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Abstract

Abstract Dialectical Frameworks (ADFs) generalize Dung’s
argumentation frameworks allowing various relationships
among arguments to be expressed in a systematic way. We
further generalize ADFs so as to accommodate arbitrary ac-
ceptance degrees for the arguments. This makes ADFs ap-
plicable in domains where both the initial status of argu-
ments and their relationship are only insufficiently specified
by Boolean functions. We define all standard ADF semantics
for the weighted case, including grounded, preferred and sta-
ble semantics. We illustrate our approach using acceptance
degrees from the unit interval and show how other valuation
structures can be integrated. In each case it is sufficient to
specify how the generalized acceptance conditions are repre-
sented by formulas, and to specify the information ordering
underlying the characteristic ADF operator. We also present
complexity results for problems related to weighted ADFs.

1 Introduction

Computational models of argumentation are a highly ac-
tive area of current research. The field has two main sub-
areas, namely logic-based argumentation and abstract argu-
mentation. The former studies the structure of arguments,
how they can be constructed from a given formal knowledge
base, and how they logically interact with each other. The
latter, in contrast, assumes a given set of abstract arguments
together with specific relations among them. The focus is
on evaluating the arguments based on their interactions with
one another. This evaluation typically uses a specific se-
mantics, thus identifying subsets of the available arguments
satisfying intended properties so that the chosen set arguably
can be viewed as representing a coherent world view.

In the abstract approach, Dung’s argumentation frame-
works (AFs) (Dung 1995) and their associated semantics
are widely used. In a nutshell, an AF is a directed graph
with each vertex being an abstract argument and each di-
rected edge corresponding to an attack from one argument
to another. These attacks are then resolved using appropri-
ate semantics. The semantics are typically based on two im-
portant concepts, namely conflict-freeness and admissibility.
The former states that if there is a conflict between two ar-
guments, i.e. one argument attacks the other, then the two
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cannot be jointly accepted. The latter specifies that every set
of accepted arguments must defend itself against attacks. A
variety of semantics has been defined, ranging from Dung’s
original complete, preferred, stable, and grounded semantics
to the more recent ideal and cf2 semantics. The different
semantics reflect different intuitions about what “coherent
world view” means in this context, see e.g. (Baroni, Cami-
nada, and Giacomin 2011) for an overview.

Despite their popularity, there have been various attempts
to generalize AFs as many researchers felt a need to cover
additional relevant relationships among arguments (see e.g.
the work of Cayrol and Lagasquie-Schiex, 2009). One of
the most systematic and flexible outcomes of this research
are abstract dialectical frameworks (ADFs) (Brewka and
Woltran 2010; Brewka et al. 2013). ADFs allow for arbi-
trary relationships among arguments. In particular, argu-
ments can not only attack each other, they also may pro-
vide support for other arguments and interact in various
complex ways. This is achieved by adding explicit accep-
tance conditions to the arguments which are most naturally
expressed in terms of a propositional formula (with atoms
referring to parent arguments). This way, it is possible
to specify individually for a particular argument, say, un-
der what conditions the available supporting arguments out-
weigh the counterarguments. Meanwhile various applica-
tions of ADFs have been presented, for instance in legal rea-
soning (Al-Abdulkarim, Atkinson, and Bench-Capon 2014;
2016) and text exploration (Cabrio and Villata 2016). A mo-
bile argumentation app based on ADF techniques was devel-
oped by Pührer (2017).

The operator-based semantics of ADFs can be traced
back to the work of Denecker, Marek, and Truszczyński
(2000; 2003; 2004) on approximation fixpoint theory (AFT),
an algebraic framework for studying semantics of knowl-
edge representation formalisms. We refer to the work of
Strass (2013) for a detailed analysis of the relationship be-
tween ADFs and AFT. The presentation of our approach in
this paper does not assume specific background knowledge
in AFT.

The motivation for the work presented here is as follows.
The definition of the various ADF semantics is based on
an analysis in terms of partial two-valued (or, equivalently,
three-valued) interpretations. The output provided by ADFs
(and AFs, for that matter) is thus restricted to three options:
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an argument either is true (accepted) in an intended inter-
pretation, or it is false (rejected), or its value is unknown.
However, many situations in argumentation call for more
fine-grained distinctions (see, e.g. (Alsinet et al. 2017) for
an application of weighted argumentation in the Twitter do-
main). For instance, it is sometimes natural to assume nu-
merical acceptance degrees, say, taken from the unit inter-
val, and to explore the effect of these degrees on other argu-
ments. The availability of such acceptance degrees allows
for new, interesting types of queries to be asked. For in-
stance, under a given semantics (stable, preferred, complete,
. . . ), we may want to know whether the value of a particular
argument s is above/below a certain threshold in some or all
interpretations of the required type. It also may be useful to
be able to distinguish among a finite number of acceptance
degrees, say strong accept, weak accept, neutral, weak re-
ject and strong reject. Or it may even be useful to operate on
intervals of acceptance degrees.

