
Embedding of Hierarchically Typed Knowledge Bases

Richong Zhang,1 Fanshuang Kong,1 Chenyue Wang,1 Yongyi Mao2

1BDBC and SKLSDE, School of Computer Science and Engineering, Beihang University
2School of Electrical Engineering and Computer Science, University of Ottawa

{zhangrc,kongfs,wangcy}@act.buaa.edu.cn; ymao@uottawa.ca

Abstract

Embedding has emerged as an important approach to predic-
tion, inference, data mining and information retrieval based
on knowledge bases and various embedding models have
been presented. Most of these models are “typeless”, namely,
treating a knowledge base solely as a collection of instances
without considering the types of the entities therein. In this
paper, we investigate the use of entity type information for
knowledge base embedding. We present a framework that
augments a generic “typeless” embedding model to a typed
one. The framework interprets an entity type as a constraint
on the set of all entities and let these type constraints induce
isomorphically a set of subsets in the embedding space. Ad-
ditional cost functions are then introduced to model the fit-
ness between these constraints and the embedding of entities
and relations. A concrete example scheme of the framework
is proposed. We demonstrate experimentally that this frame-
work offers improved embedding performance over the type-
less models and other typed models.

Introduction

Recently significant efforts from industry and academia have
poured into constructing knowledge bases (Niu et al. 2012;
Zhang et al. 2017) to exploit the enormous amount of in-
formation available on the Internet. The emerging of KBs
such as YAGO, DBpedia, Freebase, etc is stimulating the
development of software applications that may have great
commercial and societal benefits. This has fostered active
research in KBs (e.g., (Marin et al. 2014; Xiong and Callan
2015a)).

Among the diverse directions in KB research, KB em-
bedding (Bordes et al. 2013; Wang et al. 2014; Wen et al.
2016) has received increasing attention. Briefly, KB em-
bedding aims at representing knowledge, namely, the cross-
linked entities and relations, as quantities in some Euclidean
space. This approach appeals in many applications since it
turns the inherent discrete structure of the linked knowl-
edge into a continuous topology, avoiding potential com-
binatorial complexity. Among other applications, the em-
bedding approach has demonstrated great power in recon-
structing missing links in KBs (Xiong and Callan 2015b;
Angeli and Manning 2013).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The challenges in KB embedding lies in finding low-
complexity representations of knowledge which preserve the
structure among the entities and relations and which support
inference, induction, deduction and other reasoning mech-
anisms. As such, any breakthrough in knowledge represen-
tation has the potential to greatly advance machine intelli-
gence.

There have been various models presented for KB embed-
ding, with promising performances demonstrated (Wen et al.
2016; Lin et al. 2015; Bordes et al. 2014; 2011; Socher et al.
2013; Lin, Liu, and Sun 2015; Xiao, Huang, and Zhu 2016;
He et al. 2015). All these models treat a KB simply as a col-
lection of instances, and the type information of the entities
is disregarded.

The type labels of entities arguably contain useful infor-
mation, since entities of having the same type label are ex-
pected to be similar or related in certain ways. Indeed, in
some other context, type information is proved useful (see,
e.g., (Krompa, Baier, and Tresp 2015; Chang et al. 2014;
Wang, Wang, and Guo 2015))

A recent work (Xie, Liu, and Sun 2016) suggests that
when type information is built into the model, the embed-
ding performance can be further improved. The approach of
(Xie, Liu, and Sun 2016) to incorporating type information
is to build it into a particular embedding model, known as
TransR (Lin et al. 2015). This approach is specific to the
TransR model, and can not be extended to other embed-
ding models. Despite its good performance, the training of
TransR and its typed version entails a time complexity that
is orders of magnitude higher than other simpler models. It
is then desirable to develop new low-complexity models that
are capable of utilizing type information. In fact, given that
various embedding models have already been proposed, it
would be nice to develop a general framework that turns any
“typeless model” (i.e. a model without considering type in-
formation) into a “typed model” (i.e. a model that exploits
type information). This is precisely the objective and contri-
bution of this work.

Types in a KB are usually organized in a hierarchical
structure, to capture the ontology of the entities therein. Thus
a principled approach is required to exploit such hierarchi-
cal structure rather than treating types as unrelated labels.
Moreover, an entity usually has multiple types and some of
the types may be missing. This requires the framework to be

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2046

flexible enough to handle entities with varying numbers of
types and robust enough to deal with missing types.

In this paper, we present a novel scheme that augments
any typeless model to a typed one while considering these
factors. Our key insight is that a type may be viewed as
a constraint on the entities. The hierarchical type structure
can then be understood as a partial order on a collection
of such constraints. As embedding preserves the structure
among entities, such a partial order induces an isomorphic
partial order on a collection of subsets in the embedding
space. Modelling the subsets as affine subspaces of the em-
bedding space, we then define additional cost functions to
model how entities and relations fit these spaces and aug-
ment the cost function of the original typeless model (the
“base model”) with these type-related cost functions. The
KB embedding problem can then be solved by minimiz-
ing this new cost function. Via experiments we show that
this scheme improves on the base typeless models and other
typed embedding models of (Xie, Liu, and Sun 2016) .

