
Probabilistic Inference Over Repeated Insertion Models

Batya Kenig
Technion – Israel Institute of Technology

batyak@cs.technion.ac.il

Lovro Ilijasić
Drexel University
lovro@drexel.edu

Haoyue Ping
Drexel University
hp354@drexel.edu

Benny Kimelfeld
Technion – Israel Institute of Technology

bennyk@cs.technion.ac.il

Julia Stoyanovich
Drexel University

stoyanovich@drexel.edu

Abstract

Distributions over rankings are used to model user prefer-
ences in various settings including political elections and
electronic commerce. The Repeated Insertion Model (RIM)
gives rise to various known probability distributions over
rankings, in particular to the popular Mallows model. How-
ever, probabilistic inference on RIM is computationally chal-
lenging, and provably intractable in the general case. In this
paper we propose an algorithm for computing the marginal
probability of an arbitrary partially ordered set over RIM. We
analyze the complexity of the algorithm in terms of proper-
ties of the model and the partial order, captured by a novel
measure termed the “cover width”. We also conduct an exper-
imental study of the algorithm over serial and parallelized im-
plementations. Building upon the relationship between infer-
ence with rank distributions and counting linear extensions,
we investigate the inference problem when restricted to par-
tial orders that lend themselves to efficient counting of their
linear extensions.

Introduction

With the availability and wealth of preference data, it has
become increasingly important to develop statistical models
and techniques that enable the use of this information to rea-
son about unseen preferences and make predictions. Exam-
ples include management and analysis of elections (Gorm-
ley and Murphy 2008; McElroy and Marsh 2009), and rec-
ommendation systems in electronic commerce (Das Sarma
et al. 2010). Once a statistical model has been built, these
applications give rise to the problem of reasoning: how to
efficiently use the statistical model to draw probabilistic in-
ferences from observations.

Ranking models from the statistics literature, such as
the Mallows model (Mallows 1957), the Plackett-Luce
model (Plackett 1975; Luce 1959) and others (Marden
1995), play a major role in machine learning applications
for analyzing preference data. Among these, the Mallows
model is perhaps the most popular (Awasthi et al. 2014;
Busse, Orbanz, and Buhmann 2007; Doignon, Pekeč, and
Regenwetter 2004; Lu and Boutilier 2014). Generally, data
about a user’s preferences will take the form of arbitrary

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

pairwise comparisons (Lu and Boutilier 2014). Such pref-
erences can be as simple as a single paired comparison: “a
is better than b”, or as complex as any partially ordered set
(poset) over the alternatives.

Computing the marginal probability of a poset over the
Mallows distribution is not only important for probabilistic
inference over arbitrary pairwise comparisons, but also plays
a crucial role in learning model parameters (Lu and Boutilier
2014) (i.e., evaluating the log-likelihood under Mallows
with respect to arbitrary pairwise preferences). Yet, this task
is theoretically and practically intractable (Lu and Boutilier
2014). Therefore, research to date has either resorted to ap-
proximation algorithms (Lu and Boutilier 2014), or assumed
very restricted forms of evidence about individual user pref-
erences ranging from complete rankings, to top-t/bottom-t
alternatives, to partitioned preferences (Lebanon and Mao
2008). A simple proof of hardness is via a reduction to the
problem of counting the poset’s linear extensions that is
known to be #P -complete (Brightwell and Winkler 1991).
While this counting problem has been thoroughly investi-
gated, and the properties that determine its complexity are
fairly well understood (Eiben et al. 2016; Kangas et al. 2016;
De Loof, De Meyer, and De Baets 2006), the question of
which parameters govern the complexity of inference over
Mallows remains unexplored. Furthermore, while there ex-
ist broad classes of posets that allow for tractable counting,
notably, series-parallel (Möhring 1989) and polytree (Atkin-
son 1990), to the best of our knowledge, over Mallows, the
only known tractable class of posets is that of the partitioned
preferences (Lebanon and Mao 2008).

The Mallows model represents a population of users by
a reference ranking σ and a dispersion parameter φ, and
expresses the probability of a ranking as a function of its
distance from σ. Doignon et al. (2004) introduced the Re-
peated Insertion Model (RIM), an efficient generative pro-
cedure for the Mallows distribution. RIM considers every
alternative of the reference ranking σ = σ1, . . . , σm in or-
der, and places each alternative σi at a random position j
inside the current list (consisting of σ1, . . . , σi−1) indepen-
dently from previous insertions. RIM was shown to be the
generative procedure underlying not only Mallows, but a
large class of subset choice models that include the Gen-
eralized Mallows (Fligner and Verducci 1986) and multi-
stage ranking (Fligner and Verducci 1988) models as a spe-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1897

cial cases (Doignon, Pekeč, and Regenwetter 2004).
In this paper we study the problem of computing the

marginal probability of a poset over a RIM distribution. A
common thread in our theoretical results and empirical eval-
uation is that the computational complexity of this task de-
pends not only on the structure of the poset, as is the case
for counting linear extensions, but also heavily relies on the
reference ranking σ.

Contributions. (1) We devise RIMDP, an algorithm that
computes the exact marginal probability of a poset over a
RIM model. We prove that the complexity of this algorithm
is polynomial in the size of the reference ranking σ and ex-
ponential in cw(σ), the cover width of the poset with respect
to σ. (2) We characterize two classes of posets, termed dis-
joint series-parallel and monotonic polytree, that refine the
well known families of series-parallel and polytree posets.
We provide a dynamic programming algorithm that effi-
ciently computes the probability of these posets over Mal-
lows. (3) We experimentally evaluate the performance of
RIMDP and examine the relationship between its running
time and the cover width parameter in practice. We further
show significant performance gains via parallelization.