The goal of this paper is to show how the ADF approach
(and thus AFs) can accommodate such acceptance degrees.
To put it differently, we aim to bridge two rich research ar-
eas, multi-valued logics on the one hand and computational
models of argumentation on the other.

We start with the necessary ADF background in section 2.
We then introduce our general framework for weighted
ADFs in section 3. Section 4 focuses on ADFs with ac-
ceptance degrees in the unit interval. Section 5 applies the
same idea to three other valuation structures. Complexity
results for various problems related to weighted ADFs are
presented in Section 6. Section 7 discusses related work and
concludes.

2 Background

An ADF is a directed node-labelled graph (S,L,C) whose
nodes represent statements. The links in L represent depen-
dencies: the status of a node s only depends on the status of
its parents (denoted par(s)), that is, the nodes with a direct
link to s. In addition, each node s is labelled by an associ-
ated acceptance condition Cs specifying the conditions un-
der which s is acceptable, whence C = {Cs}s∈S . Formally,
the acceptance condition Cs of node s with parents par(s)
is a function Cs : (par(s)→ {t, f})→ {t, f}. It is conve-
nient to represent the acceptance conditions as a collection
Φ = {ϕs}s∈S of propositional formulas (using atoms from
par(s) and connectives ∧, ∨, ¬). Then, for any interpreta-
tion w : par(s) → {t, f}, we have Cs(w) = w(ϕs), that is,
the acceptance condition Cs evaluates w just like w evalu-
ates ϕs. This leads to the logical representation of ADFs we
will frequently use, where an ADF is a pair (S,Φ) with the
set of links L implicitly given as (a, b) ∈ L iff a appears in
ϕb.

Semantics assign to ADFs a collection of partial two-
valued interpretations, i.e. mappings of the statements to
values {t, f ,u} where u indicates that the value is unde-
fined. Mathematically such interpretations are equivalent to
3-valued interpretations, but for the purposes of this paper it
is beneficial to view them (interchangeably) also as partial
interpretations. The three values are partially ordered by ≤i

according to their information content: ≤i is the ⊆-least par-
tial order containing u ≤i t and u ≤i f . As usual we write
v1 <i v2 whenever v1 ≤i v2 and not v2 ≤i v1. The in-
formation ordering ≤i extends in a straightforward way to
partial interpretations v1, v2 over S in that v1 ≤i v2 if and
only if v1(s) ≤i v2(s) for all s ∈ S.

A partial interpretation v is total if all statements are
mapped to t or f . For interpretations v and w, we say that
w extends v iff v ≤i w. We denote by [v]2 the set of all
completions of v, i.e. total interpretations that extend v.

For an ADF D = (S,L,C), statement s ∈ S and a partial
interpretation v, the characteristic operator ΓD is given by

ΓD(v)(s) =

⎧⎨
⎩
t if Cs(w) = t for all w ∈ [v]2,

f if Cs(w) = f for all w ∈ [v]2,

u otherwise.

That is, the operator returns an interpretation mapping a
statement s to t (resp. f ) if and only if all two-valued inter-
pretations extending v evaluate ϕs to true (resp. false). Intu-
itively, ΓD checks which truth values can be justified based
on the information in v and the acceptance conditions.

Given an ADF D = (S,L,C), a partial interpretation v
is grounded with respect to D if it is the least fixpoint of
ΓD; it is admissible with respect to D if v ≤i ΓD(v); it is
complete with respect to D if v = ΓD(v); it is a model of D
if it is complete and total; it is preferred with respect to D
if v is maximally admissible with respect to ≤i. As shown
in (Brewka et al. 2013) these semantics generalize the corre-
sponding notions defined for AFs. For σ ∈ {adm, com, prf},
σ(D) denotes the set of all admissible (resp. complete, pre-
ferred) interpretations with respect to D.

Example 1. Given ADF D over {a, b} with ϕa = a ∨ ¬b,
ϕb = ¬a, and v1 = {a �→ u, b �→ u}, v2 = {a �→ t, b �→
u}, v3 = {a �→ t, b �→ f}, v4 = {a �→ f , b �→ t}, we get
adm(D) = {v1, v2, v3, v4}, com(D) = {v1, v3, v4} (note
ΓD(v2) = v3, thus v2 /∈ com(D)), and prf(D) = {v3, v4}. 	

3 The General Framework

In this section we introduce weighted ADFs (wADFs). More
precisely, we introduce a general framework which allows us
to define wADFs over a chosen set V of values (acceptance
degrees) based on an information ordering ≤i on V ∪ {u}.1

Definition 1. A weighted ADF (wADF) over V is a tuple
D = (S,L,C, V,≤i), where

• S is a set (of nodes, statements, arguments; anything one
might accept or not),

• L ⊆ S × S is a set of links,
• V is a set of truth values with u �∈ V ,
• C = {Cs}s∈S is a collection of acceptance conditions

over V , that is, functions Cs : (par(s)→ V )→ V ,
• (Vu,≤i) – where Vu = V ∪ {u} – forms a complete par-

tial order with least element u.

