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Abstract

The pattern satisfiability is a fundamental problem for
SPARQL. This paper provides a complete analysis of decid-
ability/undecidability of satisfiability problems for SPARQL
1.1 patterns. A surprising result is the undecidability of satis-
fiability for SPARQL 1.1 patterns when only AND and MI-
NUS are expressible. Also, it is shown that any fragment
of SPARQL 1.1 without expressing both AND and MINUS
is decidable. These results provide a guideline for future
SPARQL query language design and implementation.

Introduction
The Resource Description Framework (RDF), a popular data
model for information on the Web, represents information
in the form of directed labeled graphs called RDF graphs.
The standard query language for RDF data is SPARQL with
its latest version SPARQL 1.1 (Harris and Seaborne, 2013).
A fundamental problem for SPARQL is that of satisfiability
of SPARQL patterns. However, the pattern satisfiability for
full SPARQL language is undecidable since SPARQL pat-
terns can emulate relational algebra expressions (Angles et
al., 2008; Polleres, 2007; Arenas et al., 2011), and satisfia-
bility for relational algebra is undecidable (Abiteboul et al.,
1995). For this reason, it would be interesting to investigate
computational complexity of pattern satisfiability for frag-
ments of SPARQL 1.1 so that useful decidable or tractable
language fragments are identified.

Originally, SPARQL 1.0 contains four operators AND,
UNION, OPT and FILTER (for short, A, U , O and F ,
respectively). SPARQL 1.1 extends SPARQL 1.0 by intro-
ducing six new operators SELECT (expressing subqueries),
MINUS, EXISTS, NOT EXISTS, BIND and VALUES
(for short, S , M, ∃, �, B, and V , respectively). While
SPARQL 1.1 has some other important new features such
as aggregation and property paths (Arenas et al., 2012;
Harris and Seaborne, 2013), they are out of the scope of this
work. A fragment formed by some of the above operators is
denoted as a sequence of abbreviations of the operators. For
instance, AMO is the fragment containing AND, MINUS
and OPT.

The satisfiability problem for SPARQL 1.0 patterns has
been investigated and some important results are obtained in
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(Zhang et al., 2016). They showed that the filter operations
play an important role on the satisfiability of a SPARQL 1.0
patterns. Especially, without filter operations, a pattern is al-
ways satisfiable except for trivial cases where a literal occurs
in the wrong place.

SPARQL 1.1 brings in many new language frag-
ments, which make the pattern satisfiability problem of
SPARQL 1.1 more interesting and challenging. However,
to our best knowledge, this problem has not been explored
by researchers yet. In this work, we present decidabil-
ity/undecidability results for pattern satisfiability of several
important fragments of SPARQL 1.1. Moreover, these re-
sults allow us to determine decidability/undecidability of all
640 SPARQL 1.1 fragments. Specifically, our major contri-
butions are summarized in the following:

1. The problem of deciding whether a pattern is satisfi-
able in AM is undecidable. This result is important as
it can be used to identify all undecidable fragments of
SPARQL 1.1 patterns. It is shown in (Zhang et al., 2016)
that pattern satisfiability of the fragment AMU is unde-
cidable. Their proof relies on the presence of UNION but
it is unclear how to express UNION by only AND and
MINUS. Fortunately, our result is proven by reducing the
satisfiability of the Downward Algebra, which is undecid-
able, to the pattern decidability of a fragment AMnav of
AM (Tan et al., 2014).

2. The problem of deciding whether a pattern is satisfiable
in BFMUV(∃, �) is decidable. This result actually cov-
ers all decidable fragments of SPARQL 1.1 that allow nei-
ther AND nor OPT. The decidability of pattern satisfia-
bility in BFMUV(∃, �) is proven by reducing the satisfi-
ability to that of the guarded fragment of first-order logic,
while the latter is decidable (Andréka et al., 1998).

3. The problem of deciding whether a pattern is satisfiable
in ABFUV(∃) is decidable. This result actually covers
all decidable OPT-free fragments of SPARQL 1.1 con-
taining AND. It is proven by reducing the satisfiability
of ABFUV(∃) patterns to that of equality logic, which is
decidable (Andréka et al., 1997).

4. The problems of deciding whether a pattern is satisfiable
in AOU and BOUV are decidable. In fact, their satisfia-
bility can be decided in linear time.
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5. We provide a complete picture of decidabil-
ity/undecidability of all 640 fragments of SPARQL 1.1
patterns.

SPARQL 1.1: Syntax and Semantics

In this section, we briefly recall some basics of SPARQL 1.1,
including its syntax, semantics, and the satisfiability prob-
lem. We follow definitions and notations for the core
SPARQL formalization in (Pérez et al., 2009).

Syntax of SPARQL 1.1 Patterns

An RDF triple is a triple of the form (s, p, o) ∈ (I ∪ B) ×
I × U , where I , B, and L are infinite sets of IRIs (Interna-
tionalized Resource Identifier), blank nodes and literals, re-
spectively, which are pairwise disjoint. The union I ∪B ∪L
is denoted by U , and an element of I ∪ L is referred to as a
constant. An RDF graph is a finite set of RDF triples.

Note that blank nodes are not constants.
In SPARQL, a query is defined in terms of patterns. As-

sume that V is an infinite set of variables, disjoint from U .
Following the convention in SPARQL, a variable starts with
a question mark to distinguish them from constants. For in-
stance, ?x is a variable.

The formalisation of SPARQL 1.1 we consider contains
ten operators AND, UNION, OPT, FILTER, SELECT,
MINUS, EXISTS, NOT EXISTS, BIND, and VALUES
as well as the standard constraints such as ?x =?y,
bound(?x) etc. Formally, patterns in SPARQL 1.1 are in-
ductively defined as follows.