Preliminaries

In this section we present some basic notation and terminol-
ogy that we use throughout the paper.

Orders and rankings. A partially ordered set (poset) is
a binary relation � over a set of items A that satisfies tran-
sitivity (a � b and b � c implies a � c) and irreflexivity
(a � a never holds). For a, b ∈ A, we say that a is a cover
of b, denoted a ·� b, if a � b and there is no a′ ∈ A such
that a � a′ � b. A partial order is uniquely identified by its
cover relation ·� and can be represented by the cover graph,
where an edge directed from a to b stands for a ·� b. See for
example Figure 3.

A linear (or total) order is a poset where every two items
are comparable. We identify a linear order σ1 � · · · �
σm with the sequence 〈σ1, . . . , σm〉, called a ranking (over
{σ1, . . . , σm}). If σ = 〈σ1, . . . , σm〉 is a ranking, then
items(σ) denotes the set {σ1, . . . , σm}, and�σ denotes the
order σ stands for; that is, σi �σ σj whenever i < j. By
σ(τ) we denote the position of an item τ in a ranking σ;
that is, if σ = 〈σ1, . . . , σm〉 and τ = σi, then σ(τ) = i. A
ranking σ is compatible with � if σ(a) < σ(b) whenever
a � b. We denote by rnk(A) the set of all rankings over
A, and by rnk(A | �) the set of rankings over A that are
compatible with �.

The Repeated Insertion Model (RIM). An instance of
RIM is defined by a generative process with two parameters,
σ and Π, and is denoted by RIM(σ,Π). The parameter σ is
a ranking 〈σ1, . . . , σm〉, referred to as a reference ranking.
The model RIM(σ,Π) defines a probability distribution over
the sample space rnk(items(σ)), that is, the rankings over
the items of σ. The parameter Π, called an insertion prob-
ability function (or just insertion function for short), maps
every pair of integers (i, j), with 1 ≤ j ≤ i ≤ m, to a
probability Π(i, j) ∈ [0, 1], so that for all i = 1, . . . ,m we

have
∑i

j=1 Π(i, j) = 1. Semantically, a ranking is gener-
ated by the following randomized process. We begin with
the empty ranking, and scan the items σ1, . . . , σm in or-
der, starting with σ1. Each σi is inserted into a random
position j ∈ {1, . . . , i} with probability Π(i, j) inside the
current series 〈τ1, . . . , τi−1〉, pushing τj , . . . , τi−1 forward
and resulting in the series 〈τ1, . . . , τj−1, σi, τj , . . . , τi−1〉.
Importantly, the insertion position of each σi is probabilis-
tically independent of the positions of the previous items
σ1, . . . , σi−1. An easy observation is that every insertion se-
quence gives rise to a unique ranking.

The above process defines a probability, denoted Πσ(τ),
for each ranking τ over items(σ), as follows. Let J =
〈j1, . . . , jm〉 denote the insertion vector for τ , that is,
ji ∈ [1, i] is the position into which σi is inserted into
〈τ1, . . . , τi−1〉. Then:

Πσ(τ) =

m∏
i=1

Πσ(i, ji) (1)

The Mallows model. A special case of RIM is the Mal-
lows model (Mallows 1957), parameterized by a reference
ranking σ = 〈σ1, . . . , σm〉 and a dispersion parameter
φ ∈ (0, 1], and denoted M(σ, φ). The model assigns to ev-
ery τ ∈ rnk(items(σ)) a non-zero probability defined by

Pr(τ | σ, φ) def
=

1

Z
φd(τ ,σ) . (2)

Here, d(τ ,σ) is Kendall’s tau (Kendall 1938) distance be-
tween τ and σ that counts the disagreements between τ and
σ: d(τ ,σ) def

=
∑

1≤i<j≤m [τ (σj) < τ (σi)]. The indica-
tor function assigns 1 to true statements and 0 to false
ones. The normalization constant Z is the sum of φd(τ ,σ)

over all τ ∈ rnk(items(σ)), and is known to be equal to
(1 + φ)(1 + φ+ φ2) . . . (1 + · · ·+ φm−1).

Intuitively, the larger the distance of a ranking τ is from
the reference ranking σ, the lower its probability under the
Mallows model. Lower values of φ concentrate most of the
probability mass around σ, while φ = 1 gives the uni-
form distribution over rnk(items(σ)). Doignon et al. (2004)
showed that M(σ, φ) is the same as RIM(σ,Π) where
Π(i, j) = φi−j/(1 + φ+ · · ·+ φi−1).

Inference over RIM. The inference problem we investi-
gate in this paper is that of computing the marginal proba-
bility of a poset; that is, we wish to compute the probability
that a ranking generated by RIM(σ,Π) satisfies a poset �:

Pr(�| σ,Π)
def
=

∑
τ∈rnk(items(σ)|�)

Πσ(τ) (3)

where Πσ(τ) is given in Equation (1). We refer to this
probability as the probability of � in RIM(σ,Π). In terms
of computational complexity, computing this probability
is a hard (#P-complete) problem already for the Mallows
model (Lu and Boutilier 2014).

