
Measuring Strong Inconsistency

Markus Ulbricht
Department of Computer Science

Leipzig University
Germany

Matthias Thimm
Institute for Web Science and Technologies

University of Koblenz-Landau
Germany

Gerhard Brewka
Department of Computer Science

Leipzig University
Germany

Abstract

We address the issue of quantitatively assessing the severity
of inconsistencies in nonmonotonic frameworks. While mea-
suring inconsistency in classical logics has been investigated
for some time now, taking the nonmonotonicity into account
poses new challenges. In order to tackle them, we focus on
the structure of minimal strongly K-inconsistent subsets of
a knowledge base K—a generalization of minimal inconsis-
tency to arbitrary, possibly nonmonotonic, frameworks. We
propose measures based on this notion and investigate their
behavior in a nonmonotonic setting by revisiting existing ra-
tionality postulates, analyzing the compliance of the proposed
measures with these postulates, and by investigating their
computational complexity.

1 Introduction

In the literature on inconsistency measurement—see e. g.
(Hunter and Konieczny 2004; Grant and Hunter 2006;
Thimm 2016)—inconsistency measures are functions that
aim at assessing the severity of the inconsistency in knowl-
edge bases formalized in propositional logic. The basic in-
tuition behind an inconsistency measure I is that the larger
the inconsistency in K the larger the value I(K).

A simple but popular approach to measure inconsis-
tency is to take the number of minimal inconsistent sub-
sets (Hunter and Konieczny 2008), i. e., to define IMI(K) =
|Imin(K)|, where Imin(K) is the set of all minimal incon-
sistent subsets of a knowledge base K. This measure al-
ready complies with many basic ideas of inconsistency mea-
surement, in particular IMI(K) = 0 iff K is consistent. By
also taking the size and the relationships of minimal incon-
sistent subsets into account, a wide variety of different in-
consistency measures can be defined on top of that idea,
see e. g. (Hunter and Konieczny 2008; Jabbour et al. 2016;
Jabbour and Sais 2016).

Measuring inconsistency in nonmonotonic logics has
only recently gained some attention (Ulbricht, Thimm, and
Brewka 2016; Brewka, Thimm, and Ulbricht 2017) and a
thorough study is still needed. In this setting, a measure such
as IMI is not applicable as a consistent nonmonotonic knowl-
edge base K may contain minimal inconsistent subsets. In
(Brewka, Thimm, and Ulbricht 2017), a refined notion of

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

inconsistent subsets of a knowledge base K of a possibly
nonmonotonic framework has been introduced, called strong
K-inconsistency. The notion of strong inconsistency gener-
alizes classical inconsistency in a well-behaved manner as
it preserves many structural properties as e. g. the hitting set
duality with maximal consistent sets (Reiter 1987). More-
over, this notion allows us to generalize existing inconsis-
tency measures based on minimal inconsistent sets to arbi-
trary logics, which is the topic of the present paper.

Research in inconsistency measurement is driven by ra-
tionality postulates, i. e., desirable properties that should
hold for concrete approaches. There is a growing number of
rationality postulates for inconsistency measurement but not
every postulate is generally accepted, see (Besnard 2014)
for a discussion on this topic. The issue of measuring incon-
sistency in nonmonotonic frameworks requires some recon-
sideration compared to the classical setting. This becomes
apparent when considering the monotony postulate which
is usually satisfied by classical inconsistency measures and
demands I(K) ≤ I(K′) whenever K ⊆ K′ holds, i. e.,
the severity of inconsistency cannot be decreased by adding
new information. However, in nonmonotonic frameworks,
adding information may resolve conflicts. It is thus possible
that K is inconsistent, while K′ is not, so we would expect
I(K′) < I(K) for any reasonable measure I.

The main contributions of this paper can be summarized
as follows. As the basis of our investigation, we consider
generalized versions of three measures based on minimal in-
consistent sets (Section 2). In order to assess their behaviour,
we develop rationality postulates based on previous ones
from the literature. Some of the postulates still make sense
for a general, possibly nonmonotonic logic, but most of them
require refinements (Section 3). We analyze the measures
with respect to the postulates in Section 4 and assess their
computational complexity by considering natural decision
and function problems following (Thimm and Wallner 2016)
in Section 5. We apply our ideas to the problem of measur-
ing inconsistency wrt. given contexts, i. e., of relating values
of inconsistency of subsets of a knowledge base to inconsis-
tency of the whole knowledge base (Section 6). We discuss
related work in Section 7. Section 8 concludes.1

1An extended version of this paper with proofs can be found at
http://mthimm.de/misc/utb aaai18 ext.pdf

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1989

2 Measures for Strong Inconsistency

Since we are going to consider arbitrary (nonmonotonic)
frameworks, we start by giving an abstract definition of a
logic. We do so as in (Brewka, Thimm, and Ulbricht 2017).
Definition 2.1. A logic L is a tuple L =
(WF,BS, INC,ACC) where WF is a set of well-formed
formulas, BS is a set of belief sets (which itself can be
defined arbitrarily), INC ⊆ BS is an upward closed2 set
of inconsistent belief sets, and ACC : 2WF → 2BS assigns
a collection of belief sets to each subset of WF (belief
sets are representations of the knowledge which is implicit
in a set of formulas; ACC thus defines the semantics of
the logic by assigning beliefs sets to sets of formulas). A
knowledge base K of L is a finite subset of WF. A knowl-
edge base K is called inconsistent iff ACC(K) ⊆ INC. Let
I (K) and Imin(K) denote the inconsistent and ⊆-minimal
inconsistent subsets of K, respectively.

