
A Framework and Positive Results for IAR-Answering

Despoina Trivela
Athens University of

Economics and Business
Athens, Greece

despoina@aueb.gr

Giorgos Stoilos
Babylon Health

London, SW3 3DD, UK

Vasilis Vassalos
Athens University of

Economics and Business
Athens, Greece

vassalos@aueb.gr

Abstract

Inconsistency-tolerant semantics, like the IAR semantics,
have been proposed as means to compute meaningful query
answers over inconsistent Description Logic (DL) ontolo-
gies. So far query answering under the IAR semantics (IAR-
answering) is known to be tractable only for arguably weak
DLs like DL-Lite and the quite restricted EL⊥nr fragment
of EL⊥. Towards providing a systematic study of IAR-
answering, in the current paper we first present a general
framework/algorithm for IAR-answering which applies to ar-
bitrary DLs but need not terminate. Nevertheless, this frame-
work allows us to develop a sufficient condition for tractabil-
ity of IAR-answering and hence of termination of our algo-
rithm. We then show that this condition is always satisfied by
the arguably expressive DL DL-Litebool, providing the first
positive result for IAR-answering over a non-Horn-DL. In
addition, recent results show that this condition usually holds
for real-world ontologies and techniques and algorithms for
checking it in practice have also been studied recently; thus,
overall our results are highly relevant in practice. Finally, we
have provided a prototype implementation and a preliminary
evaluation obtaining encouraging results.

Introduction
Answering queries over data described using Description
Logic (DL) ontologies has recently received significant at-
tention. In the vast majority of cases the problem has
been studied over consistent datasets (Calvanese et al.
2007; Pérez-Urbina, Motik, and Horrocks 2010; Kikot,
Kontchakov, and Zakharyaschev 2012; Trivela et al. 2015).
However, in real-world applications datasets may often be
inconsistent with respect to the axioms specified in the ontol-
ogy because, e.g., they may originate from different sources
or generated automatically from an information extraction
module.

In order to be able to provide “meaningful” answers to
user queries even in the presence of inconsistencies the
so-called inconsistency-tolerant semantics have been pro-
posed (Arenas, Bertossi, and Chomicki 1999; Bertossi 2006;
Lembo et al. 2011; Bienvenu and Rosati 2013). Examples
are the IAR, ICAR, and AR semantics (Lembo et al. 2011;
2010), which are based in the notion of repair, that is a max-
imal consistent subset of the original dataset. Among them

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the IAR semantics demonstrate nice computational proper-
ties as the problem over DL-Lite ontologies is in AC0 w.r.t.
data complexity, while when using the AR semantics it is
already coNP-complete.

Nevertheless, the problem of IAR-answering becomes in-
tractable when considering more expressive DLs. More pre-
cisely, Rosati (2011) showed that IAR-answering for almost
all well-known DLs from EL⊥ to SHIQ is at least coNP-
hard w.r.t. data complexity (in some cases it is even harder
for ICAR- and AR-answering). This is to some extent sur-
prising since query answering over consistent datasets is
known to be tractable for many DLs in that range like EL
and even Horn-SHIQ. To provide a positive result in terms
of tractable data complexity Rosati defined EL⊥nr which
is currently the only positive tractability result for IAR-
answering over a DL different than DL-Lite.

In the current paper we study IAR-answering over DL-
based ontologies attempting to shed light why the problem
is so difficult and identify positive tractable results. First,
we provide a general algorithm for computing IAR-answers
over any given DL ontology. The algorithm is an exten-
sion of the one by Lembo et al. (2015) and obviously need
not terminate. However, if it terminates then the output is
a first-order structure (a disjunctive datalog program ex-
tended with negative body atoms) which if evaluated over
the data it computes the IAR-answers. Second, using this
algorithm we are able to pinpoint the main reason for the
difficulty of IAR-answering and devise a sufficient condi-
tion for its termination. Interestingly our condition is re-
lated to UCQ-rewritability a notion that has been studied
quite extensively (Artale et al. 2009; Bienvenu, Lutz, and
Wolter 2013; Hansen et al. 2015). More precisely, we can
already show that this condition is always satisfied by on-
tologies expressed in the DL semi-acyclic-EL⊥ (Bienvenu,
Lutz, and Wolter 2012) as well as in DL-Litebool (Artale
et al. 2009) providing what is, to the best of our knowl-
edge, the first tractability result for IAR-answering in a
DL that allows for disjunctions. Third, our condition re-
veals some deficiencies in the original definition of EL⊥nr

which we redefine. Fourth, even for arbitrary DLs our con-
dition may well be satisfied by a given fixed ontology and
recent works provide practical means to check this for a
wide range of Horn-DLs (Bienvenu, Lutz, and Wolter 2013;
Bienvenu et al. 2014; Hansen et al. 2015). All in all, our

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1973

results are arguably of much practical relevance and signifi-
cance. Finally, we have implemented a prototype system and
obtained encouraging preliminary evaluation results.

Preliminaries

We use standard terminology like variables, constants, sub-
stitutions, renamings, tuples �t = (t1, . . . , tn), arity of �t, etc.
We will also refer to Horn-clauses written asH ← β1∧. . .∧
βn, where H is called its head and the set {β1, . . . , βn} is
called its body; if H is the false atom (also denoted by ⊥)
then the clause will be called a negative clause.

Description Logic

Description Logics (DLs) (Baader et al. 2002) are the the-
oretical basis of OWL and constitute a family of (mostly)
decidable fragments of First-Order Logic. Next we recapit-
ulate the syntax of some well-known DLs and we use L to
denote an arbitrary DL language.