• Any triple from (I ∪ L ∪ V )× (I ∪ V )× (I ∪ L ∪ V ) is
a pattern (called a triple pattern).

• If P1 and P2 are patterns, then so are P1 UNION P2,
P1 AND P2, P1 OPT P2, SELECTS(P1), P1 MINUS
P2, P1 BIND?x (c) (where ?x does not occur in P1), and
(VALUES �W D); where ?x ∈ V , c ∈ I ∪ L, �W ∈ V n

(a list of distinct variables), and D ⊆ (I ∪ L)n (a set of
vectors of constants) with arity n.

• If P is a pattern and C is a constraint (defined next), then
P FILTER C is a pattern; we call C the filter condition.
Here, a constraint can have one of the eight following
forms: bound(?x), ¬bound(?x), ?x = ?y, ?x �= ?y,
?x = c, ?x �= c, EXISTS(P ), and NOT EXISTS(P ),
where c ∈ I ∪ L.

By a fragment, we mean a collection of patterns formed
by a subset of the ten operators of SPARQL 1.1. As ex-
plained, such a fragment will be denoted as a sequence of
the curlicue initials of these operators. We assume that the
standard constraints in SPARQL 1.0 are always allowed in a
fragment of SPARQL 1.1.

In the rest of this paper, we omit SELECT since it can
be easily removed by a renaming of variables if only pattern
satisfiability is considered (Zhang et al., 2016).

Semantics and Satisfiability of Patterns

The semantics of patterns is defined in terms of sets of so-
called solution mappings. A solution mapping (simply, map-

ping) is a total function μ : S → U on a finite set S of
variables. The domain S of μ is denoted domμ.

Given a graph G and a pattern P , the semantics �P �G of
P on G is defined by a set of mappings as follows:

• �(u, v, w)�G := {μ : {u, v, w} ∩ V → U |
(μ(u), μ(v), μ(w)) ∈ G}. Here for a mapping μ and a
constant c ∈ I ∪ L, we agree that μ(c) = c.

• �P1 UNION P2�G := �P1�G ∪ �P2�G.

• �P1 AND P2�G := �P1�G �� �P2�G, where, �P1�G ��
�P2�G = {μ1 ∪ μ2 | μ1 ∈ �P1�G and μ2 ∈ �P2�G and
μ1 ∼ μ2}. Two mappings μ1 and μ2 are compatible, de-
noted by μ1 ∼ μ2, if they agree on the intersection of
their domains.

• �P1 OPT P2�G := (�P1�G �� �P2�G)∪(�P1�G \�P2�G),
where �P1�G \ �P2�G = {μ1 ∈ �P1�G | ¬∃μ2 ∈ �P2�G :
μ1 ∼ μ2}.

• �P1 MINUS P2�G := {μ1 ∈ �P1�G | ∀μ2 ∈ �P2�G,
either μ1 �∼ μ2 or domμ1 ∩ domμ2 = ∅}.

• �P1 BIND?x (c)�G := {μ ∪ {(?x → c)} | μ ∈ �P1�G}.

• �(VALUES �W D)�G := {μ | dom(μ) = �W and
μ( �W ) ∈ D}.

• �P1 FILTER C�G := {μ ∈ �P1�G | μ |= C}, where the
satisfaction of constraints EXISTS and NOT EXISTS
are defined by a mapping μ:

– μ |= EXISTS(Q) if �μ(Q)�G �= ∅, where μ(Q) is
a pattern obtained from Q by substituting c for ?x if
μ(?x) = c;

– μ |= NOT EXISTS(Q) if μ �|= EXISTS(Q).

Due to the limitation of space, the satisfaction of standard
constraints in SPARQL 1.0 are omitted here but they can be
defined in an intuitive way.

We say a pattern P is satisfiable if there exists a graph
G such that �P �G is nonempty. The (pattern) satisfiabil-
ity problem of a fragment is to determine whether each
pattern is satisfiable. The satisfiability problem for the full
SPARQL 1.1 is undecidable (Pérez et al., 2009).

Undecidable Fragments of SPARQL 1.1

In this section, we present some undecidability results for
the satisfiability problem of SPARQL 1.1 fragments. We first
show that the satisfiability for AM patterns is undecidable
by reducing it to the satisfiability problem for Downward Al-
gebra (DA), the algebra of finite binary relations with union,
composition and difference, which is undecidable (Tan et al.,
2014). Based on the undecidability of satisfiability for AM
patterns, we identify some other fragments of SPARQL 1.1
that are undecidable.

Undecidability of AM
In this section we show that the satisfiability problem of
AM patterns is undecidable. However, it is not straightfor-
ward for reducing the satisfiability problem of DA to the pat-
tern satisfiability of AM since DA is for describing binary
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relations while RDF is about triples. Our approach is to em-
ploy a sub-fragment of AM containing so-called navigation
patterns.

Theorem 1 The problem of deciding whether a pattern is
satisfiable in the SPARQL 1.1 fragment AM is undecidable.

Note that (Zhang et al., 2016) is only able to prove that
the pattern satisfiability of fragment AMU is undecidable.
Their proof was done by expressing the complement of a
pattern using UNION. However, it is unclear how this can
be done without UNION. So, our theorem is a significant
extension of the result for the undecidability of AMU in
(Zhang et al., 2016).

