The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

Maximum A Posteriori Inference
in Sum-Product Networks

Jun Mei, Yong Jiang, Kewei Tu
ShanghaiTech University
{meijun,jiangyong,tukw } @shanghaitech.edu.cn

Abstract

Sum-product networks (SPNs) are a class of probabilistic
graphical models that allow tractable marginal inference.
However, the maximum a posteriori (MAP) inference in
SPNs is NP-hard. We investigate MAP inference in SPNs
from both theoretical and algorithmic perspectives. For the
theoretical part, we reduce general MAP inference to its spe-
cial case without evidence and hidden variables; we also show
that it is NP-hard to approximate the MAP problem to 2" for
fixed 0 < e < 1, where n is the input size. For the algorithmic
part, we first present an exact MAP solver that runs reason-
ably fast and could handle SPNs with up to 1k variables and
150k arcs in our experiments. We then present a new approx-
imate MAP solver with a good balance between speed and
accuracy, and our comprehensive experiments on real-world
datasets show that it has better overall performance than ex-
isting approximate solvers.

Introduction

SPNs are a class of probabilistic graphical models known for
its tractable marginal inference (Poon and Domingos 2011).
In the previous work, SPNs were mainly employed to do
marginal inference. On the other hand, although MAP infer-
ence is widely used in many applications in natural language
processing, computer vision, speech recognition, etc., MAP
inference in SPN's has not been widely studied.

Some previous work on MAP inference focuses on se-
lective SPNs (Peharz, Gens, and Domingos 2014), which
is also known as determinism in the context of knowledge
compilation (Darwiche and Marquis 2002) and arithmetic
circuits (Darwiche 2003; Lowd and Domingos 2008; Choi
and Darwiche 2017). Huang, Chavira, and Darwiche(2006)
presented an exact solver for MAP based on determinis-
tic arithmetic circuits. Peharz et al.(2016) showed that most
probable explanation (MPE), a special case of MAP without
hidden variables, is tractable on selective SPNs.

Selectivity, however, is not guaranteed in most of the
SPN learning algorithms (Gens and Domingos 2012; 2013;
Rooshenas and Lowd 2014) and applications (Poon and
Domingos 2011; Cheng et al. 2014; Peharz et al. 2014).
For SPNs without the selectivity assumption, Peharz(2015)
showed that MPE in SPNs is NP-hard by reducing SAT to

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1923

MPE. Peharz et al.(2016) showed a different proof based on
the NP-hardness results from Bayesian networks. Conaty,
Mau4, and de Campos(2017) discussed approximation com-
plexity of MAP in SPNs and gave several useful theoretical
results.

In this paper, we investigate MAP inference in SPNs from
both theoretical and algorithmic perspectives. For the theo-
retical part, we make the following two contributions. First,
we define a special MAP inference problem called MAX
that has no evidence and hidden variables, and we show that
MAP can be reduced to MAX in linear time. This implies
that to study MAP we can instead focus on MAX, which has
a much simpler form. Second, we show that it is NP-hard to
approximate the MAP problem to 2" fox fixed 0 < € < 1,
where n is the input size. This result is similar to a theorem
proved by Conaty, Maud, and de Campos(2017), but we use
a proof strategy that is arguably much simpler than theirs.
For the algorithmic part, we present an exact MAP solver
and an approximate MAP solver. Our comprehensive exper-
iments on real-world datasets show that our exact solver runs
reasonably fast and could handle SPNs with up to 1k vari-
ables and 150k arcs within ten minutes; our approximate
solver provides a good trade-off between speed and accu-
racy and has better overall performance than previous ap-
proximate methods.

Background

We adapt the notations from Peharz et al.(2015). A random
variable is denoted as an upper-case letter, e.g. X, Y. The
corresponding lower-case letter x denotes a value X can as-
sume. The set of all the values X can assume is denoted as
val(X). Thus z € val(X).

A set of variables is denoted as a boldface upper-case let-
ter, e.g. X = {X3, Xo,..., Xn}. The corresponding bold-
face lower-case letter x denotes a compound value X can
assume. The set of all the compound values X can assume
is denoted as val(X), i.e. val(X) = x_;val(X,,). Thus
x € val(X). For X € X, x[X] denotes the projection of x
onto X . Thus x[X] € val(X). For Y C X, x[Y] denotes
the projection of x onto Y. Thus x[Y] € val(Y).