Typeless Embedding

The problem of knowledge base (KB) embedding is to map
the entities in a KB to vectors in some Euclidean space that
preserve the structures among the entities. Most of these
models can be unified under a common framework as was
suggested in (Wen et al. 2016). In this section, we review
this framework and various embedding models that can be
understood as examples of this framework.

Typeless Embedding Framework

In (Wen et al. 2016), various existing models are unified un-
der a common framework, of which we now give a concise
review.

Let N denote the set of all entities in a KB. We will use R
to index the set of all relations in the KB, namely, for each
index r ∈ R, there is a relation Rr. Here we will follow the
general set up in (Wen et al. 2016) in which a relation Rr

is allowed to have arbitrary fold, or arity. Let M be a set of
roles in the KB and each relation Rr is associated with a set
M(r) of roles, and Rr is understood as a set of functions
mapping M(r) to N . For any two sets A and B, we will
use AB to denote the set of all functions mapping B to A.
Then every relation Rr is understood as a subset of NM(r),
and the cardinality |M(r)| is the arity or fold of Rr. Each
element in relation Rr is called an instance of Rr. For any
instance t ∈ Rr, will use r(t) to denote the index r of the
relation to which t belongs.

Usually a real-world KB is far from complete and many
instances in each Rr are expectedly missing. Since for each
relation Rr, the KB contains only a subset Tr of Rr, a type-
less KB can be specified by the tuple (N ,R, {Tr : r ∈ R}).

Let U be a Euclidean space and the notation ◦ denote
function composition. The problem of embedding the KB
(N ,R, {Tr : r ∈ R}) can be formulated as finding 1) an
embedding map φ : N → U , which maps each entity in x
to a vector φ(x) in U , and 2) for each relation Rr a subset
Cr ⊂ UM(r) such that t ∈ Rr implies φ ◦ t ∈ Cr, and
t ∈ NM(r) \Rr implies φ ◦ t ∈ UM(r) \ Cr.

Since one does not have access to the entire Rr for each
r ∈ R, a commonly strategy to access the “boundary” of Rr

(so as to model that of Cr) is to heuristically construct a set
of negative examples T −r for each relation Rr. In below, for
any negative example t′ of relation Rr, we will use r(t′) to
denote the index of the relation, with respect to which t′ is
regarded as a negative example.

The KB embedding problem can then be set up by in-
troducing a non-negative cost function fr : UM(r) → R

to each relation Rr and a positive margin Tbase, where we
force fr(φ ◦ t) to near zero for every instance t ∈ Tr and
force fr(φ ◦ t) to be larger than a prescribed positive mar-
gin Tbase, for every negative example t ∈ T −r . For a given
form of function fr, let θr denote the parameter of func-
tion fr, and Θ denote the collection {θr : r ∈ R} of all
θr’s. Collectively, we denote T := {Tr : r ∈ R}, and
T − := {T −r : r ∈ R}. Then one can define a global cost
function F (φ,Θ) as

F (φ,Θ):=
∑

t∈T
fr(t)(φ ◦ t) +

∑

t′∈T −

[
Tbase − fr(t′)(φ ◦ t′)

]
+

(1)
where function [·]+ is defined by [a]+ := max(a, 0). An al-
ternative “differential” formulation of the global cost func-
tion is also often used in practice: let P ⊆ T ×T − be a col-
lection of positive-negative example pairs; usually for each
(t, t′) ∈ P , t′ is made as a negative example for the relation
to which t belongs, namely, r(t) = r(t′); the global cost
function can then be formulated as

F (φ,Θ):=
∑

(t,t′)∈P

[
Tbase + fr(t)(φ ◦ t)− fr(t′)(φ ◦ t′)

]
+

(2)
This cost function, when minimized, forces the the cost of
each negative example t′ to be at least Tbase greater than the
corresponding positive example t. Within this framework,
the typeless KB embedding problem reduces to minimizing
the cost function F (either in form (1) or (2)).

Existing Typeless Models

The typeless embedding models can be categorized into bi-
nary models and multi-fold models, where the former apply
to binary relational data and the latter apply to multi-fold
relational data. All known models presented so far are bi-
nary, with the exception of mTransH (Wen et al. 2016). We
note that for binary relational data, an instance of a relation
Rr is often written as triple (x, r, y), where x and y are two
entities involved in the instance.
TransE (Bordes et al. 2013) is arguably the most influ-
ential embedding model. The cost function fr(x,y) is
parametrized by a vector br ∈ U and is defined by

fr(x,y) := ‖x+ br − y‖2,
where ‖ · ‖ denotes the L-2 norm.
TransH (Wang et al. 2014) resolves the incapability of
TransE in modelling symmetric, many-to-one and many-to-
many relations. In TransH (Wang et al. 2014), fr(x,y) is
parametrized by a hyperplane in U with normal vector nr

and a vector br in the hyperplane. Let Pnr
(·) denote the

2047

projection operator onto the hyperplane, fr(x,y) is defined
as

fr(x,y) = ‖Pnr
(x) + br − Pnr

(y)‖2.
TransR (Lin et al. 2015) parametrizes fr by the pair
(br,Mr), where r ∈ R

d, Mr is a d × k matrix, and k is
the dimension of U . The cost function fr is defined as

fr(x,y) = ‖Mrx+ br −Mry‖2.

mTransH (Wen et al. 2016) extends the modelling philos-
ophy of TransH to multi-fold relations. In mTransH, each
cost function fr is parametrized by two orthogonal vectors
nr and br in U and a function ar ∈ R

M(r). More specifi-
cally, the function fr : UM(r) → R is defined by

fr(t) :=

∥∥∥∥∥∥

∑

ρ∈M(r)

ar(ρ)Pnr
(t(ρ)) + br

∥∥∥∥∥∥

2

, t ∈ UM(r).