In order to prove Theorem 1, we first introduce a fragment
of AM called navigational AM patterns, denoted AMnav,
in which the complementation is closed. Then we prove the
undecidability of AMnav by reducing satisfiability prob-
lem of the Downward Algebra (DA) to that of AMnav pat-
terns (Tan et al., 2014). Then we conclude the undecidabil-
ity of AM since AMnav is a fragment of AM. By going
to AMnav, we are able to focus on binary relations for a
pattern by projecting it on just two variables. In this way we
can express the set of all possible pairs (?x, ?y), where ?x
occurs as the subject and ?y as the object for some triple.

The notion of navigation patterns is introduced to repre-
sent path queries via SPARQL in (Zhang and Van den Buss-
che, 2015). A navigation pattern is a triple (P, ?x, ?y) where
P is an AM pattern, ?x and ?y are variables occurring in P
1. For instance, ((?x, p, ?y), ?x, ?y) is a navigation pattern
while ((?x, p, ?z), ?x, ?y) is not a navigation pattern since
?y does not occur in the pattern (?x, p, ?z).

Formally, given a navigation pattern P and an RDF
graph G, they determine a binary relation �(P, ?x, ?y) =
{(μ(?x), μ(?y)) | μ ∈ �P �G}.

We now introduce the Downward Algebra (DA). DA-
expressions are inductively defined as: r | e ∪ e | e − e |
e ◦ e, where r is a binary relation symbol and e is a DA-
expression.

Semantically, DA-expressions represent binary queries on
binary relations, i.e., mappings from binary relations to bi-
nary relations. Let e be a DA-expression. For a binary re-
lation J , the binary relation e(J) is inductively defined as
follows: (1) r(J) = J ; (2) (e1 ∪ e2)(J) = e1(J) ∪ e2(J);
(3) (e1 − e2)(J) = e1(J) − e2(J) (set difference); and
(4) (e1 ◦ e2)(J) = {(x, z) | ∃y : (x, y) ∈ e1(J) and
(y, z) ∈ e2(J)}. Here r is a relation symbol, e1 and e2 are
DA-expressions.

A DA-expression e is satisfiable if there exists a finite bi-
nary relation J such that e(J) is nonempty.

For instance, DA-expression e = (r ◦ r)− r is satisfiable
since e(J) = {(a, c)}( �= ∅) for J = {(a, b), (b, c)}.

Two DA-expressions e and e′ are equivalent if e(J) =
e′(J) for every relation J .

Given an RDF graph G, a binary graph J(G) is defined
by (a, b) ∈ J(G) if and only if (a, p, b) ∈ G for some p ∈ I .

1In this paper, navigation patterns are indeed safe patterns in the
sense that ?x and ?y must occur in P (Zhang and Van den Bussche,
2015).

Lemma 2 For each ∪-free DA-expression e, a navigation
pattern (P, ?x, ?y) in AM is constructed such that, for ev-
ery RDF graph G, e(J(G)) = �(P, ?x, ?y)�G.

Proof. We prove this lemma by induction on the structure of
DA-expression e.

• If e is a relation name, we take P = (?x, r, ?y). Then
(e)(J(G)) = �((?x, J, ?y), ?x, ?y)�G for each graph G.

• If e is of the form e1 − e2, then by induction, there exist
two navigation patterns (P1, ?x1, ?y1) and (P2, ?x2, ?y2)
for e1 and e2 such that e1(J(G)) = �(P1, ?x1, ?y1)�G
and e2(J(G)) = �(P2, ?x2, ?y2)�G, respectively.
Let P ′

1 and P ′
2 be obtained from P1 and P2 by renaming

the variables so that

– ?x1 and ?x2 are renamed to ?x;
– ?y1 and ?y2 are renamed to ?y; and
– P ′

1 and P ′
2 have no common variables other than ?x, ?y.

Then (P ′
1 MINUS P ′

2, ?x, ?y) is a navigation pattern for
e. Moreover, e(J(G)) = (e1− e2)(J(G)) = e1(J(G))−
e2(J(G)) = �(P1, ?x1, ?y1)�G − �(P2, ?x2, ?y2)�G =
�(P ′

1 MINUS P ′
2, ?x, ?y)�G.

• If e is of the form e1 ◦ e2, the proof is similar to the above
case.

Lemma 2 can be extended to arbitrary DA-expressions.

Lemma 3 For each DA-expression e, there exists a naviga-
tion pattern (P, ?x, ?y) in AM such that, for every RDF
graph G, e(J(G)) = �(P, ?x, ?y)�G.

Proof. We observe the following rules for DA expressions:

• (e1 ∪ e2) ◦ e3 → (e1 ◦ e3) ∪ (e2 ◦ e3);
• e1 ◦ (e2 ∪ e3) → (e1 ◦ e2) ∪ (e1 ◦ e3);
• (e1 ∪ e2) − e3 → (e1 − e3) ∪ (e2 − e3);

• e1 − (e2 ∪ e3) → (e1 − e2) − e3.

Thus, each DA-expresion e can be transformed into the
union of some ∪-free DA-expressions e1 ∪ . . .∪ em, where
ei is a ∪-free DA-expression for i = 1, 2, . . . ,m.

By Lemma 2, for each ei (i = 1, 2, . . . ,m), there ex-
ists a navigation pattern (Pi, ?x, ?y) such that ei(J(G)) =
�(Pi, ?x, ?y)�G. Let P = P1 UNION . . .UNION Pm. Then

e(J(G)) = (e1 ∪ . . . ∪ em)(J(G))
= e1(J(G)) ∪ . . . ∪ em(J(G))
= �(P1, ?x, ?y)�G ∪ · · · ∪ �(Pm, ?x, ?y)�G
= �(P1 UNION . . .UNION Pm, ?x, ?y)�G
= �(P, ?x, ?y)�G.