Let C, R, and I be countable pairwise disjoint sets
of atomic concepts (unary predicates), atomic roles (bi-
nary predicates) and individuals (constants), respectively.
An EL⊥-concept is inductively defined by the grammar:
C := � | ⊥ | A | C1 � C2 | ∃R.C, where A ∈ C, R ∈ R
and C(i) are EL⊥-concepts. An EL⊥-TBox T is a finite
set of inclusions of the form C1 	 C2 with C1, C2 EL⊥-
concepts. Inclusions of the form C1 � C2 	 ⊥ (also writ-
ten as C1 	 ¬C2) are called negative and the rest positive.
DL-LiteR,� (or simply DL-Lite) restricts EL⊥ by disallow-
ing concepts of the form ∃R.C, unless C is the top concept
�; for R,S roles, DL-Lite also allows for inverse roles of
the form S− and role inclusions of the form S 	 R and
S 	 ¬R. Finally, DL-Litebool extends DL-Lite with con-
cepts of the form C1
 C2,¬C, and ∃R.self.

An ABox A is a finite set of assertions of the form A(a)
or R(a, b) where a, b ∈ I, A ∈ C and R ∈ R. A is consis-
tent w.r.t. some TBox T if there exists a model for T ∪ A;
otherwise it is inconsistent. A Knowledge Base (KB) is a set
K = T ∪ A.

The semantics of DLs can be given by a well-known
translation to First-Order Logic (FOL) (Baader et al. 2002).
Table 1 presents the translation of EL⊥ and DL-Lite(bool)
axioms to First-Order clauses (inverse roles in DL-Lite ax-
ioms are omitted). In the following we assume that the TBox
axioms are translated into FOL.

Disjunctive Datalog and Conjunctive Queries

A disjunctive datalog clause r is a function-free clause of
the form ∀�x, �y(ψ(�x) ← φ(�x, �y)) where φ(�x, �y) is a con-
junction of atoms called the body of the clause and ψ(�x) is
a disjunction of atoms called its head. We will omit variable
quantifiers and write ψ(�x) ← φ(�x, �y). If ψ contains a single
atom then the clause is called datalog. A (disjunctive) data-
log program P is a finite set of (disjunctive) datalog clauses.

A conjunctive query (CQ) Q is a datalog clause with head
predicate Q. The variables occuring in Q are called answer
variables. A boolean query Q is a CQ with no answer vari-
ables. An instance query is a CQ of the form Q(x) ← A(x).
A UCQ is a finite set of CQs whose answer variables have

DL Axiom Clause

EL⊥ and DL-Lite
B1 �B2 � A A(x) ← B1(x) ∧B2(x)
A � ∃R.B R(x, f(x)) ← A(x), B(f(x)) ← A(x)
∃R � A A(x) ← R(x, y)
A �B � ⊥ ⊥ ← A(x) ∧B(x)

EL⊥
∃R.B � A A(x) ← R(x, y) ∧B(x)

DL-Lite
P � R R(x, y) ← P (x, y)
P � ¬R ⊥ ← R(x, y) ∧ P (x, y)

DL-Litebool
A � B1 	B2 B1(x) ∨B2(x) ← A(x)
∃R.self � A A(x) ← R(x, x) (dually with A � ∃R.self)

Table 1: Translation of DL axioms into FOL

the same arity. A tuple of constants �a is a certain answer of
Q over a KB K = T ∪A if the arity of�a agrees with the arity
of Q and T ∪ A |= Q(�a), where Q(�a) denotes the boolean
query obtained by replacing all answer variables in Q with
�a. We use cert(Q, T ∪A) to denote all certain answers of Q
w.r.t. K = T ∪ A.
Definition 1. Let T be an L-TBox, A an ABox consistent
w.r.t. T and Q a CQ. A disjunctive datalog-rewriting (or
simply rewriting) of Q w.r.t. T is a disjunctive datalog pro-
gram R such that T ∪ A |= Q(�a) iff R ∪ A |= Q(�a), or in
case Q is boolean T ∪A |= Q iff R∪A |= Q. We say that a
query Q is (disjunctive) datalog-rewritable w.r.t. T if there
exists a (disjunctive) datalog-rewriting R of Q w.r.t. T ; if R
is a UCQ, then Q is called UCQ-rewritable w.r.t. T .

The existence of rewritings as well as practical algorithms
for computing them have been extensively studied for a wide
variety of DLs. For DL-Lite TBoxes one can always com-
pute a UCQ-rewriting (Calvanese et al. 2007) while for EL⊥
and Horn-SHIQ a datalog-rewriting (Eiter et al. 2012).
Disjunctive programs are required in the case of highly
expressive DLs like SHIQ (Hustadt, Motik, and Sattler
2007), however, still a datalog-rewriting may exist (Cuenca
Grau et al. 2013).

IAR semantics

In order to retrieve meaningful answers even from inconsis-
tent ABoxes the so-called inconsistency-tolerant semantics
have been introduced. From those we next recapitulate the
IAR semantics (Lembo et al. 2015).
Definition 2. A repair of a KB K = T ∪A is any maximal
(w.r.t. set inclusion) subset of A that is consistent w.r.t. T .
We use Air to denote the intersection of all repairs of K. Let
Q be a CQ and let K = T ∪A be an KB. A tuple of constants
�a is called an IAR-answer of Q over K if �a ∈ cert(Q, T ∪
Air). We use certir(Q, T ∪ A) to denote the set of all IAR-
answers of Q over K and we also write T ∪ A |=ir Q(�a).

A Framework for IAR-answering

A straightforward approach to compute the IAR-answers
would be to compute Air, however, if A is large or inac-
cessible (e.g., due to access restrictions) this may be impos-

1974

sible. A different approach proposed in (Lembo et al. 2011;
2015) is to rewrite the input query in such a way that its
evaluation over A would only return the IAR-answers.