A compound value x is also a complete evidence, assign-
ing each variable in X a value. Partial evidence about X is
defined as X C val(X). Partial evidence about X is defined
as X xN | X,. Thus X C val(X). For X € X, we



define X[X] := {x[X] | x € X}. Thus X[X] C val(X).
For Y C X, we define X[Y] := {x[Y] | x € X}. Thus
X[Y] C val(Y).

Network polynomials

Darwiche(2003) introduced network polynomials. Ax—, €
R denotes the so-called indicator for X and x. A denotes a
vector collecting all the indicators of X.

Definition 1 (Network Polynomial). Let ¢ be an unnormal-

ized distribution over X with finitely many values. The net-
work polynomial fg is defined as

fo) = > @60 [ Ax=xx)-

x€eval(X) Xex

ey

We define A\x—,(x) as a function of x € val(X) and
A(x) denotes the corresponding vector-valued function, col-
lecting all Ax—,(x):

1 ifr =x[X]
" 10 otherwise.

It can be easily verified that fo(A(x)) = ®(x) since when
we input A(x) to fg, all but one of the terms in the summa-
tion evaluate to 0. We extend Eq. 2 to a function of partial
evidence X:

Ax=z(x) (@)

1 ifx e X[X]
0 otherwise.

Ax=a(X) = { 3
Let A(X) be the corresponding vector-valued function. It
can also be shown that fo(A(X)) = >, . 4 P(x), i.e. the
network polynomial returns the unnormalized probability
measure for partial evidence X. In particular, fo(val(X))
returns the normalization constant of ®.

We should note that, although the indicators are restricted
to {0,1} by Eq. 2 and Eq. 3, they are actually real-valued
variables. Therefore, taking the first derivative with respect
to some \x—, yields

dfe
a)\X =z
This means the derivative on the left hand side in Eq. 4 actu-

ally evaluates ® for modified evidence {z} x X[X \ {X}].
This technique will be used in our exact MAP solver.

(A(X)) = (z, X[X\ {X}]). )

Sum-product networks

SPNs over variables with finitely many values are defined as
follows:

Definition 2 (Sum-Product Networks). Let X be variables
with finitely many values and A their indicators. A sum-
product network S = (G, w) over X is a rooted directed
acyclic graph G = (V, A) with nonnegative parameters
w. All leaves of G are indicators and all internal nodes
are either sums or products. Denote the set of children of
node N as ch(N). A sum node S computes a weighted sum
S(A) = Xceen(s) ws.cC(A), where the weight wsc € w
is associated with the arc (S, C) € A. A product node com-
putes P(A) = [[ceen(s) C(A). The output of S is the func-

tion R(A) computed by the root R and denoted as S(\).
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The scope of node N, denoted as sc(N), is defined as

sc(N) = {{X}

Uceen(n)sc(C)

if N is some indicator A\ x—,,
otherwise.

&)

We say an SPN is complete if for each sum S, we have
sc(C) = sc(C'),VC,C’" € ch(S). We say an SPN is decom-
posable if for each product P, we have sc(C) N sc(C’') =
0,vC,C" € ch(P),C # C'. The output function of a com-
plete and decomposable SPN is actually a network polyno-
mial. While there exist SPNs that are not decomposable, in
this paper we follow the majority of the previous work and
focus on complete and decomposable SPNs.

Now we define MAP inference formally. Using Eq. 2 and
Eq. 3, we define S(x) := S(A(x)) and S(X) := S(A(X)).
For variables X, we use Q, E, H to denote query, evidence
and hidden variables, where QUEUH = X, Q # () and
Q. E. H are disjoint. Given Q, E, H and an evidence e €
val(E), the MAP inference in the SPN S over variables X
is defined as

MAPs(Q,e,H) := arg mal)(<Q) S({q} x {e} x val(H)).
qeva

(6)

Note that MAP inference is typically defined using condi-

tional probabilities, but it is easy to show that our definition

is equivalent to the classical definition.