The following lemma, which is a key for proving The-
orem 1, shows that the union of some navigation patterns
can be expressed by MINUS and AND. We recall that each
pattern in AMU can be expressed in the UNION nor-
mal form Q1 UNION . . . UNION Qm, where each Qi

is UNION-free (i = 1, . . . ,m) (Pérez et al., 2009), by
these two equivalences: P1 MINUS (P2 UNION P3) ≡
(P1 MINUS P2) MINUS P3 and (P1 UNION P2) MINUS
P3) ≡ (P1 MINUS P3) UNION (P2 MINUS P3).
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Lemma 4 Let (Qi, ?x, ?y) be UNION-free navigation pat-
terns in AM for i = 1, . . . ,m. Then, for any RDF graph
G,

�(Q1 UNION . . .UNION Qm, ?x, ?y)�G =
�(Com(Q1, . . . , Qm), ?x, ?y)�G.

Here, Com(Q1, . . . , Qm) = P0 MINUS

((P1 MINUS Q1) AND . . .AND (Pm MINUS Qm)),

and Pi = (?x, ?ti, ?ui) AND (?vi, ?wi, ?y) and ?ti, ?ui,
?vi, ?wi are fresh variables (i = 0, 1, 2, . . . ,m).

Proof. Let P denote (P1 MINUS Q1) AND . . . AND
(Pm MINUS Qm). Thus, Com(Q1, . . . , Qm) =
P0 MINUS P .

Let (a, b) ∈ �(Q1 UNION . . .UNIONQm, ?x, ?y)�G.
Then there exists i ∈ {1, . . . ,m} such that
(a, b) ∈ �(Qi, ?x, ?y)�G. We first note that
(a, b) ∈ �(P0, ?x, ?y)�G. By (a, b) ∈ �(Qi, ?x, ?y)�G,
we have (a, b) /∈ �(Pi MINUS Qi, ?x, ?y)�G,
which implies that (a, b) /∈ �(P, ?x, ?y)�G. Then,
(a, b) ∈ �(Com(Q1, . . . , Qm), ?x, ?y)�G

On the other hand, let (a, b) ∈
�(Com(Q1, . . . , Qm), ?x, ?y)�G. That is, (a, b) /∈
�(P0 MINUS P, ?x, ?y)�G. We show that (a, b) ∈
�(Qi, ?x, ?y)�G for some i ∈ {1, . . . ,m}. By the
assumption, (a, b) /∈ �(P, ?x, ?y)�G. Then, (a, b) /∈
�(Pi MINUS Qi, ?x, ?y)�G for some i ∈ {1, . . . ,m}.
Since (a, b) ∈ �(P0, ?x, ?y)�G, we have that (a, b) ∈
�(Pi, ?x, ?y)�G. Thus, (a, b) ∈ �(Qi, ?x, ?y)�G. Therefore,
(a, b) ∈ �(Q1 UNION . . .UNIONQm, ?x, ?y)�G.
Proof of Theorem 1: For each DA-expression e, a naviga-
tion pattern (Pe, ?x, ?y) can be constructed by

�(Pe, ?x, ?y)�G = e(J(G)).

This implies that the satisfiability problem of DA is re-
duced to that of navigation patterns in AM. On the other
hand, it is known that the satisfiability problem for DA-
expressions is undecidable (Tan et al., 2014). Thus, the sat-
isfiability problem of navigation patterns in AM is unde-
cidable. This implies that the pattern satisfiability of AM is
undecidable.

Other Undecidable Fragments

We have shown that the satisfiability problem of AM pat-
terns is undecidable. Therefore, any fragments that are more
expressive than AM will be undecidable too. In this sub-
section, we identify a few of such undecidable fragments of
SPARQL 1.1.

The DIFF operator underlays the OPT operator in
SPARQL although it is not really an operator of SPARQL.
Semantically, let P1, P2 be two patterns and G be an RDF
graph, �P1 DIFF P2�G = �P1�G \ �P2�G.

Note that the DIFF operator is slightly different from the
MINUS operator when domains of mappings of �P1�G and
�P2�G are disjoint.

Indeed, we can rewrite MINUS to DIFF in a pattern
where neither UNION nor OPT exists.

Let P be a pattern. We use var(P ) to denote the collection
of all variables occurring in P .

Let P be a pattern in ABFMV(∃, �). Let MS(P ) be a
set of variables defined as follows:

• MS(t) = var(t) for any triple pattern t ;
• MS((VALUES {?x1, . . . , ?xm}D)) = {?x1, . . . , ?xm};
• MS(P1 AND P2) = MS(P1) ∪MS(P2);
• MS(P1 MINUS P2) = MS(P1);
• MS(P BIND?x (c)) = MS(P ) ∪ {?x};
• MS(P FILTER C) = MS(P ).

Lemma 5 For any pattern P in ABFMV(∃, �), for any
RDF graph G, for any μ ∈ �P �G, dom(μ) = MS(P ).

Let P be a pattern in ABFMV(∃, �). We use δ(P ) to
denote a pattern obtained from P in a following way: for
any subpattern Q of the form P1 MINUS P2 in P ,
• rewrite P1 MINUS P2 to P1 if MS(P1) ∩MS(P2) = ∅;
• rewrite P1 MINUS P2 to P1 DIFF P2 otherwise.
Note that δ(P ) is in ABDFV(∃, �) (where D stands for
DIFF).

By Lemma 5, we can conclude the following.
Proposition 6 For any pattern P in ABFMV(∃, �), for
any RDF graph G, �P �G = �δ(P )�G.