Exact Algorithm for Bounded Cover Width

We now describe RIMDP, a dynamic-programming al-
gorithm for computing the probability of a poset in a

1898

RIM model. Throughout the section we fix a RIM model
RIM(σ,Π) where σ = 〈σ1, . . . , σm〉, and a partial order �.
Our goal is to compute Pr(�| σ,Π). We introduce the cover
width parameter, which is a function of σ and �, and show
that our algorithm terminates in time that is exponential in
this parameter and polynomial in m.

We denote by A� items that participate in the partial order
�, by Ai the set of items {σ1, . . . , σi}, and by Ai

� their
intersection (i.e., the items in Ai that occur in�). Let a and b
be items in A�. Recall that a is a cover of b, denoted a ·� b,
if a � b and there is no item in A� between them. We say
that a covers b at time i, denoted a ·�i b, if a � b and there
is no item in c ∈ Ai

� such that a � c � b. We say that a and
b are directly related at time i if no item in Ai

� is between
them, that is, a = b, or a ·�i b, or b ·�i a. We denote by Di

the subset of items in Ai
� that, at time i, are directly related

to at least one item σk in A�, where k > i. Formally:

Di = {σ ∈ Ai
� | ∃k ∈ [i+ 1,m] : σ ·�i σk or σk ·�i σ}

We define cw(σ), the cover width of � with respect to σ, as
the maximum cardinality of Di over i ∈ {1, . . . ,m}.

Definition 1 (Cover Width). Let RIM(σ,Π) be a RIM model
over m items, and � be a poset. The cover width of � with
respect to σ is cw(σ) = maxi∈{1,...m}

∣∣Di
∣∣ where Di ⊆

Ai
� are the items that are directly related to at least one

item σk ∈ A� where k > i.

Example 1. Suppose that � is a linear order that forms a
subsequence of σ (e.g., 〈σ3, σ7, σ13〉) or the reverse of σ
(e.g., 〈σ13, σ7, σ3〉). Then, each Di consists of a single item.
For illustration, on both 〈σ3, σ7, σ13〉 and 〈σ13, σ7, σ3〉, we
have Di = {σ3} for i ∈ [3, 6], and Di = {σ7} for i ∈
[7, 12]. Hence, cw(σ) = 1.

The width w of a poset is the cardinality of the largest
set of incomparable items (antichain). The fastest currently
known method for counting linear extensions of a general
m-element poset is by dynamic programming, and runs in
time O(wmw) (De Loof, De Meyer, and De Baets 2006).
Given a poset �, it is easy to find cases in which its width is
larger than its cover width with respect to σ, and vice versa.

Example 2. Consider the poset � : {(σ1 � σi) | i > 1}.
The cover width of � is 1 because Di = {σ1} for all
i ∈ [1,m], while its width w is m − 1. On the other hand,
the cover width of the poset τ = 〈σ2, σ10, σ4〉 is 2 because
Di = {σ2, σ10} for all i ∈ [4, 9], while its width is 1.

Let υ : Di 	→ {1, . . . , i} denote the placement of the
items Di inside a subranking consisting of items Ai =
{σ1, . . . , σi}. The basic idea of the algorithm is as follows.
We follow the RIM process and compute, at every step i, the
probability of every consistent placement of the items in Di.
A placement υ is consistent with �, denoted υ |=�, if there
exists a ranking τ over items Ai that is compatible with �
(i.e., τ ∈ rnk(Ai |�)), such that for every item a ∈ Di it
is the case that τ (a) = υ(a). We denote by Pi the set of all
consistent mappings υ : Di → {1, . . . , i}.

Example 3. Let � be the poset 〈σ21, σ5, σ10, σ6, σ20〉. Let
υ1 : {σ5 	→ 12, σ6 	→ 13} and υ2 : {σ5 	→ 12, σ6 	→ 14} be

An algorithm for computing Pr(�| σ,Π)
Algorithm RIMDP(RIM(σ,Π))

1: υ1 ← ∅
2: if σ1 ∈ D1 then
3: υ1 ← {σ1 �→ 1}
4: P1 ← {υ1}
5: q[υ1, 1] = 1
6: for i = 2, . . . ,m do
7: for all υ ∈ Pi−1 do
8: for all j ∈ [1, i] : (υ+j ∪ {σi → j}) |=	 do

9: υ′ := (υ+j ∪ {σi → j}) ∩Di

10: q[υ′, i] += q[υ, i− 1]×Πσ(i, j)
11: Pi :=Pi ∪ {υ′}
12: return q[υ∅,m]

Figure 1:

two placements of items {σ5, σ6} ∈ D15. The mapping υ1

is not consistent with �, hence υ1 /∈ P15, because in any
ranking τ ∈ rnk(A15 |�) the item σ10 is between σ5 and
σ6. Therefore, items σ5, σ6 cannot be placed in consecutive
positions. On the other hand, υ2 ∈ P15.