Example 1. Let the TBox T = {⊥ ← A(x)∧C(x), A(x) ←
P (x, y)}, the ABox A = {C(a), P (a, c), A(b)} and the
CQ Q = Q(x) ← A(x). Clearly, A is inconsistent
w.r.t. T and the repairs are Ar1 = {C(a), A(b)} and
Ar2 = {P (a, c), A(b)}. Hence, we have Air = {A(b)} and
cert(Q, T ∪ Air) = {b} = certir(Q, T ∪ A). Instead, con-
sider the rewriting R = {Q(x) ← A(x), Q(x) ← P (x, y)}
of Q w.r.t. T . We can note that cert(R,A) = {a, b} which,
on the one hand, contains the IAR-answer b, however, on
the other hand, it contains the non-IAR-answer a. Lembo et
al. (Lembo et al. 2011; 2015) noticed that we can exclude
such “incorrect” answers by extending the clauses in R with
negative atoms which will prevent the clauses of R to bind
to certain patterns of A. For example, due to T |= ⊥ ←
A(x) ∧ C(x) and T |= ⊥ ← P (x, y) ∧ C(x), R should
be extended to R¬ = {Q(x) ← A(x) ∧ ¬C(x), Q(x) ←
P (x, y) ∧ ¬C(x)}. Then, cert(R¬,A) = {b} as required.
♦

The following definition formalises the notion of an IAR-
rewriting for a query Q w.r.t. some TBox T , a structure
which when evaluated over a possibly inconsistent ABox re-
turns only the IAR-answers of Q.
Definition 3. Given an L-TBox and a CQ Q, an IAR-
rewriting Rir of Q w.r.t. T is a disjunctive datalog program,
possibly extended with negative body atoms, such that for
every ABox A we have T ∪A |=ir Q(�a) iff Rir∪A |= Q(�a).

Example 1 suggests that to compute an IAR-rewriting we
should at least compute all possible negative clauses C such
that T |= C and then use them in order to annotate the
clauses of a rewriting with proper negative atoms. We call
such an operation a negative closure of T .
Definition 4. A negative closure of a L-TBox T , denoted by
Tcn, is a finite set of negative clauses such that T |= ⊥ ←∧
βi iff some ⊥ ←

∧
αi in Tcn exists with ⊥ ←

∧
αi |=

⊥ ←
∧
βi.

However, there are two important technical details to be
considered when extending the elements of a rewriting with
negative atoms (Lembo et al. 2011; 2015). First, one should
only take into account negative clauses that have minimal
bodies w.r.t. set inclusion. More precisely, a negative clause
C should be considered, only if no other clause is a syntacti-
cal subset of C. Second, one should be careful about possible
unifications of binary atoms in relation to negative clauses.
These two issues are illustrated in the following examples.

Example 2. Let the query Q = Q(x) ← A(x), the TBox
T1 = {C}, where C = ⊥ ← A(x) ∧ B(x) ∧ C(x)
and the T1-inconsistent ABox A = {A(a), B(a), C(a)}.
There are three repairs, {A(a), B(a)}, {A(a), C(a)}, and
{B(a), C(a)}, hence Air = ∅ and certir(Q, T1 ∪ A) = ∅.

Following the technique in (Lembo et al. 2011) consider
the rewriting R = {Q(x) ← A(x)} of Q w.r.t. T1. Due to
C ∈ T1, R should be extended to R¬ = {Q(x) ← A(x) ∧
¬(B(x) ∧ C(x))} for which we have cert(R¬,A) = ∅ as
required.

Algorithm 1 IAR-Rewriting
Input: a CQ Q and an L-TBox T

1: Compute a negative closure Tcn of T
2: T ′

cn := minimise(saturate(Tcn))
3: Compute a rewriting R of Q w.r.t. T
4: R′ := saturate(R)
5: Rir := ∅
6: for Q ∈ R′ do
7: Q¬ := Q
8: for α ∈ Q where α is not an inequality atom do
9: for ⊥ ← β1 ∧ . . . ∧ βm ∈ T ′

cn do
10: if α = βkμ, μ a renaming, k in [1,m] then
11: Add ¬(β1 ∧ . . . ∧ βm)μ to Q¬

12: end if
13: end for
14: end for
15: Rir := Rir ∪ {Q¬}
16: end for
17: return Rir

Now consider the TBox T2 = T1 ∪ {A(x) ← B(x)}.
Interestingly, {B(a), C(a)} is no longer a repair of A and
hence A′

ir = {A(a)}. Therefore, certir(Q, T2 ∪ A) = {a}
and to construct a correct IAR-rewriting of Q w.r.t. T2 one
should not add ¬(B(x) ∧ C(x)) to Q(x) ← A(x) ∈ R.
Notice that in the new TBox we have T2 |= C′, where
C′ = ⊥ ← B(x) ∧ C(x) and, moreover, C′ |= C and C′

is a syntactical subset of C. ♦

Example 3. Let T be an L-TBox, a query Q = Q(x) ←
R(x, y), and the rewriting R = {Q} of Q w.r.t. T . Assume
that T entails the negative clause ⊥ ← R(x, x) ∧ S(x, x).
Intuitively, one should add to Q the body atom ¬S(x, x) but
only when x = y. The set R¬ consisting of the following
queries is an IAR-rewriting of Q w.r.t. T :

Q1 = Q(x) ← R(x, y) ∧ x �= y

Q2 = Q(x) ← R(x, x) ∧ ¬S(x, x)
Consider the ABoxes A1 = {R(a, b), S(a, b)}, A2 =
{R(a, a), S(a, a)}. As expected, cert(R¬,A1) = {a} and
cert(R¬,A2) = ∅. Note that we cannot drop the con-
junct x �= y from Q1 as then we would incorrectly have
cert(R¬,A2) = {a}. ♦

Using the notions of a rewriting and of a negative closure
of a TBox our approach for computing an IAR-rewriting is
depicted in Algorithm 1. For TBoxes expressed in arbitrary
DLs a negative closure may obviously not exist, however,
in the next section we will study conditions that ensure its
existence.