Note that a knowledge base K can be inconsistent be-
cause it has no belief sets, and consistent even if some
(but not all) of its belief sets are in INC. Observe that our
definition of a logic is general enough to capture estab-
lished monotonic and nonmonotonic frameworks like propo-
sitional logic, logic programming under answer set seman-
tics (Gelfond and Lifschitz 1988), abstract argumentation
frameworks (Dung 1995) and so on (Brewka, Thimm, and
Ulbricht 2017). We show how to cast logic programs un-
der the answer set semantics (Gelfond and Lifschitz 1991;
Gelfond and Leone 2002; Brewka, Eiter, and Truszczynski
2011) into our general definition of a logic.
Example 2.2. Let A be a set of propositional atoms and let
Lit(A) = A ∪ {¬a | a ∈ A} be the set of corresponding
literals. A disjunctive rule r is a rule of the form

l0 or ... or lk ← lk+1, . . . , lm,not lm+1, . . . ,not ln. (1)

with l0, . . . , ln ∈ Lit(A). Let WFASP
A be the set of all

such rules. A set P ⊆ WFASP
A is also called a logic

program for short. A rule r ∈ P of the form “a ←
lk+1, . . . , lm,not lm+1, . . . ,not ln,not a.” where a does
not occur elsewhere in P is called constraint and abbrevi-
ated by “← lk+1, . . . , lm,not lm+1, . . . ,not ln.”.

Furthermore, a belief set is any set of literals, i. e.,
BSASP

A = 2Lit(A). For a program P ⊆ WFASP
A without de-

fault negation (m = n) an answer set is a minimal set of
literals closed under all rules, where a set is closed under a
rule of form (1) iff at least one of the head literals l0, . . . , lk
is in the set whenever the body literals lk+1, . . . , lm are. For
a program P with default negation, a set M of literals is an
answer set iff M is an answer set of the reduct PM obtained
from P by (i) deleting rules with not lj in the body for some
lj ∈ M , and (ii) deleting default negated literals from the re-
maining rules.

Now let ACCASP
A (P) = {M | M is an answer set of P}

for all P ⊆ WFASP
A . Finally, inconsistent belief sets are

those sets containing complementary literals. This gives us
the logic LASP

A = (WFASP
A ,BSASP

A , INCASP
A ,ACCASP

A).

2S upward closed means B ∈ S and B ⊆ B′ implies B′ ∈ S.

Let WFASP∗
A ⊆ WFASP

A be the set of all rules of the form
(1) with k = 0. Then the logic corresponding to disjunction-
free logic programs under answer set semantics is LASP∗

A =

(WFASP∗
A ,BSASP

A , INCASP
A ,ACCASP

A).
Definition 2.3. (Brewka, Thimm, and Ulbricht 2017) A
logic L = (WF,BS, INC,ACC) is weakly monotonic when-
ever K ⊆ K′ implies: if B′ ∈ ACC(K′) then B ⊆ B′ for
some B ∈ ACC(K). We call such L monotonic for short.

Note that in a monotonic logic conflicts cannot be re-
solved, i. e., if K ⊆ K′ holds for two knowledge bases K
and K′ where K is inconsistent, then K′ is inconsistent as
well. We can now define strong K-inconsistency (Brewka,
Thimm, and Ulbricht 2017) for our general setting, which is
the central notion of this paper.
Definition 2.4. For H,K ⊆ WF with H ⊆ K, H is called
strongly K-inconsistent if H ⊆ H ′ ⊆ K implies H ′ is in-
consistent. The set H is called strongly inconsistent if it is
strongly WF-inconsistent.

We let SI (K) and SImin(K) denote the set of all strongly
K-inconsistent and all ⊆-minimal strongly K-inconsistent
subsets of K, respectively.

In (Brewka, Thimm, and Ulbricht 2017) it has been shown
that the notion of strong inconsistency faithfully generalizes
classical inconsistency to arbitrary logics. In particular, the
notions coincide for monotonic logics and the existence of a
strongly K-inconsistent subset of K is a necessary and suf-
ficient condition for inconsistency of K itself. Moreover, re-
moving from K any hitting set3 of SImin(K) yields a maxi-
mal consistent subset of K, which is also known as the hit-
ting set duality in classical logics, cf. (Reiter 1987). We refer
to (Brewka, Thimm, and Ulbricht 2017) for a more thorough
discussion of strong inconsistency.

We now introduce the inconsistency measures we are go-
ing to consider throughout this paper. Assume an arbitrary
but fixed logic L. In classical inconsistency measurement,
minimal inconsistent subsets of a knowledge base play an
important role as they can be seen as the “atomic conflicts”
within K. A rather simple but still popular approach to mea-
sure inconsistency is thus taking the value |Imin(K)|. The
notion of strong K-inconsistency facilitates the following
generalization of this measure to nonmonotonic logics. Let
R

∞
≥0 be the set of non-negative real values including ∞.

Definition 2.5. Define IMSI : 2
WF → R

∞
≥0 via IMSI(K) =

|SImin(K)|.
It has been noted that larger minimal inconsistent sets

should be considered “less inconsistent” than smaller ones
(see e. g. the lottery paradox). Making use of strong K-
inconsistency, we obtain the following measure based on one
from (Hunter and Konieczny 2008):
Definition 2.6. Define IMSIC : 2WF → R

∞
≥0 via IMSIC(K) =∑

H∈SImin(K)
1

|H| .

Instead of counting the number of sets in SImin(K), one
could also take the amount of formulas into account. Based

3A set H is called a hitting set of a set of sets S =
{S1, . . . , Sn} iff H ∩ Si �= ∅ for i = 1, . . . , n.