Let i > 1 and υ : Di 	→ {1, . . . , i} be a placement. We
denote by υ+j : D

i 	→ {1, . . . , i+ 1} the placement ob-
tained from υ by inserting σi+1 into index j; that is, for
all a ∈ Di we have that υ+j(a) = υ(a) + 1 whenever
υ(a) ≥ j, and otherwise υ+j(a) = υ(a). Likewise, we de-
note by υ−j :

(
Di \ {σi}

) 	→ {1, . . . , i− 1} the mapping
obtained from υ by removing item σi from index j; that is,
υ−j(a) = υ(a) − 1 whenever υ(a) > j, and otherwise
υ−j(a) = υ(a). Note that σi /∈ υ−j , hence υ−j(σi) is not
defined even if σi ∈ Di. In the example of Figure 2 we have
that υ2,4 = {σ4 	→ 3}, and υ3,5 = υ2,4

+1 = υ2,4
+2 = υ2,4

+3 =
{σ4 	→ 4} is the placement that results from inserting item
σ5 into positions 1, 2, or 3. Likewise, υ3,5

−1, υ3,5
−2, and υ3,5

−3
amount to removing item σ5 from the first, second and third
positions respectively from υ3,5, resulting back in υ2,4.

RIMDP works as follows. For all i = 1, . . . ,m and
υ ∈ Pi, we compute the probability that RIM positions the
items in Di exactly as in υ. We denote this probability by
q[υ, i]. We compute q[υ, i] for all υ ∈ Pi, by dynamic pro-
gramming over the index i, as follows. For i = 1 the set P1

contains either the placement {σ1 	→ 1} (in case σ1 ∈ D1)
or, if D1 = ∅, the empty placement. In both cases, its proba-
bility is 1. For i > 1, every υ ∈ Pi is produced by extending
a placement υ′ ∈ Pi−1 as follows. First, item σi is inserted
into a position j ∈ [1, i], such that the resulting placement
υ′
+j ∪ {σi 	→ j} is consistent with �. Then, this placement

is projected onto the items of Di, resulting in υ. That is,(
υ′
+j ∪ {σi 	→ j}) ∩ Di = υ, where υ ∩ Di denotes the

1899

projection of υ onto Di. This gives us the following:

q[υ, i] =

i∑
j=1

∑
υ′∈Pi−1 :

(υ′+j∪{σi �→j})|=�,

(υ′+j∪{σi �→j})∩Di=υ

q[υ′, i− 1]×Πσ(i, j) (4)

The pseudocode of the algorithm is in Figure 1. For all
i ∈ {2, . . . ,m}, the algorithm generates the set of consistent
mappings Pi, and for each υ ∈ Pi, computes q[υ, i], the
probability that RIM positions the items in Di exactly as in
υ. Recall that Di is the subset of items in {σ1, . . . , σi} that
are directly related to at least one item in the partial order
with an index larger than i. Since there are no items in σ
with an index larger than m, then Dm = ∅. Therefore, the
result of the algorithm is simply q[υ∅,m] where υ∅ is the
(single) empty mapping.
Example 4. Consider the partial order � in Figure 2, and
in particular, the mapping υ2,4 = {σ4 	→ 3} at iteration
i = 4. In this case, σ4 ∈ D4. Therefore, σ4 must be inserted
into position 3 at iteration i = 4. Also, since υ2,4 ∈ P4 then
the position of σ2 in the previous iteration must have been
less than 3 (i.e., corresponsing to mappings υ1,3 or υ2,3).
Therefore, q[υ2,4] = Πσ(4, 3)×

(
q[υ1,3, 3] + q[υ2,3, 3]

)
.

The correctness of the algorithm, proved by induction on
the index i, is deferred to the appendix.
Theorem 1 (Correctness). For all i = 1, . . . ,m the follow-
ing hold.

1. The set of mappings produced at the ith iteration is pre-
cisely the set Pi of consistent mappings.

2. For every υ ∈ Pi we have:

q[υ, i] =
∑

τ∈rnk(Ai|�):

∀a∈Di,τ (a)=υ(a)

Pr(τ | σ,Π) .

The number of distinct mappings υ is at most mcw(σ) giv-
ing us the following complexity result.
Theorem 2. Pr(�| σ,Π) can be computed in time
O(mcw(σ)+2) where m is the size of σ and cw(σ) is the
cover width of the poset � w.r.t. σ.

In particular, if the size of the poset is bounded by a con-
stant, then the algorithm completes in polynomial time.

Classes of Posets Over Mallows

The classes series-parallel posets (Möhring 1989) and poly-
tree posets (Atkinson 1990) exhibit certain structural prop-
erties that allow to count their linear extensions in polyno-
mial time. In this section, we investigate how these prop-
erties can be applied for computing the marginal probabil-
ity over a Mallows model M(σ, φ). While it remains open
whether the marginal probability can be computed in poly-
nomial time for the general classes of series-parallel and
polytree posets, we answer this question affirmatively for
refinements with respect to the reference ranking σ, termed
disjoint series-parallel, and monotonic polytree. The classes
of posets introduced here generalize the class of posets for

υ3,5

υ2,4

υ3,4

{σ2 �→ 2}

{σ2 �→ 3}

{σ2 �→ 1}
{σ2 �→ 1}

{σ2 �→ 2}
∅

{σ4 �→ 2}

{σ4 �→ 4}

{σ4 �→ 3}

{σ4 �→ 2}

{σ4 �→ 4}

{σ4 �→ 3}

{σ4 �→ 5}

i = 1 i = 4 i = 5i = 2 i = 3

υ1,3

υ2,3

σ6

σ4

σ2

Figure 2: Examples of insertions considered in RIMDP

which Mallows is known to be computable efficiently. In
particular, the class of disjoint series-parallel posets general-
izes the class of partitioned preferences (Lebanon and Mao
2008). As in the case of the RIMDP algorithm, it is again a
case where the ability to perform inference efficiently over
Mallows depends on the relationship between the poset and
the reference ranking.