Even for the models outside this framework, such as
KG2E (He et al. 2015) and TransG (Xiao, Huang, and Zhu
2016), which are probabilistic models in nature, they still in
effect minimize a global cost function F , and can also be
adjusted so that the proposed augmentation framework ap-
plies.

Except for these models, which are the most relevant to
this work, various other models have been proposed. They
include, e.g. pTransE (Lin, Liu, and Sun 2015), Holographic
embedding (Nickel, Rosasco, and Poggio 2016), Complex
Embedding (Trouillon et al. 2016), etc. Most of these models
fit in the above typeless embedding framework, and can be
augmented by the proposed type-augmentation approach of
this paper.

Type Augmentation Scheme

In this section, we first present a scheme which augment a
typeless embedding model to a typed model, namely, one
that takes into account the type information of the entities
in modelling. Given a typeless embedding model (which we
will call a base model) specified via a cost function F in
the form of (1) or (2) (which we will call the base cost),
our approach is to augment the base embedding model with
two other costs: “entity-type cost” and “relation-type cost”,
where the entity-type cost measures the fitness of entities
with types whereas the relation-type cost measures the com-
patibility between a relation and the types of the entities in-
volved in the relation.

Entity-Type Cost

In a KB, an entity may be annotated with multiple types. For
any entity x in a given KB, we will use L(x) to denote the
set of all types of x. Let L :=

⋃
x∈N L(x) denote the set of

all types given in the KB. To distinguish the elements L with
a broader notion of type, we will refer to the elements in L
as the explicit types.

It is worth noting that the type set L are usually or-
ganized in a hierarchical manner. For example, in a toy
KB, the set L of types may contain sports.tournament,
sports.team, sports.league, travel.destination, travel.hotel,

v1 v2 v3 v4 v5 v6

v7 v8

to
ur
na
me
nt

t
e
a
m

league

de
st
in
at
io
n

h
o
t
e
l

transportation

ROOT

spo
rts travel

Figure 1: The tree Γ of types in the toy example.

and travel.transportation. Typically each type is expressed as
a concatenated sequence of type tokens, such as sports,
travel, hotel, etc. It is then possible to associate the
types in L with an edge-labeled tree Γ as shown in Figure
1. Each type token serves as an edge label in Γ, and each
type in L can be identified with a node v of Γ or a directed
path from the root node (ROOT) to v. For example, the type
sports.tournament can be identified with the node v1
or with the path from ROOT to v1 in Figure 1.

It is remarkable that we do not insist each type in L cor-
respond to a leaf node in Γ or require entities to be typed
at the finest level. For example, node v7 could be included
as a type in L, if there is an entity that has sports as one
of its types. Such “partial typing” may occur when, for ex-
ample, the types v1, v2 and v3 in Figure 1 are all inappro-
priate as a type for some entity related to “sports”, and as a
consequence, the entity is annotated in the KB to have type
sports, or node v7, rather than any of its child nodes. Such
partial typing is also expected when the types of an entity are
not annotated with sufficient care. This perspective also sug-
gests that every node in V (Γ) can be understood as a “type”,
whether or not it appears in L. Consequently from here after,
we will use the term “type” to broadly refer to any node in
Γ.

For notation purpose, let V (Γ) denote the set of all nodes
in the tree Γ and C(Γ) denote the set of all edge labels, or
type tokens, in Γ. For any two nodes v, v′ ∈ V (Γ), if there
is a directed path from v′ to v, we may write v ≺ v′. For
example in Figure 1, v1 ≺ v7 ≺ ROOT.

A key insight of this work is that a node v ∈ V (Γ) can be
interpreted as a constraint on the entities in N . This under-
standing is naturally justified since each type token essen-
tially implies a property of certain entities, and if a type v of
entity x contains a particular token c, then the entity x ought
to satisfy the property or constraint associated with c. As
every constraint on the entity set N can be equivalently ex-
pressed as a subset of N , we denote the constraint associated
with each node v ∈ V (Γ) by a subset Nv of N . The types (or
nodes) of the type tree Γ then correspond to a partial order
their associated subsets. More precisely, NROOT = N , and for
every two nodes v, v′ ∈ V (Γ), if v ≺ v′, then Nv ⊂ Nv′ .
For example, in Figure 1, the Nv1

⊂ Nv7
. Interpreting types

as constraints also suggest that if v is a type for entity x,
then x ∈ Nv . It then follows that for any entity x ∈ N ,
x ∈

⋂
v∈L(x) Nv . That is, each entity lives in the intersec-

tion of the constraints associated with its types.
For any node v ∈ V (Γ), subset Nv ⊂ N induces a subset

2048

Uv of the embedding space U . Since we wish the embedding
of the KB to preserve the structure of the KB, we require the
embedding map φ to preserve the partial order “⊂” on the
set {Nv : v ∈ V (Γ)} of subsets. This requirement immedi-
ately implies that UROOT = U and that for every two nodes
v, v′ ∈ V (Γ), if v ≺ v′, then Uv ⊂ Uv′ . In addition, this
requirement implies:

Condition 1 For any node v ∈ V (Γ), if entity x ∈ Nv , then
φ(x) ∈ Uv; and if entity x /∈ Nv , then φ(x) ∈ U \ Uv .