The algorithm also uses two procedures. Procedure
saturate is defined in (Lembo et al. 2015, Algorithm 3) and
is related to the issue of distinct variables illustrated in Ex-
ample 3. Roughly speaking given a clause C, this procedure
replaces it with a list of clauses C1, . . . , Cn such that C is
equivalent to C1 ∨ . . . ∨ Cn and for every Ci if x, y are pairs
of distinct variables then Ci contains the conjunct x �= y.
This list of clauses is generated by using unification on the
variables of C, hence n can be exponential in the number of
variables in C. Finally, minimise is defined as follows:

1975

Definition 5. Let T be a set of negative clauses. Procedure
minimise(T) returns a new set of clauses T ′ such that T ′ |=
T and for every C ∈ T ′ no C′ in T ′ different to C is (up to
variable renaming) a syntactical subset of C.

Note that it is important that the minimise procedure is
applied after saturate (Lembo et al. 2015) as the latter may
introduce non-minimal clauses.

Example 4 illustrates the steps of Algorithm 1.

Example 4. Let the EL-TBox T

⊥ ← D(x) ∧A(x) (1)
A(x) ← R(x, y) ∧B(y) (2)

and a query Q = Q(x) ← A(x). At first step, Algorithm 1
constructs the datalog-rewriting R of Q w.r.t. T :

R = {Q(x) ← A(x),

A(x) ← R(x, y) ∧B(y)}

By resolving clause (2) on (1) Algorithm 1 constructs a neg-
ative closure of T that is, Tcn = {⊥ ← D(x) ∧ A(x),⊥ ←
D(x) ∧ R(x, y) ∧ B(y)}. Next, it applies saturate on R
and Tcn, and then minimise on Tcn and constructs the IAR-
rewriting:

Rir = {Q(x) ← A(x) ∧ ¬(A(x) ∧D(x)),

A(x) ← R(x, y) ∧ x �= y ∧B(y) ∧ ¬(R(x, y) ∧
x �= y ∧B(y) ∧D(x)),

A(x) ← R(x, x) ∧B(x) ∧ ¬(R(x, x) ∧B(x)

∧D(x))}

♦

Theorem 6. Given an input CQ Q and L-TBox T , if Q
is disjunctive datalog-rewritable w.r.t. T and there exists a
negative closure Tcn of T , then Algorithm 1 terminates and
returns an IAR-rewriting of Q w.r.t. T .

Proof. (sketch) If there exists a rewriting R of Q w.r.t. T ,
and a negative closure Tcn, then Algorithm 1 terminates.
The output Rir is a disjunctive datalog program possibly
extended with negative atoms according to lines 5–16. To
prove correctness of Algorithm 1 we show that R ∪ A |=ir

Q(�a) iff Rir ∪ A |= Q(�a); this is done using induction on
the evaluation of Rir (R) over A. Moreover, the proof also
uses results parts of proofs from (Lembo et al. 2015).

Positive Results for IAR-rewritability

As can be seen from the previous section the main cause of
failure of Algorithm 1 is non-existence of a negative closure.
This is already the case for rather simple TBoxes expressed
in arguably simple DLs.

Example 5. Let Q = Q(x) ← B(x) and let also the follow-
ing EL⊥-TBox T :

⊥ ← A(x) ∧B(x) (3)
A(x) ← R(x, y) ∧A(y) (4)

The program consisting of clauses Q, (3) and (4) is a
datalog-rewriting of Q w.r.t. T . Assume we attempt to com-
pute Tcn by using resolution. First, we resolve (3) with
(4) to obtain ⊥ ← R(x, y) ∧ A(y) ∧ B(x); this clause
can then be resolved with (4) to derive the clause ⊥ ←
R(x, y) ∧ R(y, z) ∧ A(z) ∧ B(x). None of the resolvents
entails the other, hence Tcn must contain both. Clearly we
can create an infinite number of clauses of all of which must
belong to Tcn. ♦

Intuitively, the main reason for non-existence of Tcn in
the above example is the presence of the recursive clause (4).
Although, such clauses are not problematic in query answer-
ing over consistent ABoxes, in IAR-answering they cause a
blow-up in data complexity from P to coNP (Rosati 2011).
Recursion is also known to be the critical factor for non-
UCQ-rewritability in DL. Indeed, next we show that UCQ-
rewritability of the ABox-consistency checking problem im-
plies the existence of a negative closure.

Definition 7. Let an L-TBox T . We say that ABox-
inconsistency is UCQ-rewritable relative to T if a union of
boolean queries R with head atom Q exists s.t. for every
ABox A, A is inconsistent w.r.t. T iff A ∪ R |= Q. R is a
UCQ-rewriting of ABox-inconsistency relative to T .

Lemma 8. ABox-inconsistency is UCQ-rewritable relative
to an L-TBox T iff there exists a negative closure Tcn of T .

Proof. If ABox-inconsistency is UCQ-rewritable relative to
T then let R be the UCQ-rewriting of ABox-inconsistency
relative to T . We can show that a negative closure of T can
be constructed from R just by replacing the head atoms of
clauses in R with ⊥.