Let τ be a ranking over the items of σ. We denote by
U(τ |σ, φ) the unnormalized weight of τ inM(σ, φ). By (2)
we have U(τ | σ, φ) = Z · Pr(τ | σ, φ) = φd(τ ,σ) where
Z is the Mallows normalization constant. From this point
on we fix the Mallows parameters σ and φ and denote the
unnormalized weight of a ranking τ as U(τ). Let � be a
poset. We denote by U(�) the unnormalized weight of �.
Hence, we have U(�) =∑τ∈rnk(Aσ|�)φ

d(τ ,σ).
The following sections look at classes of posets that are

built using a combination operator over two posets. Let �Q

and �P be two posets over disjoint sets AQ = items(�Q)
and AP = items(�P), respectively. To streamline notation,
we will refer to �Q as Q and �P as P .

Series-Parallel Posets

The parallel composition of P and Q, denoted P ||Q, is de-
fined over the items AP ∪ AQ, with pairs of items that be-
long both to AP or both to AQ having the same relationship
as they do in P and Q, respectively. In P ||Q, a pair a, b is
incomparable whenever a ∈ P and b ∈ Q. The series com-
position of P and Q, written P∗Q, is defined similarly but
for every pair a, b where a ∈ AP and b ∈ AQ, there is the
additional relationship a � b.

We refine the notion of a parallel composition operator by
relation to the reference ranking σ. The parallel composi-
tion P ||Q is disjoint with respect to σ if for every pair of
items p ∈ AP and q ∈ AQ it is the case that p �σ q. The
class of series parallel posets is the set of posets that can
be built up from single element posets using the series and
parallel combination operators. The class of series-parallel
posets that are disjoint with respect to σ is the set of posets
that can be built using the series and disjoint parallel (w.r.t
σ) combination operators. A disjoint series-parallel poset is

1900

presented in Figure 3a. The main result of this section is:
Theorem 3. Let M(σ, φ) be a Mallows model and � be a
series-parallel poset that is disjoint with respect to σ. Then
Pr(�| σ, φ) can be computed in time O(m2).

We note that disjoint series-parallel posets may have an
unbounded cover width, and generally cannot be solved ef-
ficiently by the RIMDP algorithm of the previous section.
Example 5. Consider the Mallows model M(σ, φ) where
σ contains 2m items. Let � be the disjoint series-
parallel poset that orders the items {σ1, . . . , σm} before
{σm+1, . . . , σ2m}. By Def. 1, the cover width of � is m.

The class of disjoint series-parallel posets generalizes the
class of partitioned preferences (Lebanon and Mao 2008).
A partitioned-preference poset contains all items in σ, and
is built using only the series operator, and hence is trivially
disjoint series-parallel. While ours is not as restrictive, the
disjoint parallel constraint implies that every item σ that is
not part of � (i.e., σ /∈ items(�)) is ranked either higher or
lower, in σ, than all items in �. For example, the poset of
Figure 3a is defined over items items(�) = {σ2, . . . , σ10},
while items {σ1, σ11, . . . , σ30} are not part of the poset. One
can verify that σ1 is ranked higher, and the rest of the items
(i.e., {σ11, . . . , σ30}) are ranked lower, in σ, than the items
in the poset.

Lemma 1 shows how to compute the probability of a se-
ries combination operator.
Lemma 1. Let P , Q be series-parallel posets such that
AQ ∪AP = A. Then:

U(P∗Q) = (U(P)×U(Q))× φ|δ| (5)
where δ = {(a, b) | a ∈ AP , b ∈ AQ, b �σ a}.

We now describe how to compute the probability of the
disjoint parallel operator P ||Q where AP and AQ contain
k and l items, respectively. Basically, this is the probabil-
ity of generating a ranking r over items AP ∪ AQ, that re-
sults from interleaving some pair of rankings τ and ζ over
items AP and AQ, consistent with P and Q, respectively.
Let τ = 〈τ1, . . . , τk〉, and ζ = 〈ζ1, . . . , ζl〉 denote such a
pair of rankings. Since we assume disjointness with respect
to σ, it is the case that for every pair of items τ ∈ AP and
ζ ∈ AQ we have τ �σ ζ.

We visualize the interleaving process as inserting the
items of ζ, in order, into relative positions 0, . . . , k of τ
while respecting the ordering constraints of ζ. Formally, in-
serting item ζi into position j ∈ [0, k] places it between
items τj and τj+1 where τ0 and τk+1 are placeholders be-
fore and after items τ1 and τk respectively.