To implement this condition, for each entity x, we first
construct a set L−(x) of negative types of x. That is, L−(x)
contains a set of nodes v ∈ V (Γ) for which x /∈ Nv . This
may be carried out approximately by randomly sampling
V (Γ)\L(x). We then associate each Uv a non-negative cost
function gv : U → R satisfying the following property: For
any entity x and any type v, if v ∈ L(x), gv(φ(x)) = 0;
if v ∈ L−(x), gv(φ(x)) > TET for some positive margin
TET. For any v ∈ V (Γ) and for any given parametric form
of function gv , let ωv denote the parameters of function gv .
Collectively, let Ω := {ωv : v ∈ V (Γ)} denote the collec-
tion of all parameters for functions gv’s. We can then define
a global entity-type cost function 1 as follows.

G(φ,Ω) :=
∑

x∈N

⎛
⎝ ∑

v∈L(x)

gv(φ(x))+
∑

v′∈L−(x)

[TET−gv′ (φ(x))]+

⎞
⎠

(3)
Function gv: There can be many ways to model Uv and con-
struct gv accordingly. The simplest approach is to regard Uv

as a (affine) subspace of U . More precisely, we propose the
following construction.

For each type token c ∈ C(Γ), we introduce a unit-length
vector ac ∈ U and a scalar dc ∈ R. Denote by Uc the solu-
tion space to linear equation

〈ac,x〉 = dc, (4)

where x ∈ U is the unknown. Obviously Uc is an affine
subspace in U . For each v ∈ V (Γ), denote by C(v) the
set of all type tokens (i.e., all edge labels) on the path from
ROOT to v. We then define affine subspace Uv by

Uv := {x ∈ U : 〈ac,x〉 = dc, ∀c ∈ C(v)}. (5)

It can then be verified that the affine spaces {Uv : v ∈
V (Γ)} preserves the partial order on {Nv : v ∈ V (Γ)}.

Finally, for each v ∈ V (Γ), define cost function gv : U →
R by

gv(x) :=
∑

c∈C(v)

‖〈ac,x〉 − dc‖2, (6)

Note that for two different nodes v and v′, gv and gv′ may
share parameters, if they have common ancestors in Γ. It is
easy to verify that x ∈ Uv if and only if gv(x) = 0. This
completes the type-cost model, where the set Ω of parame-
ters is {(ac, dc) : c ∈ C(Γ)}.

1The entity-type cost function can be alternatively defined in a
differential form similar to the way (1) is modified to (2).

Relation-Type Cost

The consideration so far has not made use of the fact that a
given relation in fact only relates entities of certain specific
types. We now consider this part of the modelling.

A function δ : M(r) → L is said to be a r-compatible
type configuration if there exists an instance t ∈ Rr such
that δ(ρ) ∈ L(t(ρ)) for every ρ ∈ M(r). Let Δ(r) denote
the set of all r-compatible type configurations. That is, Δ(r)
is the set of all possible combination of types on the roles of
Rr. Although in most KBs, it is observed that Δ(r) contains
only one element, we do not make such an assumption and
allow Δ(r) to contain an arbitrary number of elements. The
definition of Δ(r) implies that a function t : M(r) → N
can not be an instance of Rr if for every δ ∈ Δ(r), there is
some ρ ∈ M(r) with δ(ρ) /∈ L(t(ρ)). For any ρ ∈ M(r),
let Δ(r; ρ) := {δ(ρ) : δ ∈ Δ(r)}. Then for any instance
t ∈ Rr and any role ρ ∈ M(r), φ(t(ρ)) ∈

⋃
v∈Δ(r;ρ) Uv .

Thus the following condition is justified.

Condition 2 For any function t′ : M(r) → U , if for some
ρ ∈ M(r), t′(ρ) /∈

⋃
v∈Δ(r;ρ) Uv , then t′ /∈ Cr.

That is, if we can take a positive instance t of Rr, ob-
tain its embedding t := φ(t), and replace the embedding
vector for any entity, say t(ρ), of t by a vector x′ outside⋃

v∈Δ(r;ρ) Uv , the resulting t′ should be outside Cr and
therefore have a large cost under fr. We will call such t′

a mis-typed embedding of instance t and call x′ a mistyped
embedding of t(ρ).

We now build this condition into a “relation-type” cost
function.