By Theorem 1 and Proposition 6, we can conclude that
the satisfiability of fragment AD is undecidable since AM
is already expressible in AD. Since OPT envelops AND,
the satisfiability of MO patterns is also undecidable.
Proposition 7 The satisfiability problems of AD and MO
patterns are undecidable.

In order to see that the satisfiability for AF(�) patterns is
undecidable, we need the following lemma.
Lemma 8 DIFF is expressible in F(�).

Clearly, we can conclude Lemma 8 by the following
equivalence: P DIFF Q ≡ P FILTER NOT EXISTS (Q)
(Zhang et al., 2016; Kaminski et al., 2016).

By Lemma 8 and Theorem 1, we have the following.
Proposition 9 The satisfiability problem for AF(�) pat-
terns is undecidable as well as FO patterns.

Finally, both pattern satisfiability problems for two frag-
ments ABO and AOV are undecidable. Indeed, it is easy to
conclude that AD is expressible in both ABOS and AOSV
by the equations: let ?x be a fresh variable and a, b ∈ U ,

P DIFF Q ≡ SELECTvar(P )((P OPT (Q BIND?x (a)))

AND (P BIND?x (b))).

P DIFF Q ≡ SELECTvar(P )((P OPT (QAND

(VALUES {?x} {(a)}))) AND (VALUES {?x} {(b)})).
Thus their pattern satisfiability problems are undecidable.

Since the SELECT operator does not affect the satisfiabil-
ity, we conclude the following.
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Corollary 10 The satisfiability problem for ABO patterns
is undecidable as well as AOV patterns.

Note that OPT is necessary for the undecidability of
ABO and AOV . In other words, the satisfiability problem
for AB patterns becomes decidable as well as AV .

Thus, in a sense, we have identified all fragments of
SPARQL 1.1 whose pattern satisfiability problems are un-
decidable.

The following diagram depicts all seven minimal frag-
ments whose pattern satisfiability problem is undecidable.
“W1 → W2” means that W1 is expressible in W2.

AM AD MO

AF(�) ABO

FO AOV

Decidable Fragments

In this section, we show that the remaining fragments that
are not discussed in the last two sections are decidable.
These decidable fragments can be classified into the follow-
ing three types:

• Fragments containing neither OPT nor AND.

• Fragments containing AND but no OPT.

• Fragments containing OPT and one of AND, BIND,
UNION, and VALUES.

Decidability of the AND-OPT Free Fragment

The full AND-OPT free fragment is BFMUV(∃, �). We
note that the two operators NOT EXISTS and UNION are
redundant. Indeed, NOT EXISTS is expressible in BMS
(Zhang et al., 2016): P FILTER NOT EXISTS(Q) ≡
SELECTvar(P )((P BIND?x (c))MINUS(Q BIND?x (c))).

Also, in BFMUV(∃, �), each pattern is equivalent to a
pattern in UNION normal form, which can be seen from
these two equivalences:
(1) (P1UNIONP2) BIND?x(c) ≡ (P1BIND?x(c))UNION
(P2 BIND?x (c)) and
(2) P1 FILTEREXISTS(P2 UNION P3) ≡ (P1 FILTER
EXISTS(P2)) UNION (P1 FILTER EXISTS(P3)).

Thus, we need only to prove the decidability of
BFMV(∃). This can be done by reducing the satisfiability
problem for BFMV(∃) patterns to the satisfiability prob-
lem for guarded fragment of first-order logic, which is de-
cidable (Grädel, 1999).

In this section, we work with first-order logic formulas
over Σ with equality and the equality sign “=” is not an
element of Σ.

For a first-order formula ϕ, ϕ(?x1, . . . , ?xk) indicates
that the set of all free variables of ϕ is {?x1, . . . , ?xk}.

Formally, the formulas of guarded fragment (GF) are gen-
erated by a recursive definition: (1) Atomic formulas of the
form ?x =?y and ?x = c are in GF for c ∈ I ∪ L; (2) Rela-
tion atoms of the form T (?x1, ?x2, ?x3) are in GF; (3) If ϕ
and ψ are formulas of GF, then so are ¬ϕ, ϕ∨ψ, and ϕ∧ψ;

and (4) If ϕ(x̄, ȳ) is a formula of GF and α(x̄, ȳ) is a rela-
tion atom over Σ s.t. all free variables of ϕ occur in α, then
∃ȳ(α(x̄, ȳ) ∧ ϕ(x̄, ȳ)) is a formula of GF.

Like in (Grädel, 1999), we allow equality and constants
in GF.

As GF is a fragment of first-order logic, the semantics of
GF is that of first-order logic. The semantics of GF is that
of the relational calculus in database theory, interpreted over
the active domain of the database (Abiteboul et al., 1995).

In the rest of this subsection we fix a relational vocabulary
Σ = {T} where T is a tertiary relation symbol. There is
a strong correspondence between BFMV(∃) and GF: one
can be translated into the other.
Theorem 11 For each BFMV(∃) pattern P with
MS(P ) = {?x1, . . . , ?xk}, there exists a GF formula
ϕP (?x1, . . . , ?xk) such that for every RDF graph G,
for every (d1, . . . , dk) ∈ Uk, G |= ϕP (d1, . . . , dk) iff
(?x1 → d1, . . . , ?xk → dk) ∈ �P �G.

We note that the conclusion of the theorem for FILTER
and DIFF cannot be directly obtained from definitions and
thus the proof of this theorem is not straightforward. In our
proof, we need a generalisation of (Leinders et al., 2005,
Lemma 5) as the lemma does not assume the presence of
equality and constants.

We first adapt some notions defined for relational algebra
in (Leinders and Van den Buscche, 2007) to RDF.