Let Tcn be constructed from R as described above and
let T |= C for some clause C = ⊥ ←

∧n
1 βi. For σ an

injective instantiation of the variables of C we have that
T ∪ Cσ |= ⊥ or T ∪

∧n
1 βiσ |= ⊥ i.e., {β1σ, . . . , βnσ}

is inconsistent. Then, some CQ Q = Q ←
∧m

1 αi must
exist such that {β1σ, . . . , βnσ} ∪ {Q} |= Q. Since Q does
not appear anywhere in T this implies that some mapping μ
from the variables of Q to individuals in {β1σ, . . . , βnσ} ex-
ists such that we have {α1μ, . . . , αmμ} ⊆ {β1σ, . . . , βnσ}.
Since σ is injective we can compute its inverse σ−; then
we have {α1μσ

−, . . . , αmμσ
−} ⊆ {β1σσ−, . . . , βnσσ

−}
or {α1μσ

−, . . . , αmμσ
−} ⊆ {β1, . . . , βn}. Consequently,

some λ = μσ− exists such that {α1λ, . . . αmλ} ⊆
{β1, . . . , βn}. By construction, Tcn contains a clause of the
form ⊥ ←

∧m
1 αi which by the above we have shown that

it subsumes C. Moreover, Tcn is finite since R is finite.
For the opposite direction, from a negative closure Tcn

we can construct a UCQ-rewriting for ABox-inconsistency
relative to T by replacing the head atoms ⊥ of clauses in
Tcn with Q.

The following Lemma provides a characterisation of
UCQ-rewritability of the ABox-consistency problem in
terms of UCQ-rewritability of query answering over consis-
tent ABoxes for the case of Horn-DLs.

Lemma 9. Let T be an L-TBox where L is a Horn-DL. Let
the set of L-concepts S = {Ai(x) | ⊥ ← A1(x) ∧ . . . ∧

1976

Am(x) ∈ T }. If every instance query Q(x) ← Ai(x) in
S is UCQ-rewritable w.r.t. T and consistent ABoxes, then
ABox-inconsistency is UCQ-rewritable relative to T .

Proof. By Lemma 8 it suffices to show that there exists a
negative closure Tcn of T . Clearly, Tcn can be computed
by applying resolution with factoring to T . Since T is ex-
pressed in a Horn-DL the following properties hold for such
resolution derivations:

• two negative clauses never resolve with each other.
• by resolving a negative with a positive clause the resolvent

is always a negative clause.

The above imply that a Tcn can be computed as follows:
initialise Tcn to contain all negative clauses ⊥ ← A1(x) ∧
. . .∧Am(x) ∈ T and compute a UCQ-rewriting Ri for each
Q(x) ← Ai(x) (by assumption this rewriting exists). Finally
add to Tcn the clause ⊥ ← R1(x) ∧ . . . ∧Rm(x).

Interestingly, in the case of the non-Horn DL-Litebool in-
stance query answering is always UCQ-rewritable (Artale et
al. 2009). Moreover, Cuenca Grau et al. (2013) designed a
goal-oriented procedure that computes a datalog rewriting
of a given DL-Litebool-TBox. Therefore, these two results
together with Lemma 9 can be used to show the first ever
positive result on IAR-rewritability for a non-Horn DL.
Theorem 10. Let T be a DL-Litebool-TBox and let Q be an
instance query. Then, on input T ,Q Algorithm 1 terminates
and computes an IAR-rewriting of Q w.r.t. T that is a data-
log program.

Proof. (sketch) Let T be an arbitrary DL-Litebool-TBox.
By applying the procedure of Cuenca Grau et al. (2013) T
can be transformed into a datalog program whose body is
tree-shaped (the latter follows by restricting Theorem 8 and
Lemma 20 from (Cuenca Grau et al. 2013) to the particu-
lar form of DL-Litebool clauses we consider here). More-
over, by the results in (Artale et al. 2009) every instance
query formed using symbols of T is UCQ-rewritable hence
Lemma 9 can be applied.

Example 6. Let the DL-Litebool-TBox T = {⊥ ← R(x, y)∧
A(x), A(x) ∨ D(x) ← C(x)} and the instance query
Q(x) ← D(x). Using the procedure described in (Cuenca
Grau et al. 2013) we can obtain the equisatisfiable dat-
alog program R = {Q(x) ← D(x),⊥ ← R(x, y) ∧
A(x), D(x) ← R(x, y) ∧ C(x)}. Given R as an input Al-
gorithm 1 constructs:

Rir = {Q(x) ← D(x),

D(x) ← R(x, x) ∧ C(x) ∧ ¬(R(x, x) ∧A(x)),
D(x) ← R(x, y) ∧ x �= y ∧ C(x) ∧
¬(R(x, y) ∧ x �= y ∧A(x))}

♦
Bienvenu, Lutz, and Wolter (2012) showed that instance

queries over so called semi-acyclic-EL-TBoxes are always
UCQ-rewritable. Moreover, EL is a Horn-DL. Therefore, we
can use Lemma 9 to show the following.

Theorem 11. Let T be a semi-acyclic-EL⊥-TBox and let
Q be a CQ. Then, on input T and Q, Algorithm 1 termi-
nates and computes an IAR-rewriting of Q w.r.t. T that is a
datalog program.

Restricting EL⊥ to obtain a fragment for which IAR-
answering is tractable (w.r.t. data complexity) was also stud-
ied by Rosati (2011) who defined EL⊥nr. Its definition fol-
lows the same intuitions as above, that is, that no recursions
are involved with concepts that appear in negative clauses.
The original definition is arguably sketchy and suffers from
some technical glitches, hence we re-define EL⊥nr using
our framework. For a better comparison with the original
definition and conciseness in the following we use DL nota-
tion.