Theoretical results
MAX inference

MAP inference splits X into three parts: query, evidence and
hidden variables. We define a special case of MAP inference
without evidence and hidden variables, which we call MAX
inference:

MAXgs :=arg max S(x)
xeval(X)

)

We can reduce every MAP problem to a MAX problem in
linear time. Without loss of generality, we assume the root
of an SPN is a sum (otherwise we can always add a new
sum root node linking to the old root with weight 1). Given
an SPN § and a MAP problem with Q, e, H, Algorithm 1
modifies S and returns a new SPN denoted as S’ such that
Vq € val(Q),S'(q) = S({q} x {e} x val(H)), which
implies MAXgs = MAPs(Q,e,H). The algorithm runs
as follows. We first calculate the value wy for each node N,
which is later multiplied into the arc weights of certain an-
cestor sum nodes of N. Intuitively, we do bottom-up precom-
puting of the node values and store the precomputed values
in the weights. After that, we remove every node N and its
arcs if sc(N) C E U H and output the resulting SPN. Using
the terminology of knowledge compilation (Darwiche and
Marquis 2002) and negation normal forms (Darwiche 2001),
the algorithm performs conditioning on the evidence vari-
ables, projects the SPN onto the query variables, and then
makes simplifications to the SPN structure.

This reduction implies that any efficient algorithm for
solving MAX can also be used to efficiently solve MAP.
Furthermore, the distribution modeled by S’ is exactly the



Algorithm 1 Calculate M AP2M AXs(Q, e, H)

1: for all N € V in reverse topological order do

2: wy 1

3: if Nis aleaf Ax_, s.t. X € E and e[X] # z then
4: Wry_, 0

5: if N is a sum S then

6: for all C € ch(S) do

7: ws,C < Ws,cWc > multiply wc into ws ¢
8: if sc(S) € E U H then

9: Ws 4= Y ceen(s) Ws,c > otherwise, ws =1
10: if N is a product P then

11: wp HCGP we

12: forallN € V do

13: if sc(N) C E U H then

14: remove N and the arcs/weights associated with N

Figure 1: An example of the reduction. X; € E, e[X;] =
Z1. The number in the parentheses is the new weight after re-
duction. Nodes/arcs/weights in the dashed box are removed.

distribution over Q conditioned on e modeled by S. Thus,
MAP2MAX is an S-reduction (Crescenzi 1997), which im-
plies that any approximation algorithm for MAX can be used
to approximate MAP to the same factor. Therefore, in the
next two sections we will focus on algorithms solving MAX.

Approximation complexity

It has been shown in the literature that MAP inference in
Bayesian networks (BNs) is hard. Denote the size of an SPN
S and a BN B as |S| and |B| respectively. Theorem 6 in
(De Campos 2011) indicates that for any fixed 0 < e < 1
it is NP-hard to approximate MAP in tree-structured BNs to
2IBI° We can transfer this result to SPNs.

Lemma 1. Given a tree-structured BN B, we can construct
an SPN S representing the same distribution with size |S| €
O(|B)) in linear time.

See the proof of Lemma 1 in the supplementary material.
Theorem 1. For any fixed 0 < 6 < 1, it is NP-hard to
approximate MAP in SPNs to 2!S .

Proof. Suppose there exists fixed 0 < 6 < 1 s.t. it is not
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NP-hard to approximate MAP in SPNs to 2151” . Given a
tree-structured BN BB, we can construct an SPN S in lin-
ear time that represents the same distribution as B. Since
|S] € O(|B]), there exist constants b,c > 0 s.t. |S| < ¢|B]
if |B| > b. Define two constants 7 (1 —6)/2 and
V¥ = max{b,c’/7}. Given a MAP problem in B, we can
solve it exactly in constant time if |B| < . In the following
we consider the case of |B| > ’. According to our assump-
tion, we can approximate MAP in the constructed SPN S to
281 in polynomial time. Since S and B represent the same
distribution, we have also approximated MAP in B to 2!$ °
Since |B| > b', we have 2ISI” < 9(elB)® < 9IBI"IBI* — 9|BI°
where € = § +7 < 1. Therefore, there exists a constant € s.t.
it takes polynomial time to approximate MAP in 3 to 2/8/°,
contradicting De Campos’s theorem. O

Thm. 1 suggests that it is almost impossible to find a prac-
tical and useful approximation bound for MAP inference in
SPNs. Note that in parallel to our work, Conaty, Maud, and
de Campos(2017) gave a similar result to Thm. 1 through
a reduction from 3-SAT. Both their and our theorems aim
at the inapproximability of MAP in SPNs. They suppose the
SPNs are trees of low height, which leads to a stronger result
than ours. On the other hand, we employ a different proof
strategy which is arguably much simpler than theirs.