Let G be an RDF graph. A set S is guarded in G if there
exists some triple (s, p, o) ∈ G such that S ⊆ {s, p, o}. For
C ⊆ I ∪ L, a set of elements X is C-stored in G if there
exists a guarded set S in G such that X ⊆ S ∪ C. A tuple
(d1, . . . , dk) is C-stored in G if {d1, . . . , dk} is C-stored in
G. Analogously, a mapping (?x1 → d1, . . . , ?xk → dk) is
C-stored in G if {d1, . . . , dk} is C-stored in G.

By an easy induction on the structure of P , we can show
the following lemma.

Lemma 12 Let P be a pattern in BFMV(∃) and G be an
RDF graph. Then each mapping μ ∈ �P �G is C-stored in G
where C is the set of all constants in P .

Let C ⊆ I ∪ L. The set of C-stored k-tuples in structures
of Σ = {T} by the following formula (Grädel et al., 2002):

Gc(?x1, . . . , ?xk) := ∃ȳ (T (ȳ)∧
k∧

i=1

((
∨
j

?xi =?yj) ∨ (
∨
c∈C

?xi = c))).

Now we are ready to present the generalisation of (Lein-
ders et al., 2005, Lemma 5) to GF with equality and con-
stants.
Lemma 13 If ϕ(x̄, ȳ) is in GF with equality and constants,
then ∃ȳ(Gc(x̄, ȳ) ∧ ϕ(x̄, ȳ)) is equivalent to a formula in
GF.

Proof of Theorem 11: We consider DIFF instead of MINUS
in this proof since each pattern in ABFMV(∃, �) can
be equivalently rewritten to a pattern in ABDFV(∃, �)
by Proposition 6 and BFMV(∃) is a fragment of
ABFMV(∃, �). By induction on the structure of P .
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• If P is a triple pattern of the form (u, v, w) then take
ϕP := T (u, v, w).

• If P is of the form (VALUES �W D) where
�W = (?x1, . . . , ?xk) and D = {(c11, . . . , c1k),
. . ., (cm1 , . . . , cmk )} then take ϕP (x1, . . . , xk) :=

(
∨m

i=1

∧k
j=1 xj = cij).

• If P is of the form P1 BIND?x (c) then, by induc-
tion, we have a formula ϕP1

(?x1, . . . , ?xk). Now, ϕP :=
ϕP1

(?x1, . . . , ?xk)∧ ?x = c.

• If P is of the form P1 FILTER C then, by induc-
tion, we have a formula ϕP1

(?x1, . . . , ?xk). Take ϕP :=
ϕP1

(?x1, . . . , ?xk) ∧ C.

• If P is of the form P1 FILTER EXISTS(P2) then, by
induction, we have formulas ϕP1

(x̄, ȳ) and ϕP2
(ȳ, z̄)

where ȳ = var(P1) ∩ var(P2). We show how to ob-
tain a GF formula equivalent to the formula ϕP1

(x̄, ȳ) ∧
∃ z̄ ϕP2

(ȳ, z̄). By Lemma 12, ϕP2
(ȳ, z̄) is equivalent to

the formula Gc(ȳ, z̄) ∧ ϕP2
(ȳ, z̄). Then φ is equivalent

to the formula ϕP1
(x̄, ȳ)∧ ∃z̄(Gn(x̄, z̄)∧ϕP2

(x̄, z̄)). By
Lemma 13, there exists some formula ϕ′

P2
(ȳ) in GF such

that ϕ′
P2
(ȳ) is equivalent to ∃z̄(Gn(x̄, z̄) ∧ ϕP2

(x̄, z̄))
since ϕP2(ȳ, z̄) is in GF. Now, ϕP (x̄, ȳ) is the formula
ϕP1(x̄, ȳ) ∧ ϕ′

P2
(ȳ).

• Finally, if P is of the form P1 DIFFP2 then, by induction,
we have formulas ϕP1(x̄, ȳ) and ϕP2(ȳ, z̄) where ȳ =
var(P1)∩ var(P2). We show how to obtain a GF formula
equivalent to the formula ϕP1(x̄, ȳ) ∧ ¬∃ z̄ ϕP2(ȳ, z̄).
By Lemma 12, ϕP2(ȳ, z̄) is equivalent to the formula
Gc(ȳ, z̄) ∧ ϕP2

(ȳ, z̄). Then φ is equivalent to the formula
ϕP1

(x̄, ȳ) ∧ ∃z̄(Gn(x̄, z̄) ∧ ϕP2
(x̄, z̄)). By Lemma 13,

there exists some formula ϕ′
P2
(ȳ) in GF such that ϕ′

P2
(ȳ)

is equivalent to ∃z̄(Gn(x̄, z̄)∧ϕP2(x̄, z̄)) since ϕP2(ȳ, z̄)
is in GF. Now, ϕP (x̄, ȳ) is the formula ϕP1(x̄, ȳ) ∧
¬ϕ′

P2
(ȳ).

By Theorem 11, it follows the decidability of BFMV(∃).
Theorem 14 The satisfiability problems for BFMV(∃)
and BFMUV(∃, �) patterns are decidable.

Since BFMUV(∃, �) is also expressible in GF where
UNION can be expressed by the disjunction connec-
tive ∨ of GF and the satisfiability problem for GF is in
EXPTIME (Grädel, 1999), the satisfiability problem for
BFMUV(∃, �) is EXPTIME.

Moreover, we can show that the satisfiability problem for
BFMUV(∃, �) patterns is EXPTIME-hard by reducing the
satisfiability problem for semijoin algebra, denoted by SA2,
with a single binary relation symbol (Leinders et al., 2005)
to the satisfiability problem of BFMUV(∃, �) patterns.