1Slightly abusing notation we write ≤i for both the specific
ADF ordering ({t, f ,u} ,≤i) and the generic ordering used here.
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As for standard ADFs, the special value u represents an
undefined truth value. As usual, (Vu,≤i) forms a com-
plete partial order (CPO) iff: (1) it has a least element, here
u ∈ Vu, (2) each non-empty subset X ⊆ Vu has a great-
est lower bound

�
i X ∈ Vu, and (3) each ascending chain

x1 ≤i x2 ≤i . . . over Vu has a least upper bound in Vu.
ADFs are a special case of wADFs with V = {t, f} and

the information ordering as defined in the background sec-
tion. We provide a formal result in Theorem 5 below.

As for ADFs, we will use propositional formulas ϕs in-
terpreted over V to specify acceptance conditions. The un-
derstanding is that a formula ϕs specifies a function Cs such
that for each interpretation w : par(s)→ V , Cs(w) is ob-
tained by considering w(ϕs), the evaluation of the formula
ϕs under the interpretation w. Unlike in classical proposi-
tional logic, there is no single standard way of interpreting
formulas in the multi-valued case. Thus the user (specifying
the wADF) should state how formulas are to be evaluated
under interpretations of atoms by values from V .

In case the truth values in V are ≤i-incomparable, the
information ordering on the truth values Vu = V ∪ {u} can
be defined analogously to the ordering for standard ADFs
(where V = {t, f} with t �≤i f and f �≤i t).
Definition 2. Let V be a set of truth values with u /∈ V . A
relation ≤i ⊆ Vu × Vu is flat iff for all x, y ∈ Vu:

x ≤i y iff x = u or x = y

Likewise, a wADF (S,L,C, V,≤i) is flat iff ≤i is flat.
As mentioned above, clearly all standard ADFs are flat.

For flat orderings, the greatest lower bound of a subset
X ⊆ Vu is obtained thus:

�
i X =

{
x if X = {x}
u otherwise

We now define the semantics. A semantics σ takes a
wADF D over V and produces a collection σ(D) of partial
interpretations from S to V , that is, functions v : S → Vu

with Vu = V ∪ {u} where u represents the fact that the
value of a certain node is undefined. Given that for stan-
dard ADFs the interpretations of interest are partial func-
tions from S to {t, f} (or, equivalently, functions from S to
{t, f ,u}), this is the obvious generalization we need.2 Let
D = (S,L,C, V,≤i) be a wADF over V . As for standard
ADFs, the characteristic operator for D takes a partial inter-
pretation v and produces a new interpretation, ΓD(v). The
new partial interpretation collects information from and me-
diates between all completions of v. A completion of v (as
in the standard case) is any interpretation w that behaves like
v whenever v is defined and assigns an arbitrary value from
V otherwise. More formally: w(a) = v(a) if v(a) �= u and
w(a) ∈ V if v(a) = u. Note that each completion w is a
total interpretation w : S → V satisfying v ≤i w.

Formally, the operator is defined as follows: for each
s ∈ S, the truth value ΓD(v)(s) is the greatest lower

2This differs from approaches like (Amgoud and Ben-Naim
2017) which consider weight assignments as part of the input and
is more in line with research in multi-valued logics.

bound with respect to (Vu,≤i) (the consensus) of the set
{Cs(w) | w ∈ [v]c}, where the set [v]c contains all comple-
tions of v. With these specifications the rest is entirely anal-
ogous to the definitions for standard ADFs.
Definition 3. Let D = (S,L,C, V,≤i) be a wADF and
v : S → Vu. Applying ΓD to v yields a new interpretation
(the consensus over [v]c) defined as

ΓD(v) : S → Vu with s �→ �
i {Cs(w) | w ∈ [v]c}

where
�

i denotes the greatest lower bound in (Vu,≤i).
As usual, we can now define the semantics via fixpoints.

Definition 4. An interpretation v of a wADF D =
(S,L,C, V,≤i) is
• a model of D iff v(s) �= u for all s ∈ S and ΓD(v) = v.

Intuition: the value of a node s in v is exactly the one
required by the acceptance condition of S.

• grounded for D iff v = lfp(ΓD), i. e., v is the least fix-
point of ΓD.
Intuition: v collects all the information which is beyond
any doubt.

• admissible for D iff v ≤i ΓD(v).
Intuition: v does not contain unjustifiable information.

• preferred for D iff it is ≤i-maximal admissible for D.
Intuition: v has maximal information content without giv-
ing up admissibility.

• complete for D iff v = ΓD(v).
Intuition: v contains exactly the justifiable information.
Again we use adm(D), com(D) and prf(D) to denote the

set of all admissible, complete and preferred interpretations
for D, respectively. Moreover, mod(D) gives the set of all
models of D.

We want to emphasize that we have to show existence of
the least fixpoint of ΓD, otherwise the grounded interpreta-
tion is not well-defined. The simplest way to do this is to
show monotonicity of the operator ΓD.