Exact solver

Since MAP inference is NP-hard, no efficient exact solver
exists (supposing P % NP). However, with a combination
of pruning, heuristic, and optimization techniques, we can
make exact inference reasonably fast in practice. In this sec-
tion, we introduce two pruning techniques, a heuristic, and
an optimization technique in order to build a practical ex-
act solver. We will focus on solving MAX since any MAP
problem can be efficiently converted to a MAX problem.
Algorithm 2 shows our algorithm framework. The function
SEARCH has two augments: X is the remaining space to be
explored and x is the current best sample.

We first introduce a pruning technique called Marginal
Checking (MC). MC computes S(X’) which is the summa-
tion of scores of all the samples in X. If it is less than or
equal to the score of the current best sample x, then there
cannot be any sample in X’ with a higher score than x and
therefore we can safely prune space X.

We can go one step further and check and prune the sub-
spaces of X. This leads to a new pruning technique which
we call Forward Checking (FC). For each X € X and
x € X[X], we consider the subspace {z} x X[X \ {X}].
If the subspace does not have a higher score than x, then we
prune the subspace by removing value x from X (Line 23).
The scores of all the subspaces can be computed simulta-
neously in linear time by taking partial derivatives (Eq. 4).
Note that once we prune a subspace by removing a value
from X, other subspaces are shrunk and their scores have to
be rechecked. For example, the subspace {z1,z2} X {y} is
shrunk to {z2} x {y} if we remove z;. Therefore, we repeat
Line 19-23 until X is no longer changed.



Algorithm 2 Calculate x = M AXs

1: X ¢ ainitial sample
2: X + SEARCH(val(X), x)

> using any initialization method, for example, random initialization

> |X[X]| = 1 means the value of X is determined
> all variables are determined
> because now | X| = 1 is guaranteed

> consider all possible values of variable X
> new smaller space

3: function SEARCH(X, x)

4: X < avariable with |X[X]| > 1

5: if no such X exists then

6 return x’ where x’ is the only element in X

7: for all z € X[X] do

8: X {z} x X[X\ {X}]

9: X’ <~ MARGINALCHECKING(X', x) or FORWARDCHECKING (X", x)
10: if X’ = () then

11: X < SEARCH(X',x)

12: return x

13: function MARGINALCHECKING(X, X)

14: if S(X) > S(x) then
15: return X
16: return ()

17: function FORWARDCHECKING(X, X)

18: repeat

19: calculate D,, ‘g—‘i()( ) for every  simultaneously
20: for all X € X do

21: for all 2z € X[X] do

22: if S(x) > D, then

23: X — (X[X]\{z}) x X[X\ {X}]
24: until X is no longer changed

25: return X’

> check in linear time if there can be better samples than x in space X'

> can be done in linear time

> S(x) can be cached
> remove z from X

> X is now shrunk and may become ()

Now we introduce a heuristic called Ordering, which is
inspired by similar techniques for solving constraint sat-
isfaction problems. At Line 4, we need to choose an un-
determined variable X. Instead of choosing randomly, we
choose the variable with the fewest remaining values, i.e.,
arg minxex | X[X]|, which would then lead to fewer search
branches. At Line 7, we need to try every value z € X[X].
We order these values by their corresponding space scores
S{z} x X[X \ {X}]), because we expect a higher score
implies that the subspace is more likely to contain a better
sample and finding a better sample earlier leads to more ef-
fective pruning.

Finally, we introduce an optimization technique called
Stage. Once the value of a variable X is determined, it is
never changed in the corresponding sub-search-tree. We can
treat such determined variables as evidence in MAP infer-
ence and reduce the size of the SPN by running Algorithm 1.
By doing this, we reduce the amount of computation in the
sub-search-tree. Note that, however, the procedure of cre-
ating a smaller SPN incurs some overhead. To prevent the
overhead from overtaking the benefit, we only do this once
every few levels in the search tree.