1990

on a measure in (Grant and Hunter 2011), we consider the
following, quite simple approach:
Definition 2.7. Let Ip : 2WF → R

∞
≥0 be the measure

Ip(K) = |⋃H∈SImin(K) H|.
Note that there are further variants in the classical setting

for taking minimal inconsistent sets into account for the task
of measuring inconsistency, see e. g. (Hunter and Konieczny
2008; Jabbour et al. 2016; Jabbour and Sais 2016). An inves-
tigation of generalizations of those is left for future work.

3 Rationality Postulates for General Logics
We are going to revisit rationality postulates for inconsis-
tency measures from the literature and phrase them within
the context of an arbitrary, possibly nonmonotonic, logic.
We will start by considering the four postulates which a ba-
sic inconsistency measure should have due to (Hunter and
Konieczny 2010). We will then continue our investigation
with a collection of other postulates that can be lifted to our
general setting.

If not stated otherwise, we assume an arbitrary but fixed
logic L = (WF,BS, INC,ACC) (with ∅ being a consistent
knowledge base) and an inconsistency measure I : 2WF →
R

∞
≥0 for the remainder of this section.

Basic Postulates

The most basic (and undisputed) property that an inconsis-
tency measure should have is the ability to distinguish be-
tween consistency and inconsistency, i. e., I(K) = 0 if and
only if K is consistent. There is no doubt that this makes
sense in nonmonotonic frameworks as well.
Consistency For any knowledge base K ⊆ WF, I(K) = 0

if and only if K is consistent.
Another fairly accepted postulate is monotony. It for-

malises the intuition that adding information to a knowledge
base should increase the inconsistency value since a knowl-
edge base that contains more information than another one,
is also more likely to contain more conflicts.
Monotony If K and K′ are knowledge bases, then I(K) ≤

I(K ∪ K′).
In nonmonotonic frameworks, monotony does not make
sense because additional information might restore consis-
tency. A simple special case where this does not happen
is when the knowledge base K is itself strongly inconsis-
tent rather than just inconsistent, motivating a postulate like
“I(K) ≤ I(K ∪ K′) if K is strongly inconsistent”. This
would formalize the intuition that adding information can-
not resolve strong inconsistency. However, it might still be
possible that some conflicts in K are resolved, while oth-
ers are not. In the most extreme case, all but one conflict
in K are resolved, but K′ contains new ones. In this case,
the inconsistency in K ∪K′ stems more from K′ rather than
K, rendering the comparison between I(K) and I(K ∪ K′)
quite meaningless. We should thus formalize the concept of
monotony more precisely:
Definition 3.1. Let K and K′ be knowledge bases. We say
that K′ preserves conflicts of K if for any H ∈ SI (K), it
also holds that H ∈ SI (K ∪ K′).

Proposition 3.2. If K and K′ are knowledge bases and K′
preserves conflicts of K, then SImin(K) ⊆ SImin(K ∪ K′).
Strong Monotony If K′ preserves conflicts of K, then

I(K) ≤ I(K ∪ K′).
Strong monotony thus formalizes that adding information
should not decrease the inconsistency degree of a knowledge
base K as long as no conflicts of K are resolved.

We turn to free formula independence (Hunter and
Konieczny 2010). It states that I(K) = I(K ∪ {α}) should
hold whenever α ∈ K is free, i. e., α does not occur in any
minimal inconsistent set. A simple adjustment makes use of
the observation that we should take strong K-inconsistency
into account: Since a free formula does not introduce incon-
sistency in the classical case, it makes sense to require that it
does not “introduce strong inconsistency” in nonmonotonic
logics.
Definition 3.3. Let K be a knowledge base. A formula α ∈
K is called free with respect to strong K-inconsistency (SI-
free for short) if α /∈ ⋃

H∈SImin(K) H . Let FreeSI (K) be the
set of all SI-free formulas of K.

Due to nonmonotonicity, an SI-free formula can still re-
solve conflicts. Since it cannot introduce them, one might
expect the following:
SI-free If α ∈ FreeSI (K), then I(K) ≤ I(K \ {α}).
Note that this postulate is similar to free formula dilution
(Mu, Liu, and Jin 2011). However, even this property turns
out to be quite strong. Not even IMSI—a measure based on
minimal strong K-inconsistent subsets—satisfies it in gen-
eral (cf. Section 4). The reason for this is that removal of for-
mulas in FreeSI (K) may affect the structure of SImin(K).
Thus, measures based on SImin(K) will not tend to sat-
isfy SI-free even though the intuition is that formulas in
FreeSI (K) do not participate in conflicts. This motivates
consideration of a stronger notion, ensuring that α can nei-
ther introduce nor resolve inconsistency:
Definition 3.4. (Brewka, Thimm, and Ulbricht 2017) Let K
be a knowledge base. A formula α ∈ K is called neutral if
any subset H ⊆ K is consistent if and only if H ∪ {α} is.
We denote the set of all neutral formulas of K by Ntr(K).
Independence If α ∈ Ntr(K), then I(K) = I(K \ {α}).

In the propositional setting, the postulate dominance
(Hunter and Konieczny 2010) requires that for two formulas
α, β such that α is consistent and α � β, then I(K∪{α}) ≥
I(K∪{β}) should hold. The intuitive meaning is that α car-
ries more information and is thus more likely to be involved
in conflicts. Of the postulates we considered so far, it is prob-
ably the most disputed one (see e. g. (Besnard 2014)). We are
convinced that this postulate is of rather limited use in a non-
monotonic setting. Since adding information to a knowledge
base may resolve conflicts, there is simply no reason why
α, which carries more information than β, should be con-
sidered more problematic in general. Even though there are
conceivable adjustments that would make dominance work
for nonmontonic frameworks, we are not going to discuss
them here.