Proposition 15 The satisfiability problem for
BFMUV(∃, �) patterns is EXPTIME-Complete.

Proof. (Sketch) For each SA2-expression e, we can construct
a pattern Pe in FMU(∃) in polynomial time s.t. e is satis-
faible iff Pe is satisfiable. Since the satisfiability problem for
SA2-expressions is EXPTIME-hard (Leinders et al., 2005,

Theorem 11), the satisfiability problem for FMU(∃) pat-
terns is EXPTIME-hard. That is, the satisfiability problem
for BFMUV(∃, �) patterns is EXPTIME-Complete.

Decidable OPT-Free Fragments

We show that the satisfiability for patterns in the largest
OPT-free fragment ABFUV(∃) is decidable.

Note that EXISTS can be expressed by AND and
SELECT (Zhang et al., 2016) : P FILTER EXISTS(Q) ≡
SELECTvar(P )(P ANDQ).

Moreover, each pattern in ABFUV(∃) is equivalent to a
pattern in UNION normal form.

Thus, it suffices to show the decidability of satisfiabil-
ity for ABFV by checking the satisfiability of bound con-
straints. We consider only constraints of the form ?x = c,
?x �= c, ?x =?y, and ?x �=?y since bound(?x) and
¬bound(?x) can be easily removed by syntactical rewrit-
ing. In addition, we consider only safe patterns since unsafe
patterns are always unsatisfiable (Pérez et al., 2009). A pat-
tern is safe if for every subpattern of the form P FILTER C,
variables of C must occur in P .

To check the satisfiability of bound constraints, we asso-
ciate each pattern P with a pair Γ(P ) = (S, C) where S is
a set of variables and C is a set of atomic constraints defined
as follows.
• Γ((u, v, w)) = ({u, v, w} ∩ V, ∅);
• Γ((VALUES{(?x1, . . . , ?xk)}, {(c1, . . . , ck)})) :=
({?x1, . . . , ?xn}, {?xi = ci | i = 1, 2, . . . , k});

• Γ(P1 AND P2) := (S1 ∪ S2, C1 ∪ C2);
• Γ(P1 BIND?x (c)) := (S1 ∪ {?x}, C1 ∪ {?x = c});
• Γ(P1 FILTER C) := (S1, C1 ∪ {C}).
Here Γ(Pi) = (Si, Ci) (i = 1, 2).

We now establish the main result of this subsection.
Theorem 16 Let P be an ABFV pattern and Γ(P ) =
(S, C). Then P is satisfiable if and only if C is satisfiable.

The “only-if” direction of Theorem 16 can be shown by
Lemma 17.

Lemma 17 Let P be an ABFV pattern and G a graph. If
μ ∈ �P �G, then μ |= C for any constraint C ∈ C.

The “if” direction of Theorem 16 for ABFV follows by
Lemma 18.

Lemma 18 Let P be an ABFV pattern, Γ(P ) = (S, C),
μ a mapping from var(C) to U with μ |= C for ev-
ery C ∈ C, c ∈ I a constant that does not ap-
pear in any filter condition in P , and G the RDF graph
{(μ̄(u), μ̄(v), μ̄(w)) | (u, v, w) ∈ P}. Then μ̄ ∈ �P �G,
where

μ̄(?x) =

{
μ(?x), ?x ∈ var(C);
c, ?x ∈ var(P ) \ var(C).

Proof. By induction on the structure of P .
• If P is a triple pattern (u, v, w) then S = {u, v, w} ∩ V .

Since C = ∅, μ is empty. Thus (μ̄(u), μ̄(v), μ̄(w)) ∈ G,
we have μ̄ ∈ �P �G.
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• If P is a VALUES pattern of the form (VALUES �W D)

where �W = (?x1, . . . , ?xk) and D = {(c1, . . . , ck)}
then S = {?x1, . . . , ?xk} and C = {?xi = ci |
i = 1, 2, . . . , k}. Let μ = (?x1 → ci, . . . , ?xk →
ck). For any graph G containing all possible triples
(μ(u), μ(v), μ(w)), we have μ ∈ �P �G. Then μ is de-
sired.

• If P is of the form P1ANDP2, then we have S = S1∪S2

and C = C1 ∪C2 with Γ(Pi) = (Si, Ci) for i = 1, 2. Let μ
be a mapping from var(C) to U such that μ |= C for any
constraint C ∈ C. Then let μ̄ be a mapping from var(P ) to
U constructed as above and G be the RDF graph contain-
ing all possible triples (μ̄(u), μ̄(v), μ̄(w)) where (u, v, w)
is a triple pattern in P . By induction, μ̄|S1 ∈ �P1�G and
μ̄|S1 ∈ �P1�G (Note that μ|S is the restriction of μ under
S.) Clearly μ̄|S1 ∼ μ̄|S2 since they are restrictions of the
same mapping. Hence μ̄|S1

∪ μ̄|S2
= μS1∪S2

∈ �P �G.
• If P is of the form P1 BIND?x (a), then we have S =

S1∪{?x} and C = C1∪{?x = a} with Γ(P1) = (S1, C1).
Let μ be a mapping from var(C) to U such that μ |= C
for any constraint C ∈ C. Clearly, μ(?x) = a. Then let
μ̄ be a mapping from var(P ) to U constructed as above
and G be the RDF graph containing all possible triples
(μ̄(u), μ̄(v), μ̄(w)) where (u, v, w) is a triple pattern in P .
By induction, μ̄|S1 ∈ �P1�G. Clearly μ̄|S1 ∼ {?x → a}
since ?x �∈ S1 by our restriction (Otherwise, P is unsatis-
fiable). Hence μ̄|S1 ∪ {?x → a} = μS1∪{?x} ∈ �P �G.