From implementation perspectives, for each relation Rr,
we need to create a set Iε

r of mis-typed embeddings for a
set of instances in Rr and insist that they have large costs
under fr. In particular, if t′ ∈ Iε

r is a mis-typed embedding
for an instance t ∈ Rr and t′(ρ) is the mis-typed embedding
for entity t(ρ), then the distance (say, L2) between t′(ρ) and
Uv must be made at least ε for every v ∈ Δ(r; ρ). Here the
distance between a point x and a set S ⊆ U is the minimum
distance between x and every point in S. If such Iε

r can be
constructed, we will require that for each t′ ∈ Iε

r , fr(t′) >
TET. This gives rise to a relation-type cost function

hr(θr) :=
∑

t′∈Iε
r

[TET − fr(t
′)]+

and the overall relation-type cost function is then defined as

H(Θ) =
∑

r∈R
hr(θr). (7)

Set Iε
r : We now propose a construction of the set Iε

r to
complete the definition of hr. For each t ∈ Tr and a role
ρ ∈ M(r), we need to create a mis-typed embedding t′ for
φ(t) by modifying φ(t(ρ)) to a random mis-typed embed-
ding x′ for t(ρ) and use such a collection of t′ to form the
set Iε

r . The random vector x′ needs to be at least distance
ε away to the affine space Uδ , for every δ ∈ Δ(r; ρ). We
now explain a procedure to create such an x′. Pick a random
point y ∈ U ; pick a random δ ∈ Δ(r; ρ); project y onto

2049

the affine space Uδ and find its projection z on Uδ; move y
along the line connecting y and z to a new point y′ that is
distance ε from z; for all δ′ ∈ Δ(r; ρ) \ {δ}, check if the
distance between y′ and Uδ′ is larger than ε; if this is the
case, accept y′ as x′, otherwise repeat the process. Since the
size of Δ(r; ρ) is usually small, this procedure can produce
the desired x′ efficiently.

Overall Cost Function and Type-Augmentation
Scheme

At this point, we have completely specified G and H , we
can then integrate them with the base cost F and complete
the model. For binary relational data, when the base cost F
is chosen as that for TransE (resp. TransH), the typed model
is referred to as TransE-T (resp. TransH-T). For multi-fold
relational data, when the base cost F is chosen as that for
mTransH, the typed model is referred to as mTransH-T.

In this type augmentation scheme, the overall cost func-
tion is defined as a weighted sum of the base cost F , the
entity-type cost G, and the relation-type cost H .

J(φ,Θ,Ω) := F (φ,Θ) + λ1G(φ,Ω) + λ2H(Θ), (8)

for some weighting factors λ1, λ2 > 0.
The KB embedding problem can then be formulated as

minimizing J over its parameters (φ,Θ,Ω). The summation
form in the definition of each component cost function in (8)
allows such a problem to be solved efficiently using stochas-
tic gradient descent (SGD).

Other Embedding Models Exploiting Type

Information

Typed-Embodied Knowledge Representation Learning
Model (Xie, Liu, and Sun 2016), or TKRL, proposes two
typed embedding models. It extends TransR (Lin et al.
2015) to incorporate the type information. At the high level,
it defines cost function in the style of TransR:

fr(x,y) = ‖Mvx
x+ r−Mvy

y‖2,
parametrized by two matrices Mvx and Mvy . The matrix
Mvx depends on the type vx of entity x and likewise Mvy

depends on the type vy of entity y. The two matrices are
then parametrized based on two kinds of type information:
1) the set of types L(x) of any entity x in a given KB;
2) additional relation-specific type constraints. Two differ-
ent parameterizations are provided in TKRL: one assumes
a product form (RHE) and the other assumes a summation
form (WHE). Since TransR has large parameter space and is
prone to overfitting, the TKRL models usually require pre-
training by TransE.

While TKRL performs superior to the typeless models, it
is a specific modification of TransR, which does not gener-
alize to other typeless models. Its high training complexity
also makes it unfavourable in some cases.

There are several other models, such as those in (Krompa,
Baier, and Tresp 2015), (Chang et al. 2014) and (Wang,
Wang, and Guo 2015), that have also exploited type informa-
tion for embedding-based link prediction. These works how-
ever should not be regarded as “typed” embedding models,

Figure 2: The histograms of the number of types per entity
in FB15K (left) and JF17K (right).

since the type information is not coded into the embedding
vectors.

Experiments

We conduct experiments to evaluate the proposed typed
models (TransE-T and TransH-T on binary data and
mTransH-T on multi-fold data) and their corresponding
typeless models.

Datasets

Three datasets FB15K, FB15K*, and JF17K are used in the
experiments. Both FB15K (Bordes et al. 2013) and JF17K
(Wen et al. 2016) contain filtered data obtained from Free-
base. FB15K represents data as triples or instances of binary
relations, whereas JF17K preserves the original multi-fold
relational representation in Freebase. The type annotation of
FB15K adopts that used in (Xie, Liu, and Sun 2016). The
type annotation of JF17K is obtained by retrieving its type
information in Freebase. The types that are obviously ad hoc
or non-indicative (such as those under domains common,
base, and user) are removed.

In FB15K, for most triples (x, r, y), there is a triple
(y, r′, x) where relations r and r′ are reciprocal of each
other. For example, the following two triples are example
of a reciprocal pair.

(TerreHaute, location.location.containedby, Indiana)

(Indiana, location.location.contains,TerreHaute)

For such a triple pair, we delete one of the two triples. This
gives rise to the dataset FB15K*. The purpose of construct-
ing the FB15K* dataset is to investigate to what extent the
redundant reciprocal information may benefit embedding
and to what extent the type information may help when such
information is present or absent.