Since FC is more advanced than MC with similar time
complexity, our final exact solver is built by combining FC,
Ordering and Stage. Note that our exact solver is actually an
anytime algorithm that can terminate at any time and return
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the current best sample. Thus, our exact solver can also be
used as an approximate solver when there is a time budget.
Prior to our work, Huang, Chavira, and Darwiche(2006)
also present an exact solver for arithmetic circuits, but their
main contribution, a pruning technique (their Algorithm 2),
only works on deterministic arithmetic circuits and cannot
be easily generalized. In contrast, we focus on more general
SPNs without the selectivity (determinism) assumption.

Approximate solvers

Thm. 1 states that approximating MAP inference in SPNs is
very hard. However, in practice it is possible to design ap-
proximate solvers with good performance on most data. In
this section, we briefly introduce existing approximate meth-
ods and then present a new method. Again, when describing
the algorithms, we assume the MAP problem has been con-
verted to a MAX problem.

Existing methods

Best Tree (BT) BT, first used by Poon and Domin-
20s(2011), runs in three steps: first, it changes all the sum
nodes in the SPN to max nodes; second, it calculates the
values of all the nodes from bottom up; third, in a recursive
top-down manner starting from the root node, it selects the
child of each max node with the largest value. The selected
leaf nodes in the third step represent the approximate MAP



Algorithm 3 Calculate x = K BT'(S)

—_—

: for all N € V in reverse topological order do
if N is a leaf A then
MA — bestK({l})

if N is a sum S then

if N is a product P then

: S + {x corresponding to m | m € Mg}
X ¢ arg maxxes S(x)

R A A R

Ms < best i (Weeen(s){ws,c x m [ m € Mc})

Mp « best g ({I[,,cper m | M’ € Xceen(pyMc})

> best x (M) returns a multiset with at most K best elements in M

> in time O(|ch(S)| + K log |ch(S)|)

> in time O(K|ch(P)|log K)

> R is the root; top-down backtracking in time O(K|V|)
> in time O(K|S])

solution of BT. We name this method Best Tree because we
can show that it actually finds the parse tree of the SPN with
the largest value. Tu(2016) showed that any decomposable
SPN can be seen as a stochastic context-free And-Or gram-
mar, and following their work we can define a parse tree of
an SPN as follows.

Definition 3 (Parse Tree). Given an SPN S = (G, w), a
parse tree 7 = (G',w’) is an SPN where G’ = (V', A)
is a subgraph of G and w’ is the subset of w containing
weights of the arcs in A’. G’ is recursively constructed as
follows: 1) we add the root R of G into V’; 2) when a sum
S is added into V", add exactly one of its children C into V'
and the corresponding arc (S, C) into A’; 3) when a product
P is added into V', add all its children to V’ and all the
corresponding arcs to A’. The value of the parse tree is the
product of the weights in w’.

The notion of parse trees has been used before in the SPN
and arithmetic circuit literature under different terms, e.g.,
induced trees in (Zhao, Poupart, and Gordon 2016). We use
the term “parse trees”” because our approximate solver is in-
spired by the formal grammar literature.

Normalized Greedy Selection (NG) NG was also used
first by Poon and Domingos(2011). It is very similar to BT
except that in the first step, NG does not change sum nodes
to max nodes. We name this method Normalized Greedy
Selection because it can be seen as greedily constructing a
parse tree in a recursive top-down manner by selecting for
each sum node the child with the largest weight in the lo-
cally normalized SPN (Peharz et al. 2015).

Argmax-Product (AMAP) AMAP was proposed by
Conaty, Maud, and de Campos(2017). It does |ch(S)| times
bottom-up evaluation on every sum S in the SPN, so it has
quadratic time complexity, while BT and NG both have lin-
ear time complexity.