• Finally, if P is of the form P1 FILTER C, then we know
that S = S1 and C = C1 ∪ {C} with Γ(P1) = (S1, C1).
Let μ be a mapping from var(C) to U such that μ |= C
for any constraint C ∈ C. Clearly, μ |= C. Then let μ̄
be a mapping from var(P ) to U constructed as above
and G be the RDF graph containing all possible triples
(μ̄(u), μ̄(v), μ̄(w)) where (u, v, w) is a triple pattern in
P . By induction, μ̄|S1

∈ �P1. Since μ̄(?x) = μ(?x) for
any ?x ∈ var(C) ⊆ S1, μ |= C implies μ̄ |= C. Then
μ̄|S1 ∈ �P �G.
By Theorem 16, we have the following result.

Corollary 19 The satisfiability problem for ABFUV(∃)
patterns is decidable.

Since the satisfiability problem for ABFU (a subfrag-
ment of ABFUV(∃)) is actually NP-hard (Zhang et al.,
2016, Proposition 10), we have the following result.
Corollary 20 The satisfiability problem for ABFUV(∃)
patterns is NP-hard.

Decidable Fragments Containing OPT
We have shown that a fragment containing OPT is un-
decidable if it also contains one of the following sets of
operators: {MINUS}, {AND,BIND}, {AND,VALUES},
and {FILTER,EXISTS,NOT EXISTS}. In this subsec-
tion, we show that the remaining fragments containing OPT
are decidable. Specifically, a fragment containing OPT is
decidable if it contains one of AND, UNION, BIND, and
VALUES. In fact, we come up with a stronger result than
this by showing that the pattern satisfiability problems for
both AOU and BOUV are decidable.

We note that AOU is a fragment of SPARQL(bound,=
, �=c) (Zhang et al., 2016) without FILTER operator. In-
deed, if no triple pattern contains any wrong literals, then
every AOU pattern is satisfiable since the mapping from
the set of variables to a single constant is a solution. On
the other hand, it is proven that the pattern satisfiability
for SPARQL(bound,=, �=c) without FILTER is decidable
(Zhang et al., 2016). Thus, the pattern satisfiability for AOU
is also decidable.

However, the decidability of BOUV patterns is not
straightforward. In order to prove this decidability result,
we reduce the satisfiability problem for BOUV patterns to
the problem of deciding whether a triple pattern contains a
wrong literal.

To do so, we introduce the notion of principal sub-
pattern. The principal subpattern of a pattern P is
an OPT-free subpattern of P , written by ps(P ),
defined as follows: (1) ps((u, v, w)) := (u, v, w);
(2) ps(P1 BIND?x (c)) := ps(P1) BIND?x (c);
(3) ps(VALUES �W D) = (VALUES �W D); (4)
ps(P1 UNION P2) := ps(P1) UNION ps(P2); and
(5) ps(P1 OPT P2) := ps(P1).

Now, we will show that the satisfiability problem for
BOUV can be reduced to the satisfiability problem for BUV
patterns.

Proposition 21 A BOUV pattern P is satisfiable if and only
if ps(P ) is satisfiable.

By Proposition 21, we can determine whether a BOUV
pattern is satisfiable by checking the satisfiability of its prin-
cipal subpattern which is in BO. Note that principal subpat-
terns are in BUV , that is, they are built on either triple pat-
terns or VALUES patterns with the BIND operator. Since
each variable to be binded is fresh, the satisfiability prob-
lem for BV patterns can be reduced to the satisfiability prob-
lem for V patterns. Normally, besides VALUES patterns, all
triple patterns are satisfiable except for triple patterns with
wrong literals (Zhang et al., 2016). Thus, the satisfiability
problem for BOUV patterns can be reduced to the problem
of checking triple patterns with wrong literals. This is simi-
lar to the case of AOU where patterns in AU are always sat-
isfiable except for triple patterns with wrong literals (Zhang
et al., 2016).

In short, the satisfiability problem of AOU patterns and
BOUV patterns can be reduced to the problem whether a
triple pattern contains a wrong literal, which can be checked
in linear time. Therefore, we have the following result.

Corollary 22 The satisfiability problems for both AOU and
BOUV patterns can be decided in linear time.

Conclusion

In this paper we have shown that the satisfiability problem
of the fragment AM patterns is undecidable. This is in-
teresting as it is unclear how to express the complement
of a pattern by AND and MINUS without UNION. We
have also shown the pattern decidability for several frag-
ments including BFMUV(∃, �), ABFUV(∃), AOU , and
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BOUV . Based on these results, we are able to paint a com-
plete picture for decidability/undecidability of all 640 frag-
ments of SPARQL 1.1 patterns and three classes of de-
cidable fragments with different computational complexity.
As well as their theoretical interest, our results provide a
guideline for designing SPARQL query languages and im-
plementing them.

Note that OPTF is proposed in (Kontchakov and V.
Kostylev, 2016; Kaminski et al., 2017) as LeftJoin (a
more expressive operator) to replace OPT in the gen-
eral SPARQL. Most of our results can be generalised to
SPARQL fragments containing OPTF if F belongs to one
of the classes of filters for which the satisfiability is decid-
able (Zhang et al., 2016). However, if general filter expres-
sions are allowed, further investigation would be needed.
In addition, we plan to conduct a complexity analysis of
SPARQL 1.1 language with some other important features
such as aggregation functions which possibly cause unsatis-
fiability (Han et al., 2016).
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