (Hutter et al. 2017), which are publicly available
in the algorithm configuration library (Hutter et al. 2014a).
Since our warmstarting approaches have to generalize across
different instance sets and not across algorithms, we consid-
ered AC tasks of the highly flexible and robust SAT solver
SparrowToRiss across 12 instance sets. SparrowToRiss is a
combination of two well-performing solvers: Riss (Manthey
2014) is a tree-based solver that performs well on indus-
trial and hand-crafted instances; Sparrow (Balint et al. 2011)
is a local-search solver that performs well on random, sat-
isfiable instances. SparrowToRiss first runs Sparrow for a
parametrized amount of time and then runs Riss if Sparrow
could not find a satisfying assignment. Thus, SparrowToRiss

2The source code of GGA++ is not publicly available and thus,
we could not run experiments on GGA++.

3Code and data is publicly available at:
http://www.ml4aad.org/smac/.

can be applied to a large variety of different SAT instances.
Riss, Sparrow and SparrowToRiss also won several medals
in the international SAT competition. Furthermore, config-
uring SparrowToRiss is a challenging task because it has a
very large configuration space with 222 parameters and 176
conditional dependencies.

To study warmstarting on different categories of in-
stances, the AC tasks consider SAT instances from applica-
tions with a lot of internal structure, hand-crafted instances
with some internal structure, and randomly-generated SAT
instances with little structure. We ran SparrowToRiss on

• application instances from bounded-model check-
ing (BMC), hardware verification (IBM) and fuzz testing
based on circuits (CF);

• hand-crafted instances from graph-isomorphism (GI),
low autocorrelation binary sequence (LABS) and n-rooks
instances (N-Rooks);

• randomly generated instances, specifically, 3-SAT in-
stances at the phase transition from the ToughSAT in-
stance generator (3cnf ), a mix of satisfiable and unsatis-
fiable 3-SAT instances at the phase transition (K3), and
unsatisfiable 5-SAT instances from a generator used in
the SAT Challenge 2012 and SAT Competition 2013
(UNSAT-k5); and on

• randomly generated satisfiable instances, specifically, in-
stances with 3 literals per clause and 1000 clauses
(3SAT1k), instances with 5 literals per clause and 500
clauses (5SAT500) and instances with 7 literals per clause
and 90 clauses (7SAT90).

Further details on these instances are given in the descrip-
tion of the configurable SAT solver challenge (Hutter et al.
2017). The instances were split into a training set for con-
figuration and a test set to validate the performance of the
configured SparrowToRiss on unseen instances.

For each configuration run on a benchmark set in one of
the categories, our warmstarting methods had access to ob-
servations on the other two benchmark sets in the category.
For example, warmstarted SMAC optimizing SparrowToRiss
on IBM had access to the observations and final incumbents
of SparrowToRiss on CF and BMC.

As a cost metric, we chose the commonly-used penalized
average runtime metric (PAR10, i.e., counting each timeout
as 10 times the runtime cutoff) with a cutoff of 300 CPU
seconds. To avoid a constant inflation of the PAR10 values,
we removed all test instances post hoc that were never solved
by any configuration in our experiments (11 CF instances,
69 IBM instances, 17 BMC instances, 21 GI instances, 72
LABS instances and 73 3cnf instances).

On each AC task, we ran 10 independent SMAC runs with
a configuration budget of 2 days each. All runs were run on
a compute cluster with nodes equipped with two Intel Xeon
E5-2630v4 and 128GB memory running CentOS 7.