To this end, we lift the information ordering on Vu point-
wise to interpretations over Vu. For v, w : S → Vu, we set

v ≤i w iff ∀s ∈ S : v(s) ≤i w(s)

The pair ({v : S → Vu} ,≤i) then forms a CPO in which
the characteristic operator ΓD of wADFs is monotone.
Proposition 1. The operator ΓD is ≤i-monotone, that is:
for all interpretations v, w : S → Vu we have that v ≤i w
implies ΓD(v) ≤i ΓD(w).

Existence of the least fixpoint of ΓD then follows via the
fixpoint theorem for monotone operators in complete partial
orders (see, e.g., Davey and Priestley, 2002, Theorem 8.22).

The following result is a generalization of Theorem 25 of
Dung (1995) and Theorem 1 by Brewka et al. (2013).
Theorem 2. Let D be a weighted ADF with an information
ordering ≤i.
1. Each preferred interpretation for D is complete, but not

vice versa.
2. The grounded interpretation for D is the ≤i-least com-

plete interpretation.
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3. The complete interpretations for D form a complete meet-
semilattice with respect to ≤i.
Next, we show that the well-known relationships between

Dung semantics carry over to our generalizations.
Theorem 3. Let D be a weighted ADF. It holds that

mod(D), prf(D) ⊆ com(D) ⊆ adm(D).

If D is flat, then additionally mod(D) ⊆ prf(D).
The proviso that D = (S,L,C, V,≤i) be flat is necessary

for the inclusion mod(D) ⊆ prf(D): consider S = {a} with
L = {(a, a)} and Ca given by w �→ w(a) (that is, ϕa = a);
now if there are x, y ∈ V with x <i y, then we find that
v = {a �→ x} is a model that is not preferred.

Another result concerns acyclic wADFs, i.e. ADFs
(S,L,C, V,≤i) where (S,L) forms an acyclic directed
graph and generalizes a recent result of Keshavarzi (2017).
Theorem 4. For any acyclic wADF D with finite S,
com(D) = prf(D) = {v} with v the grounded interpre-
tation of D.

In the rest of this section we show how stable semantics
can be generalized to weighted ADFs. The basic idea under-
lying stable semantics is to treat truth values asymmetrically.
For standard ADFs where only t and f can appear in mod-
els, f (false) can be assumed to hold (by default), whereas
t (true) needs to be justified by a derivation. Technically
this is achieved by building the reduct of an ADF and then
checking whether the grounded interpretation of the reduct
coincides with the original model on the nodes which “sur-
vive” in the reduct.

Moving from the two-valued to the multi-valued case of-
fers an additional degree of freedom: it is not clear a priori
what the assumed, respectively derived truth values are. The
stable semantics we introduce here will thus be parameter-
ized by a subset W of the set of values V over which the
weighted ADF is defined.
Definition 5. Let D = (S,L,C, V,≤i) be a wADF. Let
v : S → V be a model of D (that is, v is total). Let W ⊆ V
be the set of assumed truth values. The v,W -reduct of D is
the wADF Dv

W = (Sv
W , Lv

W , Cv
W , V,≤i) where

• Sv
W = {s ∈ S | v(s) /∈ W},

• Lv
W = L ∩ (Sv

W × Sv
W ),

• Cv
W = (C ′

s)s∈Sv
W

where C ′
s is obtained from Cs by fixing

the value of each parent s∗ of s in D such that s∗ /∈ Sv
W

to v(s∗).
Note that whenever the acceptance function is represented

using propositional formulas, the new acceptance function
is simply obtained by replacing atoms not in Sv

W by their
v-values. Now stable models can be defined as usual:
Definition 6. Let D = (S,L,C, V,≤i) be a wADF and let
v : S → V be a model of D. Let vg be the grounded inter-
pretation of the v,W -reduct of D. v is a W -stable model of
D iff v(s) = vg(s) for each s ∈ Sv

W .
This clearly generalizes stable semantics for standard

ADFs: just let V = {f , t} and W = {f}. We conclude this
section by showing the exact relationship between ADFs and
wADFs.

Theorem 5. Let F = (S,L,C) be an ADF. The wADF as-
sociated to F is DF = (S,L,C, {t, f},≤i) with ≤i as de-
fined in the background section. An interpretation v is a
model/admissible/complete/preferred/grounded for F iff it
is a model/admissible/complete/preferred/grounded for DF .
Moreover, v is stable for F iff it is {f}-stable for DF .

4 Weighted ADFs Over the Unit Interval

In this section we focus on weighted ADFs over the unit in-
terval, that is, wADFs over V = [0, 1]. As discussed in Sec-
tion 3, we will use propositional formulas ϕs to specify ac-
ceptance conditions over [0, 1]. In the subsequent examples,
we employ a formula evaluation that is defined via struc-
tural induction as follows: w(ϕ ∧ ψ) = min {w(ϕ), w(ψ)},
w(ϕ ∨ ψ) = max {w(ϕ), w(ψ)}, and w(¬ϕ) = 1− w(ϕ).
(Clearly, a richer formula syntax and other evaluations
known from multi-valued logics are possible, but not the
main topic of this paper.) We furthermore allow (represen-
tations of) elements of V to appear as atoms in the propo-
sitional formulas ϕs and let w(a) = a for a ∈ V . This en-
ables us to fix acceptance degrees for specific nodes, and to
express upper and lower bounds. For instance, the formula
φ ∧ 0.7 expresses that the acceptance degree of a node can-
not be higher than 0.7, and similarly φ ∨ 0.7 expresses that
the acceptance degree cannot be below 0.7.