This concludes our discussion on the four postulates for
basic inconsistency measures (Hunter and Konieczny 2010).

1991

Extended Postulates

We continue our investigation with a generalization of
monotony, namely supper-additivity (Thimm 2009). It states
that I(K) + I(K′) ≤ I(K ∪ K′) should hold whenever
K ∩ K′ = ∅. As above, we need to take into account that
adding information might resolve conflicts in nonmonotonic
frameworks. Therefore, we add the additional condition of
conflict preservation to our version of super-additivity.

Strong Super-Additivity If K′ and K preserve each other’s
conflicts and K∩K′ = ∅, then I(K)+I(K′) ≤ I(K∪K′).

Many concrete approaches to inconsistency measurement
depend on the syntax of a knowledge base. The most com-
mon example is the difference between the conjunction
{a ∧ b} and two formulas {a, b}. The postulate adjunction
invariance (Besnard 2014) formalizes the idea that there
should be no difference, i. e., I(K∪{a∧b}) = I(K∪{a, b}).
In the classical setting, there are a couple of more postulates
considering situations where (parts of) semantically equiva-
lent knowledge bases are compared, cf. (Thimm 2017).

In nonmonotonic frameworks, a notion of equivalence of
the form “K has the same models as K′” is too weak as con-
clusions can be withdrawn due to nonmonotonicity. In the
context of logic programming, for example, this observation
has led to the consideration of so called strong equivalence
(Lifschitz, Pearce, and Valverde 2001). It is straightforward
to generalize this notion to arbitrary nonmonotonic frame-
works (Brewka, Thimm, and Ulbricht 2017).

Definition 3.5. Let L = (WF,BS, INC,ACC) be a logic.
The knowledge bases K and K′ are strongly equivalent, de-
noted by K ≡s K′, iff ACC(K ∪ H) = ACC(K′ ∪ H) for
each H ⊆ WF.

Proposition 3.6. (Brewka, Thimm, and Ulbricht 2017) Let
K, K′ and H be knowledge bases. If K and K′ are strongly
equivalent, then K is strongly K ∪ H-inconsistent iff K′ is
strongly K′ ∪H-inconsistent.

Strong equivalence plays a similar role in nonmonotonic
frameworks as (normal) equivalence in monotonic frame-
works. In particular, it allows for modularisation of knowl-
edge bases. If a subset H of a knowledge base K is strongly
equivalent to a set H ′ then H can be replaced in K by H ′
without changing the inferences one can draw from K. This
also means that H and H ′ should be interchangeably when
it comes to the inconsistency they contribute to K. By gener-
alising this idea to the whole knowledge base, we obtain the
desirable property that strongly equivalent knowledge bases
should have the same degree of inconsistency.

Strong Equivalence If K ≡s K′ then I(K) = I(K′).

Example 3.7. Consider the logic programs P and P ′ given
as follows.

P : a. b. c ← a, b,not c.

P ′ : a. b ← a. c ← a, b,not c.

Both programs are inconsistent due to not having an answer
set. However, the observation P ≡s P ′ is still meaningful
as both programs can be rendered consistent by adding rules

which facilitate derivation of c. Moreover, in both cases in-
consistency stems from the derivation of a and b (in both
cases without making use of defaults) combined with the
rule “c ← a, b,not c.”. It is thus reasonable to expect
I(P) = I(P ′).
However, whether or not this is meaningful depends on the
framework under consideration. Sometimes, it might not
be helpful to distinguish between inconsistent knowledge
bases. For example, in classical logics we have K ≡s K′
for any two inconsistent knowledge bases K and K′, thus
rendering the above postulates too strong.

In order to obtain a more fine grained notion of equiva-
lence, we utilize a technique from (Thimm 2013a) for the
postulate “irrelevance of syntax”. For our setting we define:
Definition 3.8. Let K and K′ be two knowledge bases. We
call K and K′ formula-wise strongly equivalent, denoted by
K ≡α K′, if there is a bijection ρ : K → K′ such that
{α} ≡s {ρ(α)} holds for all α ∈ K.

We obtain the following generalization of irrelevance of
syntax (Thimm 2013a) (FW=formula-wise):
FW-Strong Equivalence If K ≡α K′ then I(K) = I(K′).
The final postulate we consider in this subsection is separa-
bility (Hunter and Konieczny 2010) which has a straightfor-
ward representation in our general context.
Separability If SImin(K∪K′)=SImin(K)∪SImin(K′) and

SImin(K)∩SImin(K′)=∅ then I(K∪K′)=I(K)+I(K′).
In other words, if the conflicts of two knowledge bases K
and K′ are completely independent, the inconsistency value
of their union should be decomposed as the sum of the indi-
vidual values.

4 Analysis

Now we investigate the compliance of the considered mea-
sures with the rationality postulates above. For postulates
that are not satisfied by a particular measure in general, we
give counterexamples within the logic LASP

A .
Regarding consistency, note that SImin(K) = ∅ if and

only if K is consistent. Hence, the postulate is satisfied by all
measures. In general, we obtain the following result on the
compliance of our measures with the rationality postulates,
see also Table 1.
Proposition 4.1. IMSI, IMSIC and Ip satisfy consistency,
strong monotony, independence and strong super-additivity,
and FW-strong equivalence. IMSI and IMSIC also satisfy sep-
arability.

As already mentioned in Section 3, the postulate SI-free
is not satisfied by any of the measures.
Example 4.2. Consider the program P given as follows:

P : a ← not a, b. a ← not c, not d. b. c. d.