Baselines

As baselines, we ran (I) the user-specified default con-
figuration θdef to show the effect of algorithm configura-
tion, (II) SMAC without warmstarting, and (III) a state-
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PAR10 scores Speedup over default SMAC
θdef SMAC AAF INIT DMW IDMW AAF INIT DMW IDMW

CF 326.5 125.8 140.0 126.6 122.0 116.4 0.1 0.5 0.7 2.7
IBM 150.6 50.6 49.0 47.8 47.5 48.8 3.9 16.2 1.4 9
BMC 421.5 209.6 230.7 203.1 155.9 137.4 1.2 1 11 29.3

GI 314.1 165.0 165.6 165.6 165.4 152.7 25.6 0.6 7.1 19.4
LABS 330.1 232.9 291.2 271.2 285.9 286.7 0.8 0.8 0.8 0.8
N-Rooks 116.7 8.6 18.1 27.3 27.5 12.7 0.4 0.4 0.4 0.5

3cnf 890.5 890.5 822.8 877.5 890.3 812.8 10.7 1 1 8.4
K3 152.8 30.1 53.9 42.9 39.9 29.7 0.9 0.9 1.8 1.8
UNSAT-k5 151.9 1.1 1.2 1.1 1.3 1.2 1 1 1 1

3SAT1k 104.4 76.6 75.2 75.2 82.6 69.8 3.1 2.1 2.1 3.8
5SAT500 3000 20.5 14.6 14.7 8.3 9.6 6 0.7 0.7 0.8
7SAT90 52.3 38.0 31.7 20.2 19.7 31.2 53.5 2.3 0.5 165.3

∅ 2.4 1.1 1.3 4.3

Table 1: Left: PAR10 score (sec) of θdef, i.e., the default configuation of SparrowToRiss, and the final SparrowToRiss configu-
rations returned by the different SMAC variants; median across 10 SMAC runs. The “SMAC” column shows the performance
of default SMAC without warmstarting. Best PAR10 is underlined and we highlighted runs in bold face for which there is no
statistical evidence according to a (one-sided) Mann-Whitney U test (α = 0.05) that they performed worse than the best con-
figurator. Right: Speedup of warmstarted SMAC compared to default SMAC. This is computed by comparing the time points
of SMAC with and without warmstarting after which they do not perform significantly worse (according to a permutation test)
than SMAC with the full budget. Speedups > 1 indicate that warmstarted SMAC reached the final performance of default SMAC
faster, speedups < 1 indicate that default SMAC was faster. We marked the best speedup (> 1) in bold-face. The last row shows
the geometric average across all speedups.

of-the-art warmstarting approach for hyperparameter op-
timizers proposed by Wistuba, Schilling, and Schmidt-
Thieme (2016), which we abbreviate as “adapted acquisition
function” (AAF). The goal of AAF is to bias the acquisition
function (Line 4 in Algorithm 1) towards previously well-
performing regions in the configuration space.4 To gener-
alize AAF to algorithm configuration, we use marginalized
prediction across all instances ĉ(θ) := 1

|Π|
∑

π∈Π ĉ(θ, π).

Q1: Same configuration Budget

The left part of Table 1 shows the median PAR10 test
scores of the finally-returned configurations θinc across the
10 SMAC runs. Default SMAC nearly always improved
the PAR10 scores of SparrowToRiss substantially compared
to the SparrowToRiss default, yielding up to a 138-fold
speedup (on UNSAT-k5). Warmstarted SMAC performed sig-
nificantly better yet on 4 of the AC tasks (BMC, 3cnf,
5SAT500 and 7SAT90), with additional speedups up to 2.1-
fold (on 5SAT500). On two of the crafted instance sets
(LABS and N-Rooks), the warmstarting approaches per-
formed worse than default SMAC—details discussed later.

Overall, the best results were achieved by the combina-
tion of our approaches, IDMW. This yielded the best per-
formance of all approaches in 6 of the 12 scenarios (with
sometimes substantial improvements over default SMAC)

4We note that combining AAF and INIT is not effective because
evaluating the incumbents of INIT would nullify the acquisition
function bias of AAF.

and statistically insignificantly different results than the best
approach in 3 of the scenarios. Notably, IDMW performed
better on average than its individual components INIT and
DMW and clearly outperformed AAF.

Q2: Speedup

The right part of Table 1 shows how much faster our warm-
started SMAC reached the PAR10 performance default that
SMAC reached with the full configuration budget.5 The
warmstarting methods outperformed default SMAC in al-
most all cases (again except LABS and N-Rooks), with
up to 165-fold speedups. The most consistent speedups
were achieved by the combination of our warmstarting
approaches, IDMW, with a geometric-average 4.3-fold
speedup. We note that our baseline AAF also yielded good
speedups (geometric average of 2.4), but its final perfor-
mance was often quite poor (see left part of Table 1).