Example 2. Consider wADF D over [0, 1] depicted below.

a bc d

0.8 ¬ba ∧ b ¬b ∨ 0.6
Intuitively, ϕa fixes the value of a to 0.8. ϕb expresses self-
attack. ϕc means c is accepted to the extent a and b are,
while d is attacked by b. In addition, it is known, for what-
ever reason, that the value of d must be at least 0.6.

We represent a partial interpretation v as the tuple
(v(a), v(b), v(c), v(d)). The grounded interpretation can be
obtained by iterating ΓD on the interpretation (u,u,u,u).
We obtain the least fixpoint v1 = (0.8,u,u,u). The
(unique) model of D is v2 = (0.8, 0.5, 0.5, 0.6). This model
is W -stable for W = {x ∈ [0, 1] | x ≤ 0.5}. To see this,
consider the W -reduct which consists of nodes a and d with
reduced acceptance conditions 0.8 and 0.5 ∨ 0.6, respec-
tively. The grounded interpretation assigns to these nodes
exactly the values they have in v2, namely 0.8 and 0.6. Note
that v2 is not W -stable for W = {x ∈ [0, 1] | x < 0.5}.
In this case the reduct is identical to D and the grounded
interpretation v1 of D differs from v2.

Interpretations v1 and v2 are also the only complete ones.
An interpretation v is admissible for D if and only if

1. v(a) = u or v(a) = 0.8,
2. v(b) = u or v(b) = 0.5,
3. v(c) = u (if v(a) = u or v(b) = u) or

v(c) = 0.5 (if v(a) = 0.8 and v(b) = 0.5), and
4. v(d) = u (if v(b) = u) or v(c) = 0.6 (if v(b) = 0.5).

The single preferred interpretation for D is v2. 	
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We next explore the relation between wADFs over the
unit interval and ADFs. For the proposition we identify the
ADF truth values t and f with 1 and 0, respectively. We have
the following result:
Proposition 6. Let D = (S,L,C, V,≤i) be a wADF with
no constants other than 0 or 1 appearing in any acceptance
formula of C, and D′ = (S,L,C, {0, 1},≤′

i) be its classical
version (with ≤′

i=≤i ∩ ({0, 1,u} × {0, 1,u})). Further-
more, let v be a partial interpretation assigning truth values
in {0, 1,u} only, and s ∈ S.
• If ΓD(v)(s) ∈ {0, 1}, then ΓD′(v)(s) ∈ {0, 1}.
• If ΓD′(v)(s) = u, then ΓD(v)(s) = u.

This result cannot be strengthened, in particular
ΓD′(v)(s) may be 1 or 0, yet ΓD(v)(s) = u, as illustrated
as follows:
Example 3. Consider the graph consisting of nodes a, b
with acceptance formulas ϕa = a and ϕb = a ∨ ¬a. It is
easy to see that in the weighted case the grounded interpreta-
tion is {a �→ u, b �→ u}. In contrast, the standard approach
yields the grounded interpretation {a �→ u, b �→ 1}. This is
due to the fact that a ∨ ¬a is a tautology in two-valued logic,
but not when the unit interval and the above specified for-
mula evaluation is used. Here the formula may have any
value x ≥ 0.5. 	

A possible remedy would be to define non-standard inter-
pretations ∧∗,∨∗ for the connectives ∧,∨, for example:
• x ∧∗ y = 1 if x > 0.5 and y > 0.5; x ∧∗ y = 0 otherwise
• x ∨∗ y = 1 if x > 0.5 or y > 0.5; x ∨∗ y = 0 otherwise
However, this approach appears to throw out the baby with
the bath water: the different behavior of wADFs in such ex-
amples stems from the fact that they make more fine-grained
distinctions. It is thus not unintended. Note also that there is
an easy alternative option to specify tautological acceptance
conditions for wADFs: simply replace a ∨ ¬a with 1.