The rule r = a ← not c, not d. is in FreeSI (P): the rule
“a ← not a, b.” combined with the fact “b.” is responsible
for P being inconsistent and r cannot restore consistency as
long as “c.” or ‘d.” are present. Hence, SImin(P) consists
of {a ← not a, b., b., c.} and {a ← not a, b., b., d.}, i. e.,

1992

IMSI IMSIC Ip
Consistency � � �
Strong Monotony � � �
SI-free � � �
Independence � � �
Strong Super-Additivity � � �
Strong Equivalence � � �
FW-Strong Equivalence � � �
Separability � � �

Table 1: Compliance of measures with rationality postulates

IMSI(P) = 2, IMSIC(P) = 2
3 and Ip(P) = 4. However

SImin(P \ {r}) = {a ← not a, b., b.}, i. e., IMSI(P \
{r}) = 1, IMSIC(P \ {r}) = 1

2 and Ip(P \ {r}) = 2.
Example 4.3. Consider the programs P and P ′ given via

P : a. ¬a. P ′ : a. ¬a. a ← ¬a. ¬a ← a.

It is easy to see that P ≡s P ′ as the inconsistency in
both programs cannot be repaired in any extension of them.
However, we have that I(P1) �= I(P2) for all I ∈
{IMSI, IMSIC , Ip} thus showing that strong equivalence is vi-
olated by all three measures.

For a counterexample of separability wrt. Ip see (Thimm
2017) (already in the classical case). Observe that for those
postulates that are generalizations of classical ones—i. e.,
consistency, strong monotony, independence, strong super-
additivity, and separability—the compliance of our three
measures generalizes their compliance with the correspond-
ing postulates in the classical case, cf. (Thimm 2017).

5 Computational Complexity

We now address the computational complexity of the mea-
sures we considered so far. Following (Thimm and Wall-
ner 2016), we consider the three decision problems EX-
ACTI , UPPERI , LOWERI , and the natural function problem
VALUEI . Let L = (WF,ACC,BS, INC) be a logic.

EXACTL
I Input: K ⊆ WF, x ∈ [0,∞]

Output: TRUE iff I(K) = x

UPPERL
I Input: K ⊆ WF, x ∈ [0,∞]

Output: TRUE iff I(K) ≤ x

LOWERL
I Input: K ⊆ WF, x ∈ (0,∞]

Output: TRUE iff I(K) ≥ x

VALUEL
I Input: K ⊆ WF

Output: The value of I(K)

We assume the reader to be familiar with the polynomial hi-
erarchy, i. e., the classes Σp

m and Πp
m for m ≥ 0. We also

consider Dp
m = {L1 ∩ L1 | L1 ∈ Σp

m, L2 ∈ Πp
m}. More-

over, FPΣp
m[logn] is the class containing function problems

whose solution can be computed in P with access to a loga-
rithmically bounded number of calls to an Σp

m oracle. Fi-
nally, we make use of the counting polynomial hierarchy
(Wagner 1986), which provides classes for decision prob-
lems involving subproblems such as counting strongly mini-
mal inconsistent sets (represented by a prefixing “C” before
the standard complexity class names).

First, we consider an arbitrary, possibly nonmonotonic
logic L = (WF,ACC,BS, INC). Since hardness results
cannot be expected in general (these depend on the concrete
logic), we will only give membership statements here. Our
results will depend on the complexity of the satisfiability
check of L.

SATL Input: K ⊆ WF
Output: TRUE iff K is consistent

Depending on SATL, we obtain the following membership
results for IMSI and Ip:
Theorem 5.1. Let m≥1. If the problem SATL is in

1. Σp
m, then UPPERL

IMSI
and LOWERL

IMSI
are in CΣp

m,
2. Πp

m, then UPPERL
IMSI

and LOWERL
IMSI

are in CΣp
m+1,

3. Πp
m and L is monotonic, then UPPERL

IMSI
and LOWERL

IMSI

are in CΣp
m.

Note that no counting class occurs in the following theo-
rem as the decision problems for Ip are much easier.
Theorem 5.2. Let m≥1. If the problem SATL is in

1. Σp
m, then LOWERL

Ip
is in Σp

m+1,

2. Πp
m, then LOWERL

Ip
is in Σp

m+2,

3. Πp
m and L is monotonic, then LOWERL

Ip
is in Σp

m+1.
Using the latter theorem and techniques from (Thimm and

Wallner 2016), Lemmas 2 and 3, we infer:
Corollary 5.3. Let m≥1. If the problem SATL is in

1. Σp
m, then UPPERL

Ip
is in Πp

m+1, EXACTL
Ip

is in Dp
m+1 and

VALUEL
Ip

is in FPΣp
m+1[logn],

2. Πp
m, then UPPERL

Ip
is in Πp

m+2, EXACTL
Ip

is in Dp
m+2 and

VALUEL
Ip

is in FPΣp
m+2[logn],

3. Πp
m and L is monotonic, then UPPERL

Ip
is in Πp

m+1,

EXACTL
Ip

is in Dp
m+1 and VALUEL

Ip
is in FPΣp

m+1[logn].
Furthermore, Table 2 summarises some additional results

pertaining to hardness wrt. the concrete logics LASP∗
A and

LASP
A (disjunction-free and disjunctive logic programs under

the answer set semantics, respectively). As with the other re-
sults, proofs can be found in the online appendix. Recall that
deciding whether a program P within the framework LASP∗

A
is consistent is NP-complete in general, while the decision
problem for programs P in LASP

A is Σp
2-complete (Eiter and

Gottlob 1995). The results show that, for LASP∗
A , the compu-

tational complexity of the problems we consider is similar
to the results for the propositional case given in (Thimm and
Wallner 2016). This seems natural as the satisfiability check
for propositional logic is NP-complete as well. As expected,
considering LASP

A involves going up one level within the cor-
responding hierarchy.