Beam Search (BS) Hill climbing has been used in MAP
inference of arithmetic circuits (Park 2002; Darwiche 2003),
a type of models closely related to SPNs. BS is an extension
of hill climbing with K samples. In each round, it evaluates
all the samples that result from changing the value of one
variable in the existing samples, and then it keeps the top K
samples. The evaluation of all such samples in each round
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can be done in linear time using Eq. 4. The number K is
called the beam size.

K-Best Tree method

It can be shown that the set of leaves of a parse tree 7 (Def.
3) corresponds to a single sample x. We denote this rela-
tion as 7 ~ x. On the other hand, a sample may corre-
spond to more than one parse tree. Formally, VT ~ x, we
have 7 (x) = T (val(X)) and 7 (x) < S(x). Furthermore,
S(x) = > 7. T(x) (Zhao, Poupart, and Gordon 2016).
We say a sample is ambiguous with respect to an SPN if it
corresponds to more than one parse tree of the SPN. We say
an SPN is ambiguous if there exist some ambiguous samples
with respect to the SPN. Non-ambiguity is also known as se-
lectivity in (Peharz, Gens, and Domingos 2014). Recall that
BT finds the sample with the best parse tree of the SPN. It
is easy to show that BT finds the exact solution to the MAX
problem if the SPN is unambiguous (Peharz et al. 2016).
However, BT cannot find good solutions if the input SPN is
very ambiguous, as will be shown in our experiments.

Here we propose an extension of BT called K -Best Tree
(KBT) that finds the top K parse trees with the largest val-
ues (Algorithm 3). KBT is motivated by our empirical find-
ing that even for ambiguous SPNs, in many cases the exact
MAX solution corresponds to at least one parse tree with a
large (although not necessarily the largest) value. If at least
one parse tree of the exact solution is among the top K parse
trees, KBT will be able to find the exact solution. Note that
the K best trees that KBT finds may not correspond to K
unique samples, since there may exist different parse trees
corresponding to the same sample.

Similar to BT, KBT runs in two steps. In the bottom-up
step, we calculate K best subtrees rooted at each node. In
the top-down step, we backtrack to find the K samples cor-
responding to the K best trees. After that, we evaluate the
K samples on the SPN and return the best one. When we set
K = 1, KBT reduces to BT. Notice that the set notation in
Algorithm 3 denotes multisets.

Now we analyze the time complexity of KBT. To execute
Line 5, we first push the best value in the multiset of every
child into a priority queue and then pop K times. Whenever
we pop a value m, we push into the queue the next best value
(if one exists) in the multiset of the child that m belongs to.
The size of the queue is |ch(S)|. The number of pushing
is |ch(S)| + K and the number of popping is K. The time



complexity is therefore O(|ch(S)| + K log |ch(S)]) if we
use Fibonacci heap as the priority queue.

To execute Line 7, we keep performing pairwise merging
of the multisets of the children until we get a single multi-
set left. When merging two multisets, we first push into a
priority queue the product of the best values from the two
multisets and then pop K times. Whenever we pop a prod-
uct mj X me, we push into the queue two new products
m} X mq and my x m), if we have not pushed them, where
m} and m/, are the next best values after m; and ms in the
two multisets respectively. Thus when merging two multi-
sets, we pop for at most K times and push for 2K + 1 times.
We merge |ch(P)|—1 times. Therefore, the time complexity
is O(K|ch(P)|log K) if using Fibonacci heap.

Overall, the time complexity of KBT is O(|S|K log K).
When K is a constant, the time complexity is linear in the
SPN size. There is a trade-off between the running time and
accuracy of the algorithm. A large K would likely improve
the quality of the result but would lead to more running time.

Experiments

We evaluated the MAP solvers on twenty widely-used real-
world datasets (collected from applications and data sources
such as click-through logs, plant habitats, collaborative fil-
tering, etc.) from (Gens and Domingos 2013), with vari-
able numbers ranging from 16 to 1556. We used the Learn-
SPN method (Gens and Domingos 2013) to obtain an SPN
for each dataset. The numbers of arcs of the learned SPNs
range from 6471 to 2,598,116. The detailed statistics of
the learned SPNs are shown in the supplementary mate-
rial. We generated MAP problems with different proportions
of query (Q), evidence (E) and hidden (H) variables. For
each dataset and each proportion, we generated 1000 dif-
ferent MAP problems by randomly dividing the variables
into Q/E/H variables. When running the solvers, we bounded
the running time for one MAP problem by 10 minutes. We
ran our experiments on Intel(R) Xeon(R) CPU E5-2697 v4
@ 2.30GHz. Our code is available at https://github.com/
shtechair/maxspn.