So far we have used a flat information ordering with least
element u and different elements in [0, 1] incomparable. Of
course, nothing prevents us from choosing a more refined
ordering, for instance the ordering ≤′

i given by
x ≤′

i y iff x ≤i y or y < x ≤ 0.5 or 0.5 ≤ x < y

That is, 0.5 is immediately above u, and a value smaller than
0.5 is more informative if it is closer to 0, a value greater
than 0.5 is more informative if it is closer to 1. The pair
([0, 1] ∪ {u} ,≤′

i) again forms a complete partial order; for
any non-empty X ⊆ [0, 1] ∪ {u}, its greatest lower bound
is given by

�′
i X =

⎧⎪⎪⎨
⎪⎪⎩

u if u ∈ X

infX if X ⊆ [0.5, 1]

supX if X ⊆ [0, 0.5]

0.5 otherwise

where inf and sup are greatest lower bound and least upper
bound in the complete lattice ([0, 1],≤). The CPO property
extends to the pointwise extension of ≤′

i to valuations. Thus
for any D = (S,L,C, [0, 1],≤′

i), its characteristic wADF
operator ΓD is well-defined, in particular its least fixpoint
lfp(ΓD) exists and is uniquely determined.

Example 4. Consider again Example 2, but this time with
information ordering ≤′

i. Again we iterate ΓD on the in-
terpretation (u,u,u,u). With the extended information or-
dering we obtain the least fixpoint v1 = (0.8, 0.5, 0.5, 0.6).
The more refined information ordering thus leads to more
informative results, as expected. Due to space constraints
determining the other semantics is left to the reader. 	

In general, arbitrary CPO-preserving refinements of the
information ordering have the following effects: (1) The
model semantics is unaffected, since it is independent of
the information ordering, but only depends on the truth val-
ues V ; (2–4) grounded, admissible, preferred, and complete
semantics may increase in information content, but never de-
crease.

Proposition 7. Let D = (S,L,C, V,≤i) be a wADF with
information-ordering CPO (Vu,≤i). Furthermore let
≤′

i ⊆ Vu × Vu with ≤i ⊆ ≤′
i be such that (Vu,≤′

i) is a
CPO, and define D′ = (S,L,C, V,≤′

i). Then for each
v : S → Vu and each w : S → V , we have:

1. ΓD(w) = w if and only if ΓD′(w) = w;
2. lfp(ΓD) ≤i lfp(ΓD′);
3. adm(ΓD) ⊆ adm(ΓD′); and
4. if v ∈ prf(ΓD) (v ∈ com(ΓD)) then there is a

v′ ∈ prf(ΓD′) (v′ ∈ com(ΓD′)) with v ≤′
i v

′.

5 Alternative Valuation Structures

In the last section we considered values in [0, 1]. Of course,
there are many more options which have been studied in-
tensively in the area of multi-valued logics (an excellent
overview was given by Gottwald, 2015), e.g.

• Wm = { k
m−1 | 0 ≤ k ≤ m− 1},3 or

• Belnap’s 4-valued system with {∅, {⊥}, {�}, {⊥,�}}.

Given D = (S,L,C, V,≤i), for any chosen set of truth
degrees V , an interpretation assigns a value from V to
nodes in S, and the characteristic operator ΓD works on
partial V -interpretations, that is, on functions of the type
S → Vu where u /∈ V . Acceptance conditions are of the
form Cs : (par(s)→ V )→ V . As before we will represent
acceptance conditions as propositional formulas, this time
interpreted over V .

To make ADF techniques work we need to define the eval-
uation of propositional connectives over V , thus specifying
which acceptance condition a formula actually represents,
and the information ordering, as done for [0, 1] in Section 4.

The literature on multi-valued logics provides a rich
source of alternative valuation structures with different ben-
efits and properties. It also offers a wide range of op-
tions regarding different evaluations of propositional formu-
las (e. g., Gödel, Łukasiewicz, etc.). The only general con-
straint is that the information ordering ≤i on V ∪ {u} must
form a complete partial order (CPO) with least element u.

In the following we illustrate the use of alternative valua-
tion structures using three different examples.

3As an example consider W5 = {0, 1
4
, 1
2
, 3
4
, 1}.
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W3: Let us start with W3 = {0, 0.5, 1} We define formula
evaluation as before, that is, 0, 0.5, and 1 evaluate to them-
selves, ∧ to min, ∨ to max, and ¬y to 1− y. We choose as
the information ordering the smallest reflexive relation con-
taining u ≤i x for all x ∈ W3, where the remaining values
are incomparable if they are different.

This fully specifies wADFs based on W3. Note that
0.5 �= u. This makes perfect sense as saying “the accep-
tance degree is 0.5” is different from saying “the acceptance
degree is unknown”.
Belnap: We show how the truth degrees in Belnap’s four-
valued logic can be used in wADFs. The truth degrees are

B = {∅, {⊥}, {�}, {⊥,�}}.
As to formula evaluation we use the standard definitions
for Belnap’s logic: conjunction/disjunction are the in-
fimum/supremum under the truth ordering ≤t; negation
swaps {⊥} and {�}, and leaves the other two values un-
changed. The truth ordering is the reflexive closure of:

{⊥} ≤t ∅ ≤t {�} {⊥} ≤t {⊥,�} ≤t {�}
The information ordering is the reflexive closure of:

u ≤i ∅ ≤i {�} ≤i {⊥,�} u ≤i ∅ ≤i {⊥} ≤i {⊥,�}
With these definitions, the operator ΓD and thus the 4-valued
wADF system is fully specified. Note again that u �= ∅;
treating them as identical would yield a different system.
Intervals: Our approach can also handle intervals. Let us
illustrate this idea using intervals from within the unit inter-
val as truth degrees, that is we consider truth values in