Figure 2 illustrates the anytime test performance of all
SMAC variants.6 In Figure 2a, AAF, INIT and IDMW im-

5A priori it is not clear how to define a speedup metric compar-
ing algorithm configurators across several runs. To take noise into
account across our 10 runs, we performed a permutation test (with
α = 0.05 with 10 000 permutations) to determine the first time
point from which onwards there was no statistical evidence that de-
fault SMAC with a full budget would perform better. To take early
convergence/stagnation of default SMAC into account, we compute
the speedup of default SMAC to itself and divide the speedups by
default SMAC’s speedup.

6Since Figure 2 shows test performance on unseen test in-
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(a) BMC (b) N-Rooks (c) LABS

Figure 2: Median PAR10 of SparrowToRiss over configuration time with 25% and 75% percentiles as uncertainties.

(a) red: IBM, blue: CF,
green: BMC

(b) red: UNSAT-k5, blue: K3,
green: 3cnf

Figure 3: Weights over time of all 10 runs SMAC+DMW.
The red curve is the weight on EPM ĉ on the current in-
stances; the blue and green curves corresponds to weights
on EPMs based on previously optimized instances.

proved the performance of SparrowToRiss very early (after
roughly 700-1000 seconds), but only the DMW variants per-
formed well in the long run.

To study the effect of our worst results, Figure 2b and
2c show the anytime performance on N-Rooks and LABS,
respectively. Figure 2b shows that warmstarted SMAC per-
formed better in the beginning, but that default SMAC per-
formed slightly better in the end. The better initial perfor-
mance is not captured in our quantitative analysis in Table 1.
In contrast, Figure 2c shows that for LABS, warmstarted
SMAC was initially mislead and then started improving like
default SMAC, but with a time lag; we note that we only ob-
served this pattern on LABS and conclude that configurations
found on N-Rooks and GI do not generalize to LABS.

Q3: Warmstarting Influence

To study how our warmstarting methods learn from previ-
ous data, in Figure 3 we show how the weights of the DMW
approach changed over time. Figure 3a shows a represen-
tative plot: the weights were similar in the beginning (i.e.,
all EPMs contributed similarly to cost predictions) and over
time, the weights of the previous models decreased, with the

stances, performance is not guaranteed to improve monotonically
(a new best configuration on the training instances might not gen-
eralize well to the test instances).

weight of the current EPM dominating. When optimizing
on IBM, the EPM trained on observations from CF was the
most important EPM in the beginning.

In contrast, Figure 3b shows a case in which the previ-
ous performance data acquired for benchmarks K3 and 3cnf
do not help for cost predictions on UNSAT-k5. (This was
to be expected, because 3cnf comprises only satisfiable in-
stances, K3 a mix of satisfiable and unsatisfiable instances,
and UNSAT-k5 only unsatisfiable instances.) As the figure
shows, our DMW approach briefly used the data from the
mixed K3 benchmark (blue curves), but quickly focused
only on data from the current benchmark. These two exam-
ples illustrate that our DMW approach indeed successfully
used data from related benchmarks and quickly ignored data
from unrelated ones.

Related Work

The most related work comes from the field of hyperparam-
eter optimization (HPO) of machine learning algorithms.
HPO, when cast as the optimization of (cross-)validation
error, is a special case of AC. This special case does not
require the concept of problem instances, does not require
the modelling of runtimes of randomized algorithms, does
not need to adaptively terminate slow algorithm runs and
handle the resulting censored algorithm runtimes, and typ-
ically deals with fairly low-dimensional and all-continuous
(hyper-)parameter configuration spaces. These works there-
fore do not directly transfer to the general AC problem.

Several warmstarting approaches exist for HPO. A
prominent approach is to learn surrogate models across
datasets (Swersky, Snoek, and Adams 2013; Bardenet et
al. 2014; Yogatama and Mann 2014). All of these works
are based on Gaussian process models whose computational
complexity scales cubically in the number of data points,
and therefore, all of them were limited to hundreds or at
most thousands of data points. We generalize them to the
AC setting (which, on top of the differences to HPO stated
above, also needs to handle up to a million cost measure-
ments for an algorithm) in our DMW approach.