Definition 12. An EL⊥nr-TBox is an EL⊥-TBox T such
that for every negative clause A1 � . . . � Am 	 ⊥ entailed
by T , if C 	 Ai is also entailed by T and C contains an
occurence of Ai nested into an existentially quantified con-
cept expression, then some C ′ 	 Ai is entailed by T where
C ′ does not mention Ai and a substitution σ exists such that
each concept and role in C ′σ occurs in C.

Intuitively, if such σ exists then the recursion induced by
C 	 Ai is superfluous. Compared to Rosati (2011) our def-
inition differs in this last condition, where Rosati required
that C ′ 	 C.

Example 7. Consider the TBox T of Example 5. Clearly, it is
not in EL⊥nr, but if we extend it with an axiom ∃R.� 	 A,
then the resulting TBox T ′ = T ∪{∃R.� 	 A} is in EL⊥nr

and it is easy to verify that there exists a negative closure of
T ′.

In contrast, if we extend T with the axiom D 	 ∃R.A,
then the obtained TBox T ′′ = T ∪ {D 	 ∃R.A} is not in
EL⊥nr and a negative closure of T ′′ does not exist for the
same reasons illustrated in Example 5. However, according
to the definition given in (Rosati 2011) the TBox T ′′ is in
EL⊥nr. ♦

Theorem 13. Let T be a EL⊥nr-TBox and let Q be a CQ.
Then, on input T and Q Algorithm 1 terminates and com-
putes an IAR-rewriting of Q w.r.t. T that is a datalog pro-
gram.

For arbitrary Horn-DLs that are not always UCQ-
rewritable (like, e.g., EL) in order to check the conditions
in Lemma 9 we can exploit many recent results in UCQ-
rewritability of instance queries over Horn-DLs (Bienvenu,
Lutz, and Wolter 2013; Hansen et al. 2015). More precisely,
Bienvenu, Lutz, and Wolter (2013) study UCQ-rewritability
of a given instance query over a wide range of Horn-DLs,
like EL⊥, ELI⊥ and Horn-SHIF and present a prelimi-
nary algorithm based on automata. Subsequently, these re-
sults were used to design a practical algorithm and conduct
an experimental evaluation which showed that for a large
number of real-world TBoxes the vast majority of instance
queries are UCQ-rewritable (Hansen et al. 2015). Since all
the above DLs are Horn one can use systems like Clip-
per (Eiter et al. 2012) or Rapid (Trivela et al. 2015) to com-
pute a datalog-rewriting for the input TBox, then the Grind

1977

system (Hansen et al. 2015) to check UCQ-rewritability of
all relevant instance queries defined in Lemma 9 and, finally,
Algorithm 1 to compute an IAR-rewriting.

Finally, we remark about linear-acyclic-ELU (Kaminski
and Grau 2013) a fragment of EL with disjunctions for
which all instance queries of the form Q(x) ← A(x) are
UCQ-rewritable. Unfortunately, linearity breaks if we ex-
tend this DL with negative clauses in an effort to define a
fragment of ELU⊥ for which ABox-consistency is UCQ-
rewritable. The authors leave open the problem whether
acyclicity alone (without linearity) is enough to guarantee
UCQ-rewritability but argue that this could be possible. If
this is the case then it will not be hard to show that acyclic-
ELU⊥ is IAR-rewritable.

Evaluation

Based on Algorithm 1 we created a prototype system. It is
using Rapid (Trivela et al. 2015) to compute a rewriting R
for Q and T (line 3 of Algorithm 1) and Grind (Hansen et
al. 2015) along with the approach described in Lemma 9
to decide whether it can compute a negative closure Tcn. If
the negative closure can be computed, then our system pro-
ceeds in extending R with negative conjuncts as described
in lines 6-14, otherwise it reports that a negative closure
could not be computed. The whole system currently sup-
ports ELHdr

⊥ ontologies as this is the language supported by
the current implementation of Grind.

Our test ontologies consist of the seven ontologies used
in (Hansen et al. 2015). From them envo, FBbi, and SO in-
clude negative clauses (axioms) while for the rest (mohse,
nbo, Not-Galen, XP) we had to manually add some; we tried
to use concepts that appear in various “levels” of the hi-
erarchy of the ontology so that these affect large or small
parts of it. Furthermore, we have used ELHdr

⊥ fragments of
the ontologies CARO,1 BFO2 and Dolce-Lite.3 Moreover,
for each ontology we manually constructed five test queries.
Each one of them contains at least one body atom that uses
a predicate (concept or role) involved in a negative clause.
More precisely, for axioms of the form B 	 ¬C we have
constructed queries Q(x) ← A(x) and Q(x) ← D(x) such
that T |= A 	 B and T |= B 	 D. We also tried to use
concepts that appear low or high in the ontology hierarchy.

Our tool managed to compute a negative closure for all
ontologies except SO. By manually inspecting the ontol-
ogy we observed that it includes the negative clause ⊥ ←
region(x)∧ junction(x) andQ(x) ← region(x) is not UCQ-
rewritable due to the following clauses in T (hence Lemma 9
fails):

region(x) ← engineered region(x),

engineered region(x) ← region(x) ∧ has origin(x, y)

∧engineered region(y)

Our results for the rest of the ontologies are depicted in Ta-
bles 2 and 3. The former regards the process of computing

1http://www.obofoundry.org/ontology/caro
2http://www.ifomis.org/bfo/1.1
3http://www.loa.istc.cnr.it/old/DOLCE