INT = {[a, b] | 0 ≤ a ≤ b ≤ 1}.
Formula evaluation can be defined as follows:

[a, b] ∧∗ [c, d] = [min(a, c),min(b, d)]

[a, b] ∨∗ [c, d] = [max(a, c),max(b, d)]

¬∗[a, b] = [1− b, 1− a]

The information ordering is the ⊆-least relation satisfying
(1) u ≤i v for all v ∈ INT, and (2)

[a, b] ≤i [c, d] whenever [c, d] ⊆ [a, b],

which fully defines the characteristic operator ΓD.

6 Computational Complexity

In this section we give a preliminary complexity analysis
of weighted ADFs. For this we assume that all acceptance
conditions are specified via propositional formulas, which,
additionally, may contain constants from a pre-specified and
fixed set of values V . Further, we assume that evaluating
an acceptance condition under an interpretation that assigns
no statement to u can be done in polynomial time, and that
comparing two values under the, again pre-specified and
fixed, information ordering can, likewise, be computed in
polynomial time with respect to the size of the given wADF.
That is, both V and ≤i are fixed (|V | is a constant) and not
part of the input for the problems we study in this section.

We first show that, under fixed and finite valuation struc-
tures V , complexity upper bounds of wADFs remain the
same as for classical ADFs (Strass and Wallner 2015) for
several central computational tasks. As for ADFs, a corner-
stone auxiliary complexity result is the following for check-
ing whether a given interpretation is admissible in a given
wADF.
Proposition 8. Verifying whether a given interpretation is
admissible in wADFs with fixed and finite valuation struc-
tures is in coNP.

Based on the previous result, checking whether there ex-
ists an admissible interpretation for a given wADF that as-
signs a given value, different to u, to a given statement,
has the same complexity upper bound as the analogous task
of credulous acceptance on ADFs. The complexity class
Σp

2 contains all problems solvable via a non-deterministic
polynomial-time algorithm that has access to an NP-oracle
(which can solve problems in NP in constant time).
Proposition 9. Checking whether there is an admissible in-
terpretation assigning a given statement a given value for
wADFs with fixed and finite valuation structures is in Σp

2.

Checking whether all preferred interpretations for a given
wADF assign a given value, different to u, to a given state-
ment, has the same complexity upper bound as the analo-
gous task of skeptical acceptance on ADFs. The class Πp

3 is
the complement class ofΣp

3 (contains the complements of all
problems in Σp

3), which in turn contains all problems solv-
able via a non-deterministic polytime algorithm with access
to a Σp

2-oracle.
Proposition 10. Checking whether all preferred interpreta-
tions assign a given statement a given value for wADFs with
fixed and finite valuation structures is in Πp

3.

Analogously to ADFs, the same complexity upper bound
for existence of stable models can be derived for wADFs
with fixed and finite valuation structures. The assumed val-
ues can be arbitrarily chosen among the fixed V .
Proposition 11. Checking existence of stable models is in
Σp

2 for wADFs with fixed and finite valuation structures.

Complexity lower bounds depend on the fixed V , infor-
mation ordering, and formula evaluation. Non-weighted
ADFs (i. e., V = {t, f}) are an example where, for the cor-
responding fixed components, the complexity lower bounds
match the previously shown upper bounds.

Finally, we show a result for wADFs over the unit inter-
val. As before, we make the same assumptions on the accep-
tance conditions, but let V be the unit interval and assume
a flat information ordering (u is strictly lower than all other
elements, and all other elements are incomparable), and as-
sume formula evaluation as defined in Section 4. Although
ADFs are not a special case, with respect to all semantics, of
such wADFs, coNP-hardness of verifying whether a given
interpretation is admissible follows from a similar argument
as for classical (non-weighted) ADFs.
Proposition 12. Verifying whether a given interpretation is
admissible in wADFs over the unit interval with flat infor-
mation ordering is coNP-hard.
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7 Related Work and Conclusions

In this paper we introduced a framework for defining
weighted ADFs, a generalization of ADFs allowing to assign
acceptance degrees to arguments. The framework is fully
flexible regarding the choice of acceptance degrees and their
associated information ordering. We have provided defini-
tions of the main semantics and showed a number of prop-
erties together with a preliminary complexity analysis.

There is quite some work on weighted argumentation
frameworks, and even a section entitled “Weighted ADFs”
in (Brewka and Woltran 2010). In many cases weights of
some sort are added to the links in the argument graph, not
to the nodes. For instance, Brewka and Woltran use weights
on links to simplify the definition of acceptance conditions,
an idea that has later been extended to the GRAPPA frame-
work (Brewka and Woltran 2014). In (Dunne et al. 2011)
weights on links are used as an “inconsistency budget”: at-
tacks may be disregarded as long as the sum of the weights
of disregarded attacks remains under some threshold.