In all three datasets, the type tree Γ has depth 2. A sum-
mary of the datasets are shown in Table 1 and the distribution
of the number of types per entity is shown in Figure 2.

Training and Testing

The models are trained by optimizing their respective over-
all cost functions. Entity-type cost function G takes the form
of (3) and base cost F takes the differential form of (2). For
the typed models, choosing λ1 and λ2 in (8) is equivalently

2050

Table 1: Statistics of datasets
#entities #relations #instances(total/train/test) #types #types/entity #type tokens

FB15K 14951 1345 542213/483142/59071 886 7.35 971
FB15K* 14951 1260 318804/284292/ 34512 886 7.35 971
JF17K 29177 327 102648/77733/24915 989 4.28 1076

realized by choosing appropriate learning rate for the gra-
dient of each cost term. More implementation details of the
model can be found in the code on GITHUB2.

In all the models, SGD initializes all entity embedding
vectors and all br vectors to random unit-length vectors. For
all typed models, each ac vector is also initialized to ran-
dom unit-length vectors, and each dc is initialized to 1. For
mTransH, each ar(ρ) is randomly initialized to a value in
the interval (0, 1).

We will use the term “packet” to refer to a minimal
unit in which the gradient of the global cost is computed
with respect to all parameters. For all the base models, a
packet contains one random instance and K random non-
instances, where for TransE and TransH, K is set to 1, and
for mTransH, K is set to be the arity of the instance. The gra-
dient of the base cost is computed based on the cost differ-
ence between the instance and each of the K non-instances
(noting that (2) is used to define the base cost). For each
typed model, each packet is expanded (from its counterpart
in its respective base model) to include all types of the enti-
ties in the positive instance and, for each such entity, 3 ran-
dom “negative type tokens”. We note that here instead of
using negative types, we use “negative type tokens”, where
a negative type token for an entity x refers to a type token
in C(Γ) that is not an edge label along any path from ROOT
to a node v ∈ L(x). Gradient of the type cost is computed
using the entities in the positive instance, their types and the
negative tokens. It is possible to show that using negative
tokens has the same effect as using negative types, but has
modestly reduced complexity.

In SGD, each mini-batch consists of 1000 packets. Each
epoch loops over �M/1000 batches, where M is the num-
ber of instances in the training set. For each model, SGD
runs for 1000 epochs. The learning rate in the updates based
on the base-cost gradients is set to 0.001, and the learning
rate in the updates based on the type-cost gradient is set to
0.0003.

Normalization procedures have been applied in the train-
ing of these models. In particular, for TransH and TransE, all
entity embedding vectors and br vectors are normalized af-
ter every update. In mTransH, for each relation r, vector br

and function ar are also normalized after each update. From
our observations, such heuristic tuning improves the embed-
ding performance significantly, particularly for TransE. For
each typed model, the same normalization procedure is ap-
plied according to its base model, to assure fair comparison.

The models are evaluated by a link prediction task using
the testing set. For each testing instance/triple and for each
entity x therein, x is held out. Every entity x′ ∈ N is used to

2https://github.com/kongfansh/Embedding of Hierarchically
Typed KB

replace x in the instance, and the cost of this substituted in-
stance is evaluated. For the typed models, the instance’s cost
is defined as the unweighted sum of the base cost fr(φ ◦ t)
and the entity-type cost

∑
ρ∈M(r)

∑
v∈Δ(r;ρ)

gv(t(ρ)) of the sub-

stituted instance t. The relation-type cost is left out for eval-
uation since the hr function are only concerned with the
constructed mis-typed embeddings. The costs across all x′
are ranked, and the rank for x′ = x is recorded. Hit@10
percentage value (HIT) and the mean rank (RANK) metrics
proposed in (Bordes et al. 2013) are used as evaluation met-
rics.
Hit@K.

Hit@K is defined as the proportion of the observed triples
or instances that are ranked in the top K position for each
triple substitution or instance substitution. In this study, we
choose K as 10, and refer to Hit@10 simply as HIT.
Mean Rank.

Mean Rank is the average rank position of the query en-
tity, among all substituting entity, in a testing instance. From
here after, we refer to this metric as RANK.

Results and Discussions

Link Prediction Performance on Binary Relational Data

Seen in Table 2, the two proposed typed models present a
small performance advantage over the corresponding type-
less models (1-2% in HIT and up to 15 in RANK, depending
on the dimension of the embedding space). We estimate that
this is due to the wide co-existence of reciprocal instances
in FB15K. In particular, if a reciprocal instance of test triple
exists in the training set, the typeless models are likely to
predict the test instance correctly and the type information
is less useful for further improvement.

Comparing TKRL models with our typed models, we
see that at DIM=100 and 200, TKRL win slightly in HIT
whereas our models win slightly in RANK. At DIM=300,
the winners for both HIT and RANK are our models. We
note that TKRL-RHE fails at high dimensions. We believe
that this is due to the multiplicative form of the used ma-
trix, which brings in high instability into the training pro-
cess. In comparison, TKRL-WHE is less insensitive to in-
creasing dimension. Overall, the best performances of our
proposed models are comparable to those of TKRL mod-
els, where TKRL models win slightly in HIT and lose
slightly in RANK. Furthermore, the number of parameters
in TKRL is quadratic in DIM (as it is built upon TransR),
whereas this number in the proposed scheme (applied on
TransH/mTransH) is linear in DIM. This makes the train-
ing time of TKRL significantly longer than the proposed
scheme.