Exact solver

We evaluated four combinations of the techniques that
we introduced earlier: Marginal Checking (MC), Forward
Checking (FC), FC with Ordering (FC+0), and FC with
both Ordering and Stage (FC+0+S).

Figure 2 shows, for each dataset and with the Q/E/H pro-
portion being 3/3/4, the number of times each method fin-
ished running within 10 minutes on the 1000 problems.
Results for additional Q/E/H proportions can be found in
the supplementary material. It can be seen that for the
datasets with the smallest variable numbers and SPN sizes,
all four methods finished running within ten minutes. On the
other datasets, FC clearly beats MC and adding Ordering
and Staging brings further improvement. Our best method,
FC+0+S, can be seen to handle SPNs with up to 1556 vari-
ables (“Ad”) and 147,599 arcs (“Accidents”).

The last four columns of Figure 4 show the average run-
ning time of the four methods (with a 10-minute time limit
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for each problem). On the first three datasets, which have
very small variable numbers and SPN sizes, MC is actually
faster than the other three methods. This is most likely be-
cause on these datasets the overhead of FC and the two addi-
tional techniques dominates the running time. On the other
datasets, the benefit of FC and the two techniques can be
clearly observed.

Approximate solver

We evaluated all the approximate solvers that we have dis-
cussed, as well as the approximate versions of our exact
solvers. For BS, we tested beam sizes of 1, 10 and 100. For
KBT, we tested K = 10 and 100. We measure the perfor-
mance of a solver on each dataset with each Q/E/H propor-
tion by its running time and winning count. The winning
count is defined as the number of problems on which the
solver outputs a solution with the highest score among all
the solvers. Since our exact solvers are anytime algorithms,
we also evaluated them as approximate solvers with a 10-
minute time budget.

Figure 3 shows, for each method and each Q/E/H pro-
portion, the average running time vs. the winning counts
averaged over all the datasets. We can see from the figure
that the best-tree based methods, BT (=KBT1), KBT10 and
KBT100, dominate the other methods with less running time
and higher winning counts. Increasing K with KBT im-
proves winning counts but slows down the solver, as one
would expect. In terms of running time, BT and NG are
much faster than the other methods, while (FC+O+S), the
approximate version of the exact solver, is by far the slowest.
KBT100 clearly has the highest winning counts, followed by
(FC+0+S), KBT10 and AMAP. Furthermore, we see that
with the proportion of hidden variables increasing, the win-
ning counts of most methods (except AMAP, KBT100 and
KBT10) fall significantly. We believe this is because with
more hidden variables, the MAP problem becomes more dif-
ficult, as reflected by the fact that the reduced SPN from Al-
gorithm 1 becomes exponentially more ambiguous.

Figure 4 and 5 show the running time and winning counts
of all the methods on each dataset under the Q/E/H propor-
tion of 3/3/4. The figures for additional Q/E/H proportions
can be found in the supplementary material. We can see that
AMAP failed to produce any result within ten minutes on
the “20 Newsgroup” dataset, and on the other 19 datasets it
actually has higher winning counts but significantly longer
running time than KBT100. For the approximate versions
of the exact solvers, we can see that even when they were
terminated before they could finish, (FC+0O) and (FC+O+S)
still achieve competitive winning counts, which is in sharp
contrast to (FC). This suggests that Ordering is very effec-
tive in guiding the search towards good solutions earlier.

While our experimental results are based on a 10-minute
time budget, we find that changing the time budget to 2 min-
utes or 50 minutes leads to no significant change to the re-
sults. With a time budget of 2 minutes, the numbers in Figure
4 and 5 will not change if the running time (Figure 4) is well
below 120. That means for the eight approximate solvers,
only a few numbers of BS100 and AMAP will change (with
a new running time of 120 and worse winning counts), and



Dataset FC+O+S

KDDCup 2k
Plants

Netflix

Accidents
Tretail
Pumsb_star

Figure 2: Finishing counts of exact solvers.
We skip the rows of all zeros.
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Figure 3: Average running time vs. winning counts averaged over all the
datasets. On one of the datasets, AMAP timed out and hence its winning
count is set to 0. See discussion in the main text.