We compute the unnormalized weight by dynamic pro-
gramming as follows. For every i ∈ [0, l], and j ∈ [0, k], we
denote by s[i, j] the unnormalized weight of all rankings that
result from interleaving the subranking 〈ζ1, . . . , ζi〉 with τ ,
where the item ζi is placed in the relative position j ∈ [0, k].
Denote by ζi the subranking 〈ζ1, . . . , ζi〉. Then s[i, j] is the
unnormalized weight of all rankings consistent with ζi||τ in
which ζi is placed in relative position j. Formally,

s[i, j] =
∑

r∈rnk(τ ||ζi) :
τj�rζi�rτj+1

U(r). (6)

Recall that τj �r ζi means that in r, item τj is ranked higher
than item ζi. Therefore, we have that:

U(τ ||ζ) =
∑

r∈rnk(τ ||ζ)
U(r) =

k∑
j=0

∑
r∈rnk(τ ||ζ) :
τj�rζl�rτj+1

U(r) =

k∑
j=0

s[l, j] (7)

Consider the number of misorderings, with respect to σ,
that result from inserting ζ ∈ items(ζ) into position j in τ .
Since the parallel operator P ||Q is disjoint then τ �σ ζ for
every pair of items τ ∈ τ and ζ ∈ ζ. Therefore, inserting
any item ζ ∈ items(ζ) into the relative position j in τ (i.e.,
between items τj and τj+1), will entail precisely k − j mis-
orderings with respect to σ. Finally, for any interleaving of
the subranking ζi with τ , in which ζi is in the relative posi-
tion j ∈ [0, k], it must be the case that ζi−1 is in a relative
position t ≤ j. This gives us the following recursion:

s[i, j] =

⎧⎪⎨
⎪⎩
1 i = 0, j = 0 ;

φk−j ·∑j
t=0 s[i− 1, t] i ≥ 1, j ∈ [0, k] ;

0 otherwise.
(8)

After computing s[i, j] for all i ∈ [0, l] and j ∈ [0, k], we
can compute the required probability by (7). We can com-
pute (8) in constant time by precomuting the partial aggrega-
tions
∑j

t=0 s[i−1, t]. Hence, the total time for (7) is O(m2).

Polytree Posets

A poset whose cover graph is a polytree is called a polytree
poset, see for example Figure 3b. A poset � is monotonic
(resp. anti-monotonic) with respect to σ if for every relation
σu � σv we have that u < v (resp. u > v).

Let� be a monotonic polytree poset, and let σu � σv . Re-
moving σu � σv from� breaks it into two monotonic posets
corresponding to two polytrees: P , containing item σu, and
Q, containing item σv , over disjoint sets of items AP and
AQ respectively. By the monotonicity assumption, we have
that τ �σ ζ for every pair of items τ ∈ AP and ζ ∈ AQ.
Computing the required probability amounts to computing
U(P ||Q, σu � σv), the (unnormalized) probability of gen-
erating a ranking r, from the Mallows distribution, such that
r ∈ rnk(P ||Q), and σu �r σv .

Every monotonic polytree poset with m items is com-
prised of at most m − 1 such constrained disjoint parallel
operators. The algorithm for U(P ||Q, σu � σv) is similar to
the one for the disjoint parallel operator (see (8)), with the
addition that we distinguish the position of item σu in order
to maintain the constraint that σu � σv . In what follows we
describe the algorithm for computing U(P ||Q, σu � σv).

As before, let τ = 〈τ1, . . . , τk〉 and ζ = 〈ζ1, . . . , ζl〉 de-
note rankings over items AP and AQ that are consistent with
the posets P and Q respectively. In this case, however, we
distinguish the item σu in τ by denoting its rank ju ∈ [1, k]
in τ (i.e., τju = σu). For every triple 〈i, j, k〉 where i ∈
[0, l], j ∈ [0, k], and ju ∈ [1, k], we denote by s[i, j, ju] the

1901

weight of all rankings that result from interleaving the sub-
ranking ζi = 〈ζ1, . . . , ζi〉 with τ = 〈τ1, . . . , τk〉 and where:
(1) τju = σu (2) the item ζi is placed in the relative position
j, and (3) item σv is positioned after item σu. That is, its
relative position in τ is at least ju. Formally:

s[i, j, ju] =

⎧⎪⎨
⎪⎩

∑
r∈rnk(ζi||τ) :
τj�rζi�rτj+1,

σu�rσv

U(r) τju = σu ;

0 otherwise.
(9)

We then have that:

U(τ ||ζ, σu � σv) =

k∑
j=0

j∑
q=1

s[l, j, q] (10)

Since ζl is placed in relative position j, then item σv is po-
sitioned at a relative index (w.r.t τ) that is less than or equal
to j. Since σu � σv then the position q of σu in τ is at most
j (i.e., q ≤ j).

For any interleaving of the subranking ζi = 〈ζ1, . . . , ζi〉
with τ , in which ζi is in the relative position j ∈ [0, k], it
must be the case that ζi−1 is in a relative position t ≤ j.
Also, if ζi = σv then, in addition, it must also be the case
that ju ≤ j. Finally, since we assume monotonicity, then
as in the case of disjoint parallel combination operator, the
number of misorderings that result from inserting item ζ ∈
AQ into relative position j in τ is precisely k−j. This gives
us the following recursion:

s[i, j, ju] =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 i = 0, j = 0

φ(k−j)
∑

t∈[0,j],
q∈[1,k]

s[i− 1, t, q] ζi �=σv,j∈[0,k],
i∈[1,l] ;

φ(k−j)
∑

t∈[0,j],
q∈[1,j]

s[i− 1, t, q] ζi=σv,j∈[0,k],
i∈[1,l] ;

0 otherwise.

(11)

In the case where item ζi �= σv then it can be inserted into
any relative position j that is larger than or equal to t, the
relative position of ζi−1, regardless of q, the position of σu

in τ . Otherwise, if ζi = σv , there is the added constraint that
the position q of item σu in τ must be lower than the relative
position j of ζi in τ (i.e., q ≤ j).