On FB15K*(Table 3), where the reciprocal instances are

2051

Table 2: HIT/RANK performance on FB15K
DIM=100 DIM=200 DIM=300

TransE 46.25/190.46 48.43/193.76 48.82/193.09
TransH 46.68/189.30 48.52/193.02 49.20/192.34
TKRL-WHE 51.97/201.47 51.58/232.44 49.32/248.32
TKRL-RHE 51.84/196.09 11.40/4628.70 10.74/4926.71
TransE-T 47.00/180.38 49.51/178.06 50.17/178.98

TransH-T 48.73/186.55 50.34/191.49 50.85/198.20

no long present, the typeless models degrade their perfor-
mances significantly. In this case, the proposed typed models
offer larger performance advantage over the typeless models
(3-4% in HIT and 30-50 in RANK). On this dataset, the two
TKRL models appear only capable of improving HIT over
the typeless models. With respect to the TKRL models, our
models offer a significant RANK advantage (about 40-100).
In addition, we notice that, for experiment implementation,
TKRL is initialized with embeddings pre-trained by TransE
model. However, in our models, we just randomly initialize
the embeddings.

In the typed models, the hyperparameters TET and ε con-
trol the strength of the model constraints. Stronger con-
straints (larger TET or smaller ε) make the model reduce
its capacity, which allows better generalization. However, its
reduced solution space potentially excludes better parameter
configurations and make the model harder to train. Weaker
constraints gives the model higher capacity. But it may suf-
fer from being trapped in local minima or overfitting. Thus
the choice of these hyper-parameters may affect the perfor-
mance of the model, as is observed in Figure 3. Built on dif-
ferent base models, in Figure 3, we see that TransH-T and
TransE-T appear to have different “sweet spots” in the set-
ting of (TET, ε). This difference is presumably related to the
mechanism by which the proposed augmentation scheme in-
teract with the base model. Precise characterization of this
mechanism seems a difficult open problem.
Link Prediction Performance on Multi-fold Relational
Data

On JF17K (Table 4), we also see a similar performance
gain in mTransH-T over the typeless mTransH model (HIT
improvement by 4% and RANK improvement by 70-80).
The performance trends of the TKRL models observed on
FB15K* are similar to those observed in FB15K. Our type-
less models behave steadily as DIM increases, trending
slightly up in HIT and slightly down in RANK. On FB15K*
and JF17K, our proposed typed models are winners for ev-
ery examined value of DIM.

Conclusion

In this paper, we recognize that a type can be naturally mod-
elled as a constraint in the embedding space and that hier-
archical types correspond to a partial order of their corre-
sponding constraints. Based on this understanding, we pro-
pose a model-augmentation scheme that turns a typeless
model into a typed one so as to explore information con-
tained in the type labels of the entities. Via an experimental
study, we investigated the performance of this scheme. Our

Table 3: HIT/RANK performance on FB15K*.
DIM=100 DIM=200 DIM=300

TransE 34.07/355.80 34.89/357.67 34.97/363.29
TransH 34.48/348.19 35.25/346.80 35.50/348.55
TKRL-WHE 36.78/360.94 35.93/399.37 35.28/418.31
TKRL-RHE 36.79/351.87 35.79/380.15 9.52/5824.83
TransE-T 37.35/313.73 38.35/312.86 38.73/315.48

TransH-T 38.26/312.98 39.36/315.44 39.19/318.46

Table 4: HIT/RANK performance on JF17K
DIM=100 DIM=200 DIM=300

mTransH 45.12/236.85 46.39/231.45 47.41/223.28
mTransH-T 49.46/163.08 50.52/152.97 50.99/150.42

0.01 0.05 0.1 0.5 1

308

310

312

314

316

318

320

322

R
A

N
K

TransE-T

TransH-T

0.01 0.05 0.1 0.5 1

36.6

36.8

37

37.2

37.4

37.6

37.8

38

38.2

H
IT

@
1

0

TransE-T

TransH-T

(a) RANK vs ε (b) HIT vs ε

0.25 0.5 0.75 1 1.5 2

T
ET

300

305

310

315

320

325

330

R
A

N
K

TransE-T

TransH-T

0.25 0.5 0.75 1 1.5 2

T
ET

36.5

37

37.5

38

H
IT

@
1

0

TransE-T

TransH-T

(c) RANK vs TET (d) HIT vs TET

Figure 3: Performance of typed models as functions of ε and
TET on FB15K*.

experiments suggest that on FB15K a TKRL model wins
at low dimensions and our proposed typed modes win at
high dimensions. When the reciprocal instances are removed
from FB15K, the proposed typed models win in all cases.
Both TKRL models and our proposed typed models outper-
form the typeless models, confirming the usefulness of type
information for embedding as was observed in (Lin et al.
2015). It is however remarkable that the TKRL models tend
to degrade their performance or even fail as the embedding
dimension increases. This is however not the case for the
proposed models. Moreover, the complexity of the proposed
models scales linearly with the embedding dimension, con-
trasting the quadratic scaling in TKRL. Finally the gener-
ality of the proposed type-augmentation framework allows
one to plug in any base embedding cost F and any sensible
entity-type cost G and relation-type cost H . This is verified
by our experiments testing mTransH and its augmented ver-
sion mTransH-T on the JF17K dataset.