Here we focus on papers assigning acceptance degrees to
argument nodes. One such approach is Gabbay’s equational
theory of argumentation frameworks (Gabbay 2012). He al-
lows for values in the unit interval and represents AFs in an
equational form, where the equations specify certain con-
straints value assignments need to satisfy.

There are also probabilistic extensions of AFs, e.g. (Dung
and Thang 2010; Li, Oren, and Norman 2011; Hunter 2013;
Hunter and Thimm 2014a; 2014b) (for a complexity anal-
ysis for probabilistic AFs see (Fazzinga, Flesca, and Parisi
2015)), and even of ADFs (Polberg and Doder 2014). The
main idea is to generate several standard AFs (resp. ADFs)
which represent the possible situations induced by the prob-
abilities. The latter can be assigned to arguments, attacks,
and in case of ADFs, to acceptance conditions. The evalua-
tion of frameworks generated this way follows the standard
approach, and the results of these evaluations are aggregated
accordingly. The behavior of the semantics is thus triggered
via all relevant subgraphs. A related approach in a multi-
valued setting is (Dondio 2014; 2017).

Social AFs (Leite and Martins 2011) extend standard AFs
by adding to each argument associated numbers of positive
and negative votes. The semantics describe how the votes
propagate through the network, yielding a non-linear sys-
tem of equations. Recently, several properties and seman-
tics for weighted AFs have been proposed in (Amgoud, Ben-
Naim, and Vesic 2017; Amgoud et al. 2017). In those works,
weights for arguments are also given from the unit interval,
interpreted in the sense that the greater the value the more
acceptable the argument. The focus is on the definition of
new semantics dedicated for weighted AFs, rather than on
generalizing standard semantics. However, the properties
proposed in (Amgoud et al. 2017) adapted to our setting are
of interest and thus are on our agenda for future work.

Finally in (Besnard and Hunter 2001) acceptance grades
of arguments are derived from the structure of the argument
tree. The authors attempt to “provide an abstraction of an
argument tree in the form of a single number”. In a simi-
lar vein Grossi and Modgil (2015) derive acceptance grades
from the structure of the underlying AF, e.g. the number

of attacks against which a particular argument is defended.
These approaches are orthogonal to ours.

Our generalization of ADFs differs significantly from the
mentioned papers in at least the following respects:

1. We are more general than existing work (with the excep-
tion of the work of Polberg and Doder, 2014) in taking
ADFs rather than AFs as starting point.

2. Rather than focusing on a single set of acceptance values,
we provide a framework where the values can be freely
selected based on the needs of a particular application.

3. Our semantics are a direct generalization of the operator-
based ADF semantics and does not require the compu-
tation and aggregation of results for various subgraphs.
Moreover, we obtain reasonable results also in cases
where equational approaches do not have solutions.

4. Finally, the choice of an adequate information ordering
allows us to do some fine tuning which is not possible in
any approach we are aware of.

As to future work, we first want to explore restricted sub-
classes of weighted ADFs. In particular, we would like to
exploit the known concept to express Dung AFs as ADFs
(see (Brewka et al. 2013), Theorem 2) in order to investi-
gate a new form of weighted AFs as a subclass of weighted
ADFs. Our general definitions of the standard semantics
for weighted ADFs will readily deliver natural definitions
of semantics for such weighted AFs. Furthermore, the
subclass of bipolar ADFs has been recognised as a useful
class, as they are strictly more expressive than AFs while of
equal computational complexity (Strass and Wallner 2015;
Strass 2015; Linsbichler, Pührer, and Strass 2016), so we
intend to investigate weighted bipolar ADFs. A first step
would be the generalization of supporting and attacking
links to the multi-valued setting, for example via regarding
of acceptance functions’ monotonicity and antimonotonicity
in single (function) arguments (Baumann and Strass 2017).

We also would like to explore an idea that goes back
to Bogaerts, Vennekens, and Denecker (2016). In our ap-
proach, as in standard AFT, interpretations v : S → V of
atoms S with truth values V are approximated by functions
v′ : S → Vu with Vu = V ∪ {u} for u /∈ V . Such three-
valued/partial interpretations consequently represent the set
of their completions. However, not all sets of total inter-
pretations can be represented as completions of a partial in-
terpretation. This is due to the fact that partial interpreta-
tions either assign a specific value, or leave the value com-
pletely undefined. This suggests the following: A general-
ized partial interpretation (gpi ) of S in V is a total function
v : S → 2V \ {∅}, that is, a gpi assigns to each element of
S a non-empty subset of the values in V . In this new setting,
the total function w : S → V is a completion of v if and only
if for all s ∈ S, we have w(s) ∈ v(s). Based on the notion
of a gpi we can generalize the characteristic ADF operator
ΓD to operate on gpis rather than partial interpretations. For
each node s, the revised gpi ΓD(g) returns the set of values
that are obtained by evaluating the acceptance condition of
s under any completion of the input gpi g. A further investi-
gation of this topic is on our agenda.
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