BS100 | KBT10 | KBT100 | AmAP (FC) (Fc+0) | (Fc+O+s)

(MC)
0.0302_| 0.0149 | 0.0404 | 0.0587 H 0.0098 | 0.0085 | 0.0065

0.3139 0.0945 0.3031 3.8355 0.0175 0.0419 0.0390 0.0316

4.0078 0.3089 2.3278 10.368 9.6917 11.629 11.267 7.9157

2.6587 0.2271 1.6251 7.9273 2.2650 1.8247 0.7866 0.6578

4.7020 0.1918 1.3606 25208)

3.7644 0.1451 1.0387 BE5998

8.0272 0.3558 2.8065 14.347

2.7260 0.2533 1.6691 14.452

4.2481 0.1394 1.1912 1.5652

1.5617 0.1160 0.7219 3.6890

3.0984 0.1037 0.7071 1.7008

4.1906 0.1599 1.2491 3.0625

8.2330 0.0966 0.6793 1.4712

0.2738 2.5722 6.6608

Dataset BT NG BS1 BS10
NLTCS 0.0085
MSNBC 0.0091 0.0722
KDDCup 2k 0.0483 0.3963
Plants 0.0280 0.2482
Audio 0.0611 0.4248
Netflix 0.0469 0.3363
Jester 0.1062 0.7611
Accidents 0.0408 0.2987
Tretail 0.0537 0.3901
Pumsb_star 0.0198 0.1537
DNA 0.0356 0.2487
Kosarek 0.0647 0.4146
MSWeb 0.0729 0.6354
Book 0.4813
EachMovie 0.0068 0.0096 0.8479

WebKB

0.0333 3.9349
Reuters-52 0.0076 0.7412
20 Newsgrp. 0.0649 0.0850 4.7551
BBC 0.0238 0.0325 0.9577 5.8167

0.6328 | 58420

Ad 0.0521 | 0.4167

Figure 4: Average running time (with a 10-minute time limit for each problem). x: terminated at the time limit with no output.

Dataset | BT NG BS1 BS10
NLTCS 788 716

MSNBC

KDDCup 2k 600 374 549

Plants 605 423

Audio 556 290 437 757
Netflix 425 256 429

Jester 504 442 736
Accidents 742

Tretail 751

Pumsb_star 739 656 681

DNA 613 266 481
Kosarek 620 767
MSWeb 715 775
Book 652 743
EachMovie

WebKB

Reuters-52

20 Newsgrp. 773 327 383 457
BBC

Ad 733 647 279 617

BS100 | KBT10 | KBT100 | AMAP (MC) (FC) (FC+0) | (FC+O+S)

737 521 588
641 259
720 312 348
404 550

712 620 641 517 533

506 554 556
410

Figure 5: Winning counts
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the numbers of the other approximate solvers will not be
influenced. On the other hand, the winning counts for the
four approximate versions of the exact solvers would likely
decrease on many of the datasets. With a time budget of 50
minutes, the numbers in Figure 4 and 5 will not change if the
running time (Figure 4) is well below 600. That means for
the eight approximate solvers, even fewer numbers of BS100
and AMAP will change (with a new running time of 3000
and potentially better winning counts), and the numbers of
the other approximate solvers will not be influenced. We ac-
tually find that on the “20 Newsgroup” dataset, AMAP fails
to terminate even after 50 minutes, so its winning counts
would have no change.

Conclusion

Theoretically, we defined a new inference problem called
MAX and presented linear-time reduction from MAP to
MAX. This suggests that we can focus on the much sim-
pler MAX problem when studying MAP inference. We also
showed that it is almost impossible to find a practical bound
for approximate MAP solvers.

Algorithmically, we presented an exact solver based on
exhaustive search with pruning, heuristic, and optimization
techniques, and an approximate solver based on finding the
top K parse trees of the input SPN. Our comprehensive ex-
periments show that the exact solver is reasonably fast and
the approximate solver has better overall performance than
existing methods.
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