T tG tTcn |Tn| |Tcn|
envo 16 452 166 5 124
FBbi 9 305 63 4 57

mohse 55 814 21 3 3
NBO 27 674 40 5 20

Not-Galen 63 424 30 3 11
XP 8 626 28 2 8

BFO 21 903 2 166 44 622
caro 28 759 4 232 82 1 043

Dolce-Lite 16 039 8 202 18 1 952

Table 2: Results for computation of negative closure; com-
putation time (in msec) and sizes.

a negative closure, which is query independent, and the lat-
ter the construction of IAR-rewritings for our test queries. In
these tables column tR presents the time required by Rapid
to compute a rewriting R, tG the time our system required
to check whether it can compute the negative closure using
Grind and Lemma 9, and comlumn tTcn

the time required
to construct Tcn; all times are in milliseconds. Moreover,
|Tn| presents the number of negative clauses in the input
TBox, |Tcn| the number of clauses in the negative closure
constructed by our system, |Rir| the number of clauses in
Rir, column #q¬ presents the number of queries in Rir that
contain negative conjuncts and, finally, columns max and
avg the maximum and average number of negative conjuncts
in any clause in Rir with a negative part.

As can be seen for all ontologies we were able to check
IAR-rewritability and then compute Tcn in a matter of few
seconds up to a little over than a minute. Since this pro-
cess only depends on the TBox and not the query, it can
be done only once in an off-line step. Consequently, we feel
that these times are quite encouraging.

Regarding the size of Tcn, it did not increase significantly
for ontologies mohse, nbo, Not-Galen, and XP, however, it
did for envo, FBbi, BFO, caro and Dolce-Lite. This is be-
case, although there are few negative clauses in the input on-
tology these involve concepts that have many sub-concepts
in the ontology and hence many new negative clauses are
implied creating an increase in the size of Tcn. For exam-
ple, in envo, two classes involved in a negative clause have 6
and 5 subclasses and this generates 41 new negative clauses,
hence the size of |Tcn| is 25 times bigger than |Tn|. How-
ever, as we will see next, since the size of the IAR-rewriting
mostly depends on the concepts that appear in the query, this
blow-up may not affect the final output.

Regarding the size of the IAR-rewriting (|Rir|), it co-
incided with the size of the rewriting R for all ontolo-
gies but Dolce-Lite. In that ontology the sizes of R before
extending with negative atoms were 4, 93, 45, 9, and 15
clauses for queries 1 to 5, respectively. These differences
were due to the procedure saturate which introduces new
clauses by applying variable unifications over the clauses
of R. Clearly, this can cause a significant increase in the
size of the IAR-rewriting. In order to avoid it we restricted
its application to elements of R that contain roles that also

1978

tR |Rir| q¬ max avg

envo

94 765 33 7 6.5
195 758 32 15 6.8
163 768 33 7 6.5
116 771 32 7 6.5
110 765 35 16 7.3

FBbi

8 7 7 13 4.1
7 11 11 4 2.2

52 306 22 14 3.6
6 11 11 7 4.4

76 5 5 10 2.8

mohse

1 016 3 571 17 2 1.1
10 3 1 2 2.0

1 020 3 520 15 2 1.1
1 049 3 511 13 2 1.1
1 063 3 519 14 2 1.1

NBO

9 3 3 9 6.0
9 2 2 6 4.0

10 4 4 2 2.0
205 1 328 14 4 1.8
245 1 350 11 4 1.9

tR |Rir| q¬ max avg

Not-Galen

37 456 16 684 19 6 1.6
42 303 16 634 19 6 1.6

55 28 7 6 1.7
28 491 16 578 20 6 1.8

13 4 3 2 2.0

XP

250 2 035 10 4 2.8
335 2 115 12 4 2.6
249 2 035 9 4 2.6
333 2 037 9 4 2.7
281 2 035 10 6 3.0

BFO

25 39 39 35 32.7
9 7 7 65 38.4

11 8 8 60 36.1
8 9 9 95 40.1
7 5 5 35 33.6

caro

10 2 2 91 68.5
16 3 3 90 60.0

154 40 40 53 43.9
9 6 5 46 45.2
7 8 7 46 45.0

Dolce-Lite

6 7 7 101 87.9
21 198 198 258 94.0
15 100 95 101 78.0
11 19 19 121 101.7
10 23 23 128 85.5

Table 3: Results for computation of IAR-rewritings.

appear in some negative clause. For example, it is not ap-
plied on Q = Q(x) ← A(x) ∧ R(x, y) if R does not occur
in any negative clause of Tcn. This is a quite effective op-
timisation since in practice ontologies rarely contain nega-
tive clauses that involve (either directly or via entailments)
concepts with roles. That was indeed the case in all except
just the Dolce-Lite ontology. Finally, the number of negative
conjuncts added to clauses was in more than half of the cases
quite small (less than 7 on average). In contrast, in three on-
tologies the algorithm had to add from 30 up to 100 negative
conjuncts which could be a large number although the eval-
uation in (Tsalapati et al. 2016) showed that database and
triple-store systems can cope with a fairly large number of
negative atoms (even more than one hundred); further work
in that respect is required to design optimisations that would
reduce these numbers.

Summarising, our evaluation verifies the following non-
trivial arguments:

• The condition we have described is usually satisfied in
practice for a given TBox even if this is expressed in a
DL for which the problem is intractable. Consequently,
a negative closure for these TBoxes exists and an IAR-
rewriting can be constructed using Algorithm 1.

• If a negative closure exists then computing it can be done
relatively efficiently especially taking into account that
the process is query independent and can be conducted
only once at a pre-processing step.

• The number of clauses in the IAR-rewriting was in the
vast majority of cases the same as that of the normal
rewriting. This was due to the restrictions in the appli-

cation of saturate which turned out to be very effective
for real-world ontologies.

• The number of negative conjuncts added to the clauses
was in most cases quite small, however, in some cases
quite a few were added.