Finally, we have the following results pertaining to
VALUEIMSI

, cf. (Valiant 1979) for the definition of the used
counting complexity classes.

Theorem 5.4. The problem VALUE
LASP∗

A

IMSI
is #·coNP-

complete under subtractive reductions. The problem
VALUE

LASP
A

IMSI
is #·Πp

2-complete under subtractive reductions.

1993

IMSI IMSIC Ip

UPPER
LASP∗

A
I CNP-c CNP-h Σp

2-c

LOWER
LASP∗

A
I CNP-c CNP-h Πp

2-c

EXACT
LASP∗

A
I C=NP-h C=NP-h Dp

2-c

UPPER
LASP

A
I CΣp

2-c CΣp
2-h Σp

3-c

LOWER
LASP

A
I CΣp

2-c CΣp
2-h Πp

3-c

EXACT
LASP

A
I C=Σ

p
2-h C=Σ

p
2-h Dp

3-c

Table 2: Hardness results for LASP∗
A and LASP

A

6 Strong Inconsistency and Context

As already taken into account by Definition 2.4, the central
issue regarding inconsistency in nonmonotonic logics is that
conflicts may be resolved by adding information. This raises
the question how, given an inconsistent knowledge base K,
the degree of inconsistency of a subset H ⊆ K should be as-
sessed. We give a motivating example within the logic LASP

A .
Example 6.1. Consider the program P given as follows:

P : a or b. ← not a. ← not b.

Inconsistency of P stems from the two constraints “←
not a.” and “← not b.”. As answer sets are required to be
minimal models, an answer set can only contain either a or
b, but not both. Yet, the subset H = {← not a., ← not b.}
obviously consists of two conflicts and this intuition is con-
firmed by the observation that IMSI(H) = 2 holds.

The preceding example makes use of the observation that
a set H ∈ SImin(K) may itself contain more than one in-
consistent subset. In fact, as the hitting set duality utiliz-
ing strong K-inconsistency (Brewka, Thimm, and Ulbricht
2017) suggests, inconsistency of a subset H ⊆ K is only
meaningful within the context of the knowledge base K.
Postulates describing the behaviour of subsets of knowledge
bases as well as single formulas should respect this observa-
tion. This motivates the following notion.
Definition 6.2. Let I : 2WF → R

∞
≥0 be an inconsistency

measure, K a knowledge base and H ⊆ K. We call

CoK,I(H) := min
H⊆H′⊆K

I(H ′) (2)

the value of I(H) with respect to the context K.
Taking the minimum in (2) has the same motivation as

considering all supersets of H in Definition 2.4: We are only
interested in (the severity of) conflicts that cannot be re-
solved within K. For example, if we are given H ⊆ K and a
measure I satisfying consistency, then CoK,I(H) = 0 iff H
is not strongly K-inconsistent. Moreover, as most classical
inconsistency measures for propositional knowledge bases
satisfy monotony (cf. (Thimm 2017)), CoK,I(H) = I(H)
oftentimes holds in the classical case, anyway.

Hence, when assessing the severity of inconsistency of
subsets of a knowledge base K, utilizing CoK,I(H) appears
to be appropriate. Moreover, many of the postulates given
above are preserved by CoK,I(H):

Proposition 6.3. Let K be a knowledge base and H,H ′ ⊆
K. It holds that

1. CoK,I(H) ≤ CoK,I(H ∪H ′),
2. if I satisfies consistency, then CoK,I(H) = 0 if and only

if H /∈ SI (K),
3. if I satisfies independence and α ∈ Ntr(K), then

CoK,I(H) = CoK,I(H \ {α}),
4. if I satisfies strong equivalence and H ≡s H ′ for

H,H ′ ⊆ K, then CoK,I(H) = CoK,I(H ′).
Note that CoK,I(H) ≤ CoK,I(H ∪H ′) holds without the

notion of preserving conflicts. Since we calculate the mini-
mum in (2), nonmonotonicity is already taken into account.

Now consider the following postulate adapted from
(Hunter and Konieczny 2010):
MSI-Normalization If H ∈ SImin(K), then I(H) = 1.
MSI-Normalization reflects the intuition that a subset H ∈
SImin(K) should correspond to an “atomic” conflict within
K. However, this is not done by CoK,I(H), even for the spe-
cial case I = IMSI.
Example 6.4. Let K = {α1, . . . , α4} be a knowledge base
such that only {α1, α3} and {α2, α4} are consistent subsets.
Let H = {α1, α2}. One can verify that CoK,IMSI

(H) = 2.
The reason is, roughly speaking, that a set H ∈ SImin(K)

does not represent “one conflict”, but rather “one conflict
that cannot be resolved”. Thus, to capture atomic conflicts in
a nonmonotonic logic, we need to utilize a notion of “resolv-
able conflicts”. This induces the following novel measure.
Definition 6.5. Let K be a knowledge base. Let H ⊆ K
and consider {H1, . . . , Hn} = SImin(H), i. e., the minimal
conflicts of H . Let H = H \ SImin(H). Define IRes(K)(H)
as the number of conflicts within H that cannot be resolved
within K, i. e.,

IRes(K)(H) = min
I⊆{1,...,n}

{n− |I| |
⋃

i∈I

Hi ∪H /∈ SI (K)}.

Example 6.6. Consider P from above again:
P : a or b. ← not a. ← not b.

Again, let H = P \ {a or b.}. We have SImin(H) = {{←
not a.}, {← not b.}} and H = ∅. Let H1 = {← not a.}
and H2 = {← not b.}. Then,

Hi /∈ SI (P), i = 1, 2, H1 ∪H2 ∈ SI (P).