After computing s[i, j, ju] for every triple of indexes i ∈
[0, l], j ∈ [0, k], and ju ∈ [1, k], we can compute the re-
quired probability by (10). The total time required for (10)
is O(m3) because we essentially repeat the algorithm of (8)
for every rank 1 ≤ ju ≤ k.

Experimental Evaluation

We now describe our implementation of the RIMDP algo-
rithm and present experimental results. We show that the
running time of RIMDP grows with the size of the partial or-
der, and its cover width. Further, we present a parallel imple-
mentation of the algorithm and show that CPU parallelism
can be leveraged to improve scalability.

We implemented RIMDP in Java 8, and executed experi-
ments on an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz,
512GB of RAM, running 64-bit Ubuntu Linux.

Figure 3: Poset examples: (a) disjoint series-parallel; (b)
monotonic polytree

Implementation details. Recall that q[υ, i] is the proba-
bility that, at time i, the RIM-generated ranking is consistent
with υ — the placement of items into their positions. The al-
gorithm maintains a hash map, associating placements like υ
with their probabilities. If a placement is produced by mul-
tiple branches, the probabilities are summed up.

The parallel implementation of RIMDP takes the num-
ber of threads as input, and parallelizes the computation of
q[υ, i] for each consistent placement υ at time i. To leverage
parallelism, we take care to avoid synchronization between
threads, which can occur at two points: when input place-
ments are assigned to threads, and when results of paral-
lel computation are reconciled. To avoid synchronization at
placement assignment, we create separate queues for each
thread. (The alternative of a common synchronized queue
showed inferior results.) To avoid synchronization when rec-
onciling the results, we use the ConcurrentHashMap data
structure to efficiently perform atomic operations, and store
the probability of each placement as a mutable DoubleAd-
der, rather than as an immutable Double.

Experimental datasets. We evaluated the running time of
RIMDP on randomly generated posets that exhibit variabil-
ity in both size and cover width. We experimented with three
reference rankings σ, with 30, 60 and 100 items (denoted
m), and with φ < 1. (In our experiments, we found that the
value of φ has no impact on the running time of RIMDP.)

We generated a poset workload separately for each σ as
follows. Let pV and pE be the probabilities that an item
(resp. a relation) is added to the poset�. First, generate a set
of items P ⊆ items(σ), including each item in P with prob-
ability pV . Next, generate a random permutation of the items
in P , and denote the resulting subranking by τ . Finally, add
each relation σi �τ σj to � with probability pE . We gen-
erated 250 posets for each value of m. For m = 30 items,
we set pV ∈ [0.3, 0.9] and pE ∈ [0.05, 0.3]; for m = 60,
pV ∈ [0.1, 0.5] and pE ∈ [0.1, 0.3]; and for m = 100,
pV ∈ [0.06, 0.09] and pE ∈ [0.1, 0.8]. These particular set-
tings are not prescriptive, they simply allow us to explore
algorithm behavior for inputs with different characteristics.

Results and discussion. Figure 4 presents the running
time of RIMDP as a function of the number of items, for
three different values of m (length of σ). These plots also
present the dependency between the running time and the
cover width of the poset. Results in Figure 4 are for posets

1902

(a) m=30 (b) m=60 (c) m=100

Figure 4: RIMDP running time vs. preference set size and width; y-axis is in log-scale.

Figure 5: Proportion of posets computed in 20 min.

Figure 6: Speedup of parallel RIMDP for m = 100.

for which RIMDP terminated within 20 minutes. Figure 5
presents the proportion of the posets for each value of m that
completed within 20 minutes, as a function of cover width.

In line with the complexity of O(mcw(σ)), we see that the
execution time is generally dominated by m, the size of the
reference ranking, and the cover width cw(σ) of the poset.
Fixing m and the poset size (i.e., #items), we see that the in-
stances with the largest execution time also have the largest
width. From Figure 4, we see that RIMDP scales much bet-
ter on lower values of m. Specifically, for m = 30 (Figure
4a) it is able to handle posets with up to 28 items, and width
up to 15, in 20 minutes. These numbers reduce to 16 and 6
when m = 60 (Figure ??), and to 13 and 6 when m = 100
(Figure ??).

Figure 6 presents the speed-up achieved by the parallel

implementation of RIMDP as a function of the number of
threads, computed by dividing the running time of the se-
quential algorithm by the running time of the parallel ver-
sion. We observe nearly-linear speed-up for up to 12 threads.
Speed-up drops slightly at 13 and 25 threads because of
communication between chips: There are 12 cores per chip
on our machine, all computation is performed on a single
chip for up to 12 threads, on two chips for between 13 and
24 threads, and on three chips for 25 to 30 threads.

Conclusions and Future Work
In this paper we explored the problem of computing the
marginal probability of a poset over a RIM distribution. We
presented the RIMDP algorithm and showed that its com-
plexity is governed by the cover width parameter that de-
pends on both the poset and the reference ranking. We em-
pirically evaluated RIMDP and showed that it lends itself
to effective parallelization. We also embarked on an explo-
ration of the relationship between inference over rank dis-
tributions and counting of linear extensions, by studying
two simple classes of posets whose linear extensions can be
counted efficiently.