Conclusions

In this work we have studied the problem of query answering
over DL-ontologies under the inconsistency-tolerant IAR se-
mantics. First, we designed a general algorithm that can be
applied on arbitary inputs but it may not terminate. We then
defined a condition that ensures its termination and showed
that this condition is satisfied by the relatively expressive
DL DL-Litebool obtaining the first ever tractability result for
IAR-answering over a non-Horn-DL, as well as, for semi-
acyclic-EL-TBoxes. Finally, we have provided a prototype
implementation and preliminary evaluation obtaining en-
couraging results. More precisely, for almost all test ontolo-
gies and queries we were able to compute an IAR-rewriting
within a reasonable time. This constitutes the first attempt
towards IAR-aswering in the case of DL-ontologies that do
not fall into the DL-Lite fragment.

Acknowledgements

Research supported by EU’s Horizon 2020 research and in-
novation programme, grant agreement No. 720270 (HBP
SGA1) and by the Research Centre of the Athens University
of Economics and Business (Action 2, 2016-2017). Large
part of this work was conducted when Giorgos Stoilos was
working at AUEB.

1979

References
Arenas, M.; Bertossi, L.; and Chomicki, J. 1999. Consis-
tent query answers in inconsistent databases. In Proceedings
of the Eighteenth ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems, 68–79. ACM.
Artale, A.; Calvanese, D.; Kontchakov, R.; and Za-
kharyaschev, M. 2009. The DL-Lite Family and Relations.
Journal of Artificial Intelligence Research 36:1–69.
Baader, F.; McGuinness, D. L.; Nardi, D.; and Patel-
Schneider, P. F. 2002. The Description Logic Handbook:
Theory, implementation and applications. Cambridge Uni-
versity Press.
Bertossi, L. E. 2006. Consistent query answering in
databases. SIGMOD Record 35(2):68–76.
Bienvenu, M., and Rosati, R. 2013. New Inconsistency-
Tolerant Semantics for Robust Ontology-Based Data Ac-
cess. In Proceedings of the Twenty-Sixth International Work-
shop on Description Logics.
Bienvenu, M.; ten Cate, B.; Lutz, C.; and Wolter, F. 2014.
Ontology-Based Data Access: A Study through Disjunc-
tive Datalog, CSP, and MMSNP. ACM Transactions on
Database Systems 39(4):33:1–33:44.
Bienvenu, M.; Lutz, C.; and Wolter, F. 2012. Deciding FO-
Rewritability in EL. In Proceedings of the Twenty-Fifth In-
ternational Workshop on Description Logics.
Bienvenu, M.; Lutz, C.; and Wolter, F. 2013. First-Order
Rewritability of Atomic Queries in Horn Description Log-
ics. In Proceeding of the Twenty-Third International Joint
Conference on Artificial Intelligence.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable Reasoning and Efficient
Query Answering in Description Logics: The DL-Lite Fam-
ily. Journal of Automated Reasoning 39(3):385–429.
Cuenca Grau, B.; Motik, B.; Stoilos, G.; and Horrocks, I.
2013. Computing Datalog Rewritings beyond Horn Ontolo-
gies. In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence.
Eiter, T.; Ortiz, M.; Simkus, M.; Tran, T.-K.; and Xiao, G.
2012. Query Rewriting for Horn-SHIQ plus Rules. In Pro-
ceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence.
Hansen, P.; Lutz, C.; Seylan, I.; and Wolter, F. 2015. Effi-
cient Query Rewriting in the Description Logic EL and Be-
yond. In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, 3034–3040.
Hustadt, U.; Motik, B.; and Sattler, U. 2007. Reasoning in
Description Logics by a Reduction to Disjunctive Datalog.
Journal of Automated Reasoning 39(3):351–384.
Kaminski, M., and Grau, B. C. 2013. Sufficient Condi-
tions for First-Order and Datalog Rewritability in ELU . In
Proceedings of the Twenty-Sixth International Workshop on
Description Logics.
Kikot, S.; Kontchakov, R.; and Zakharyaschev, M. 2012.
Conjunctive Query Answering with OWL 2 QL. In Proceed-
ings of the Thirteenth International Conference on Princi-
ples of Knowledge Representation and Reasoning.

Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; and Savo,
D. F. 2010. Inconsistency-tolerant Semantics for De-
scription Logics. In Proceedings of Fourth International
Conference on Web Reasoning and Rule Systems, 103–117.
Springer.
Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; and Savo,
D. F. 2011. Query rewriting for inconsistent DL-Lite ontolo-
gies. In Proceedings of the Fifth International Conference
on Web Reasoning and Rule Systems, 155–169. Springer.
Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; and Savo,
D. F. 2015. Inconsistency-tolerant Query Answering in
Ontology-Based Data Access. Journal of Web Semantics
33:3–29.
Pérez-Urbina, H.; Motik, B.; and Horrocks, I. 2010.
Tractable Query Answering and Rewriting under Descrip-
tion Logic Constraints. Journal of Applied Logic 8(2):186–
209.
Rosati, R. 2011. On the Complexity of Dealing with Incon-
sistency in Description Logic Ontologies. In Proceedings of
the Twenty-Second International Joint Conference on Artifi-
cial Intelligence, 1057–1062.
Trivela, D.; Stoilos, G.; Chortaras, A.; and Stamou, G.
2015. Optimising Resolution-Based Rewriting Algorithms
for OWL Ontologies. Journal of Web Semantics 33:30–49.
Tsalapati, E.; Stoilos, G.; Stamou, G. B.; and Koletsos, G.
2016. Efficient Query Answering over Expressive Incon-
sistent Description Logics. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelli-
gence, 1279–1285.

1980