2052

Acknowledgments

This work is supported partly by China 973 program (No.
2014CB340305,2015CB358700), by the National Natural
Science Foundation of China (No. 61772059, 61421003), by
the Project of the State Key Laboratory of Software Devel-
opment Environment of China (SKLSDE-2016ZX-09) and
by the Beijing Advanced Innovation Center for Big Data and
Brain Computing.

References

Angeli, G., and Manning, C. D. 2013. Philosophers are
mortal: Inferring the truth of unseen facts. In Proceedings of
the Seventeenth Conference on Computational Natural Lan-
guage Learning, CoNLL’13, 133–142.
Bordes, A.; Weston, J.; Collobert, R.; and Bengio, Y. 2011.
Learning structured embeddings of knowledge bases. In
Proceedings of the Twenty-Fifth AAAI Conference on Arti-
ficial Intelligence, AAAI’11, 301–306.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for mod-
eling multi-relational data. In Proceedings of the Interna-
tional Conference on Neural Information Processing Sys-
tems, NIPS’13, 2787–2795.
Bordes, A.; Glorot, X.; Weston, J.; and Bengio, Y. 2014. A
semantic matching energy function for learning with multi-
relational data. Machine Learning 94(2):233–259.
Chang, K.; Yih, W.; Yang, B.; and Meek, C. 2014. Typed
tensor decomposition of knowledge bases for relation ex-
traction. In Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing, EMNLP’14,
1568–1579.
He, S.; Liu, K.; Ji, G.; and Zhao, J. 2015. Learning to
represent knowledge graphs with gaussian embedding. In
Proceedings of the Twenty-Fourth ACM International on
Conference on Information and Knowledge Management,
CIKM’15, 623–632.
Krompa, D.; Baier, S.; and Tresp, V. 2015. Type-constrained
representation learning in knowledge graphs. In Proceed-
ings of the 14th International Conference on The Semantic
Web, number 8 in ISWC’15, 640–655.
Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; and Zhu, X. 2015. Learn-
ing entity and relation embeddings for knowledge graph
completion. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, AAAI’15, 2181–2187.
Lin, Y.; Liu, Z.; and Sun, M. 2015. Modeling relation paths
for representation learning of knowledge bases. 705–714.
Marin, A.; Holenstein, R.; Sarikaya, R.; and Ostendorf, M.
2014. Learning phrase patterns for text classification using
a knowledge graph and unlabeled data. In Proceedings of
the Fifteenth Annual Conference of the International Speech
Communication Association, INTERSPEECH’14, 253–257.
Nickel, M.; Rosasco, L.; and Poggio, T. A. 2016. Holo-
graphic embeddings of knowledge graphs. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence,
AAAI’16, 1955–1961.

Niu, F.; Zhang, C.; Ré, C.; and Shavlik, J. 2012. Elemen-
tary: Large-scale knowledge-base construction via machine
learning and statistical inference. International Journal on
Semantic Web and Information Systems (IJSWIS) 8(3):42–
73.
Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. 2013.
Reasoning with neural tensor networks for knowledge base
completion. In Proceedings of the International Conference
on Neural Information Processing Systems, NIPS’13, 926–
934.
Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In Proceedings of the Thirty-Third International
Conference on Machine Learning, ICML’16, 2071–2080.
Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge graph embedding by translating on hyperplanes. In
Proceedings of the Twenty-Eighth AAAI Conference on Ar-
tificial Intelligence, AAAI’14, 1112–1119.
Wang, Q.; Wang, B.; and Guo, L. 2015. Knowledge base
completion using embeddings and rules. In Proceedings of
the Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence, IJCAI’15, 1859–1866.
Wen, J.; Li, J.; Mao, Y.; Chen, S.; and Zhang, R. 2016. On
the representation and embedding of knowledge bases be-
yond binary relations. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJ-
CAI’16, 1300–1307.
Xiao, H.; Huang, M.; and Zhu, X. 2016. TransG : A genera-
tive model for knowledge graph embedding. In Proceedings
of the Fifty-Fourth Annual Meeting of the Association for
Computational Linguistics, ACL’16, 2316–2325.
Xie, R.; Liu, Z.; and Sun, M. 2016. Representation learning
of knowledge graphs with hierarchical types. In Proceed-
ings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI’16, 2965–2971.
Xiong, C., and Callan, J. 2015a. Esdrank: Connecting
query and documents through external semi-structured data.
In Proceedings of the Twenty-Fourth ACM International on
Conference on Information and Knowledge Management,
CIKM’15, 951–960.
Xiong, C., and Callan, J. 2015b. Query expansion with Free-
base. In Proceedings of the Fifth ACM International Con-
ference on the Theory of Information Retrieval, ICTIR’15,
111–120.
Zhang, C.; Ré, C.; Cafarella, M.; De Sa, C.; Ratner, A.; Shin,
J.; Wang, F.; and Wu, S. 2017. Deepdive: Declarative knowl-
edge base construction. Commun. ACM 60(5):93–102.

2053