Another approach for warmstarting HPO is by adapting
the initial design. Feurer, Springenberg, and Hutter (2015)
proposed to initialize HPO in the automatic machine learn-
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ing framework Auto-Sklearn with well-performing configu-
rations from previous datasets. They had optimized config-
urations from 57 different machine learning data sets avail-
able as warmstarting data and chose which of these to use for
a new dataset based on its characteristics; specifically, they
used the optimized configurations from the k most similar
datasets. This approach could be adapted to AC warmstart-
ing in cases where we have many AC benchmarks. How-
ever, one disadvantage of the approach is that – unlike our
INIT approach – it does not aim for complementarity in the
selected configurations. Wistuba, Schilling, and Schmidt-
Thieme (2015) proposed another approach for warmstarting
the initial design which does not depend on instance features
and is not limited to configurations returned in previous opti-
mization experiments. They combined surrogate predictions
from previous runs and used gradient descent to determine
promising configurations. This approach is limited to con-
tinuous (hyper-)parameters and thus does not apply to the
general AC setting.

One related variant of algorithm configuration is the prob-
lem of configuring on a stream of problem instances that
changes over time. The ReACT approach (Fitzgerald et al.
2014) targets this problem setting, keeping track of configu-
rations that worked well on previous instances. If the char-
acteristics of the instances change over time, it also adapts
the current configuration by combining observations on pre-
vious instances and on new instances. In contrast to our set-
ting, ReACT does not return a single configuration for an
instance set and requires parallel compute resources to run a
parallel portfolio all the time.

Discussion & Conclusion

In this paper, we introduced several methods to warmstart
model-based algorithm configuration (AC) using observa-
tions from previous AC experiments on different benchmark
instance sets. As we showed in our experiments, warmstart-
ing can speed up the configuration process up to 165-fold
and can also improve the configurations finally returned.

While we focused on the state-of-the-art configurator
SMAC in our experiments, our methods are also applica-
ble to other model-based configurators, such as GGA++, and
our warmstarted initial design approach is even applicable to
model-free configurators, such as ParamILS and irace. We
expect that our results would similarly generalize to these.

A practical limitation of our DMW approach (and thus
also of IDMW) is that the memory consumption grows sub-
stantially with each additional EPM (at least when using
random forests fitted on hundreds of thousands of observa-
tions). We also tried to study warmstarting SMAC for opti-
mizing SparrowToRiss on all instance sets except the one at
hand, but unfortunately, the memory consumption exceeded
12GB RAM. Therefore, one possible approach would be to
reduce memory consumption and to use instance features to
select a subset of EPMs constructed on similar instances.

Another direction for future work is to combine warm-
starting with parameter importance analysis (Hutter, Hoos,
and Leyton-Brown 2014; Biedenkapp et al. 2017), e.g., for
determining important parameters on previous instance sets

and focusing the search on these parameters for a new in-
stance set. Finally, a promising future direction is to inte-
grate warmstarting into iterative configuration procedures,
such as Hydra (Xu, Hoos, and Leyton-Brown 2010), ParHy-
dra (Lindauer et al. 2017), or Cedalion (Seipp et al. 2015),
which construct portfolios of complementary configurations
in an iterative fashion using multiple AC runs.
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Ansótegui, C.; Sellmann, M.; and Tierney, K. 2009. A
gender-based genetic algorithm for the automatic configura-
tion of algorithms. In Gent, I., ed., Proceedings of the Fif-
teenth International Conference on Principles and Practice
of Constraint Programming (CP’09), volume 5732 of Lecture
Notes in Computer Science, 142–157. Springer-Verlag.
Balint, A.; Frohlich, A.; Tompkins, D.; and Hoos, H. 2011.
Sparrow2011. In Proceedings of SAT Competition 2011.
Bardenet, R.; Brendel, M.; Kégl, B.; and Sebag, M. 2014.
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