So, “a or b.” can “resolve one conflict”. As desired,
IRes(P)(H) = 1. The next example shall illustrate why we
need H in the definition of IRes(P)(H). Consider

P ′ : ¬a. ← not a. a.

with H ′ being the subset H ′ = {¬a., ← not a.}. We have
SImin(H

′) = {{← not a.}} and hence, within H ′ the fact
“¬a.” is not yet identified as potential conflict. However, as
satisfaction of the constraint “← not a.” requires “a.”, the
negated fact “¬a.” should be taken into account. Thus, even
though the constraint—being the only rule in SImin(H

′)—
can be resolved, IRes(P′)(H

′) = 1. This is as desired, be-
cause H ′ carries two problems of which only one can be
resolved; not both simultaneously. Moreover, H ′ ∈ SI (P ′)
suggests that a measure should not assign 0 to it.

1994

Since conflicts cannot be resolved by adding information
in monotonic logics, IRes(K)(H) and IMI(H) should coin-
cide to capture our intuition of minimal inconsistent sets as
“atomic conflicts”. Indeed:
Proposition 6.7. If L is a monotonic logic and K a knowl-
edge base with H ⊆ K, then IRes(K)(H) = IMI(H).

Moreover, it complies with some of the ideas above, e. g.:
Proposition 6.8. Let K be a knowledge base and H,H ′ ⊆
K. It holds that

1. IRes(K)(H) = 0 if and only if H /∈ SI (K),
2. IRes(K)(H) ≤ IRes(K)(H ∪H ′),
3. IRes(K)(H) = IRes(K)(H \ {α}) if α ∈ Ntr(K).

In particular, IRes(K)(H) captures the intuition that a set
H ∈ SImin(K) represents exactly one conflict.
Proposition 6.9. Let K be a knowledge base and H ∈
SImin(K). Then IRes(K)(H) = 1.

7 Related Work

Inconsistency measurement in non-classical frameworks has
been addressed in some limited fashion before (Thimm
2013b; Potyka 2014; De Bona and Finger 2015; Condotta,
Raddaoui, and Salhi 2016; Ulbricht, Thimm, and Brewka
2016; Amgoud and Ben-Naim 2017). The latter paper stud-
ies disagreement in argumentation graphs, a notion slightly
different from inconsistency. It will nevertheless be interest-
ing to see whether postulates for disagreement are applica-
ble to inconsistency as well. However, the closest work to
this one is (Ulbricht, Thimm, and Brewka 2016) where the
special case of LASP∗

A is considered rather than a general,
nonmonotonic logic. We briefly discuss some of the postu-
lates mentioned. Many of them are concerned about situa-
tions where some kind of monotony should hold. However,
all of them do have in common that conflicts are preserved
as in strong monotony from above. In fact, they turn out to
be special cases. Before we state them, we need the notion
of a splitting set of a program P .
Definition 7.1. Let P be a logic program, i. e., a set of rules
of the form (1). A set U of literals is called a splitting set for
P , if {l0, . . . , lk}∩U �= ∅ implies {l0, . . . , ln} ⊆ U for any
rule r ∈ P . For a splitting set U , let botU (P) be the set of
all rules r ∈ P with {l0, . . . , ln} ⊆ U .

Now we consider the following postulates from (Ulbricht,
Thimm, and Brewka 2016).
CLP-Monotonicity If P does not contain default negation

“not”, then I(P) ≤ I(P ∪ P ′) for any program P ′.
Split-Monotonicity If U is a splitting set for P , then
I(botU (P)) ≤ I(P).

Con-Monotonicity If P ⊆ WFASP∗
A and r ∈ P is a con-

straint, then I(P) ≤ I(P ∪ {r}).
All of them describe situations where the additional rules
preserves conflicts of the program on the left hand side.
Proposition 7.2. If a measure I satisfies strong monotony,
it satisfies CLP-Monotony, Split-Monotony and Con-
Monotony as well.

Some postulates in the literature explicitly make use of the
language resp. atoms occurring in a formula or knowledge
base. It is thus hard to phrase them for a general logic L.
However, it is done for answer set programming. Recall SI-
free and independence from above. Both are generalizations
of free formula independence. A weaker version is safe rule
independence (Hunter and Konieczny 2010). It states that
a consistent formula α should not change the inconsistency
value of a knowledge base K if no atom in K occurs in α.
Within answer set programming, we can define the notion
of a safe rule more liberally as only the head atoms of a rule
are to be taken into account (Ulbricht, Thimm, and Brewka
2016).

Definition 7.3. Let P be a disjunctive logic program. A rule
r such that {r} is consistent is called safe with respect to
P if the atoms occurring in the head of r do not occur in
P \ {r}.

This induces the following postulate:

Safe-rule independence If P is a logic program and r∗ safe
with respect to P , then I(P) = I(P ∪ {r∗}).

More generally, the inconsistency values of two independent
programs should add up.

Language Separability If P and P ′ are programs that do
not share any atoms, then I(P ∪ P ′) = I(P) + I(P ′).

Note that this postulate is similar to separability from above,
without explicitly making use of SImin(P) and SImin(P

′).

8 Conclusions

We made first steps towards measuring inconsistency in a
general, possibly nonmonotonic, framework by revisiting
rationality postulates for propositional logic and adjusting
them for our setting. Utilizing those postulates, we exam-
ined the behaviour of measures based on minimal strong K-
inconsistent subsets, a generalization of minimal inconsis-
tent subsets to nonmonotonic frameworks. We also analyzed
their computational complexity. Finally, we re-examined the
notion of strong inconsistency in order to define an incon-
sistency measure on subsets of a context. This measure can
therefore be used to analyse the distribution of inconsistency
within a knowledge base, similar as the Shapley measure
(Hunter and Konieczny 2010) in the classical case.