While RIM has many desirable properties stemming from
its simplicity, it suffers from limited flexibility. Improving
upon this deficit, Meek and Meila (2014) introduce the re-
cursive inversion models—a generative model that enhances
the insertion procedure of RIM with a merge operator over
rankings. A similar line of work is the hierarchical riffled in-
dependence models of (Huang, Kapoor, and Guestrin 2012).
A ranking distribution is said to be riffle independent if it
can be generatively modeled as producing partial rankings
on disjoint item sets, and then interleaving them. Including
Mallows as a special case, probabilistic inference over these
models is intractable as well. As part of future work we in-
tend to investigate how the techniques introduced in this pa-
per can be applied to more sophisticated models as above.

We also plan to investigate the parameterized complex-
ity (Flum and Grohe 2006) of inference over RIM, with the
cover width playing the role of the parameter. In particu-
lar, we will explore whether inference is Fixed-Parameter
Tractable (FPT), meaning that the running time is polyno-
mial (with a fixed degree), except that the coefficient of the
polynomial can have a super-polynomial dependence on the

1903

cover width. In reference, counting linear extensions is not
FPT (under conventional assumptions) when parameterized
by the treewidth of the cover graph (Eiben et al. 2016).

Acknowledgments

The authors thank Rina Dechter for insightful discussions
and comments. This work was supported in part by the US
National Science Foundation (NSF) Grants No. 1464327
and 1539856, by the US-Israel Binational Science Founda-
tion (BSF) Grant No. 2014391, and by the Israel Science
Foundation (ISF) Grant No. 1295/15. Benny Kimelfeld is a
Taub Fellow, supported by the Taub Foundation.

References

Atkinson, M. D. 1990. On computing the number of linear
extensions of a tree. Order 7(1):23–25.
Awasthi, P.; Blum, A.; Sheffet, O.; and Vijayaraghavan,
A. 2014. Learning mixtures of ranking models. CoRR
abs/1410.8750.
Brightwell, G., and Winkler, P. 1991. Counting linear ex-
tensions. Order 8(3):225–242.
Busse, L. M.; Orbanz, P.; and Buhmann, J. M. 2007. Cluster
analysis of heterogeneous rank data. In ICML, 113–120.
ACM.
Das Sarma, A.; Das Sarma, A.; Gollapudi, S.; and Panigrahy,
R. 2010. Ranking mechanisms in twitter-like forums. In
Proceedings of the Third ACM International Conference on
Web Search and Data Mining, WSDM ’10, 21–30. New
York, NY, USA: ACM.
De Loof, K.; De Meyer, H.; and De Baets, B. 2006. Exploit-
ing the lattice of ideals representation of a poset. Fundam.
Inf. 71(2,3):309–321.
Doignon, J.-P.; Pekeč, A.; and Regenwetter, M. 2004. The
repeated insertion model for rankings: Missing link between
two subset choice models. Psychometrika 69(1):33–54.
Eiben, E.; Ganian, R.; Kanga, K.; and Ordyniak, S.
2016. Counting Linear Extensions: Parameterizations by
Treewidth. In Sankowski, P., and Zaroliagis, C., eds., 24th
Annual European Symposium on Algorithms (ESA 2016),
volume 57 of Leibniz International Proceedings in Infor-
matics (LIPIcs), 39:1–39:18. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.
Fligner, M. A., and Verducci, J. S. 1986. Distance based
ranking models. Journal of the Royal Statistical Society.
Series B (Methodological) 48(3):359–369.
Fligner, M. A., and Verducci, J. S. 1988. Multistage rank-
ing models. Journal of the American Statistical Association
83(403):892–901.
Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory. Texts in Theoretical Computer Science. An EATCS
Series. Springer.
Gormley, I. C., and Murphy, T. B. 2008. A mixture of ex-
perts model for rank data with applications in election stud-
ies. Ann. Appl. Stat. 2(4):1452–1477.

Huang, J.; Kapoor, A.; and Guestrin, C. 2012. Riffled in-
dependence for efficient inference with partial rankings. J.
Artif. Intell. Res. (JAIR) 44:491–532.
Kangas, K.; Hankala, T.; Niinimäki, T.; and Koivisto, M.
2016. Counting linear extensions of sparse posets. In Pro-
ceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI’16, 603–609. AAAI Press.
Kendall, M. G. 1938. A new measure of rank correlation.
Biometrika 30(1/2):81–93.
Lebanon, G., and Mao, Y. 2008. Non-Parametric Model-
ing of Partially Ranked Data. Journal of Machine Learning
Research 9:2401–2429.
Lu, T., and Boutilier, C. 2014. Effective sampling and learn-
ing for mallows models with pairwise-preference data. Jour-
nal of Machine Learning Research 15(1):3783–3829.
Luce, R. D. 1959. Individual Choice Behavior: A theoretical
analysis. Wiley.
Mallows, C. L. 1957. Non-null ranking models. i.
Biometrika 44(1-2):114–130.
Marden, J. I. 1995. Analyzing and Modeling Rank Data.
Chapman & Hall.
McElroy, G., and Marsh, M. 2009. Candidate gender and
voter choice: Analysis from a multimember preferential vot-
ing system. Political Research Quarterly.
Meek, C., and Meila, M. 2014. Recursive inversion mod-
els for permutations. In Advances in Neural Information
Processing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, 631–639.
Möhring, R. H. 1989. Computationally Tractable Classes of
Ordered Sets. Dordrecht: Springer Netherlands. 105–193.
Plackett, R. L. 1975. The analysis of permutations. Journal
of the Royal Statistical Society. Series C (Applied Statistics)
24(2):193–202.

1904