In the literature, additional measures based on minimal in-
consistent sets of a knowledge base K have been proposed,
e. g., (Jabbour et al. 2016; Jabbour and Sais 2016). It is a
natural idea to investigate their behavior in nonmonotonic
frameworks, making use of strong K-inconsistency. More-
over, focusing on particular frameworks similar in spirit to
(Ulbricht, Thimm, and Brewka 2016) may lead to the de-
velopment of more significant rationality postulates, as they
can be tailored for the framework.

Acknowledgements

This work was partially funded by Deutsche Forschungs-
gemeinschaft DFG (Research Training Group 1763; project
BR 1817/7-2).

1995

References
Amgoud, L., and Ben-Naim, J. 2017. Measuring disagree-
ments in argumentation graphs. In Proceedings of the 11th
International Conference on Scalable Uncertainty Manage-
ment (SUM’17).
Besnard, P. 2014. Revisiting postulates for inconsistency
measures. In Proceedings of the 14th European Conference
on Logics in Artificial Intelligence (JELIA’14), 383–396.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Commun. ACM 54(12):92–
103.
Brewka, G.; Thimm, M.; and Ulbricht, M. 2017. Strong
inconsistency in nonmonotonic reasoning. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, 901–907.
Condotta, J.-F.; Raddaoui, B.; and Salhi, Y. 2016. Quanti-
fying conflicts for spatial and temporal information. In Pro-
ceedings of the 15th International Conference on Principles
of Knowledge Representation and Reasoning (KR’16).
De Bona, G., and Finger, M. 2015. Measuring inconsistency
in probabilistic logic: Rationality postulates and dutch book
interpretation. Artificial Intelligence 227:140–164.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77(2):321–358.
Eiter, T., and Gottlob, G. 1995. On the computational cost of
disjunctive logic programming: Propositional case. Annals
of Mathematics and Artificial Intelligence 15(3-4):289–323.
Gelfond, M., and Leone, N. 2002. Logic programming and
knowledge representation – the A-Prolog perspective. Arti-
ficial Intelligence 138(1–2):3–38.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In ICLP/SLP, volume 88,
1070–1080.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Comput. 9(3/4):365–386.
Grant, J., and Hunter, A. 2006. Measuring Inconsistency in
Knowledgebases. Journal of Intelligent Information Systems
27:159–184.
Grant, J., and Hunter, A. 2011. Measuring consistency gain
and information loss in stepwise inconsistency resolution.
Symbolic and Quantitative Approaches to Reasoning with
Uncertainty 362–373.
Hunter, A., and Konieczny, S. 2004. Approaches to Mea-
suring Inconsistent Information. In Inconsistency Toler-
ance, volume 3300 of Lecture Notes in Computer Science.
Springer International Publishing. 189–234.
Hunter, A., and Konieczny, S. 2008. Measuring inconsis-
tency through minimal inconsistent sets. In Proceedings
of the Eleventh International Conference on Principles of
Knowledge Representation and Reasoning (KR’2008), 358–
366. AAAI Press.
Hunter, A., and Konieczny, S. 2010. On the measure of con-
flicts: Shapley inconsistency values. Artificial Intelligence
174(14):1007–1026.

Jabbour, S., and Sais, L. 2016. Exploiting MUS Structure to
Measure Inconsistency of Knowledge Bases. In Proceedings
of the 22nd European Conference on Artificial Intelligence
(ECAI’16).
Jabbour, S.; Ma, Y.; Raddaoui, B.; Sais, L.; and Salhi, Y.
2016. A MIS Partition Based Framework for Measuring
Inconsistency. In Proceedings of the 15th International
Conference on Principles of Knowledge Representation and
Reasoning (KR’16).
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Transactions on Computa-
tional Logic 2(4):526–541.
Mu, K.; Liu, W.; and Jin, Z. 2011. A general framework for
measuring inconsistency through minimal inconsistent sets.
Knowledge and Information Systems 27(1):85–114.
Potyka, N. 2014. Linear Programs for Measuring Incon-
sistency in Probabilistic Logics. In Proceedings of the 14th
International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’14), 568–577.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artif. Intell. 32(1):57–95.
Thimm, M., and Wallner, J. P. 2016. Some complexity re-
sults on inconsistency measurement. In Proceedings of the
15th International Conference on Principles of Knowledge
Representation and Reasoning (KR’16), 114–124.
Thimm, M. 2009. Measuring inconsistency in probabilistic
knowledge bases. In Proceedings of the Twenty-Fifth Con-
ference on Uncertainty in Artificial Intelligence, 530–537.
AUAI Press.
Thimm, M. 2013a. Inconsistency measures for probabilistic
logics. Artificial Intelligence 197:1–24.
Thimm, M. 2013b. Inconsistency Measures for Probabilistic
Logics. Artificial Intelligence 197:1–24.
Thimm, M. 2016. On the expressivity of inconsistency mea-
sures. Artificial Intelligence 234:120–151.
Thimm, M. 2017. On the compliance of rationality postu-
lates for inconsistency measures: A more or less complete
picture. KI-Künstliche Intelligenz 31(1):31–39.
Ulbricht, M.; Thimm, M.; and Brewka, G. 2016. Measuring
Inconsistency in Answer Set Programs. In Proceedings of
the 15th European Conference on Logics in Artificial Intel-
ligence (JELIA’16).
Valiant, L. G. 1979. The complexity of computing the per-
manent. Theoretical computer science 8(2):189–201.
Wagner, K. W. 1986. The complexity of combinatorial prob-
lems with succinct input representation. Acta informatica
23(3):325–356.

1996

