
Forgetting and Unfolding for Existential Rules

Zhe Wang, Kewen Wang
School of Information and Communication Technology

Griffith University, Australia

Xiaowang Zhang
School of Computer Science and Technology

Tianjin University, China

Abstract

Existential rules, a family of expressive ontology languages,
inherit desired expressive and reasoning properties from both
description logics and logic programming. On the other hand,
forgetting is a well studied operation for ontology reuse, ob-
fuscation and analysis. Yet it is challenging to establish a the-
ory of forgetting for existential rules. In this paper, we lay the
foundation for a theory of forgetting for existential rules by
developing a novel notion of unfolding. In particular, we in-
troduce a definition of forgetting for existential rules in terms
of query answering and provide a characterisation of forget-
ting by the unfolding. A result of forgetting may not be ex-
pressible in existential rules, and we then capture the express-
ibility of forgetting by a variant of boundedness. While the
expressibility is undecidable in general, we identify a decid-
able fragment. Finally, we provide an algorithm for forgetting
in this fragment.

Introduction

Existential rules (a.k.a. Datalog± rules and tuple-generating
dependencies in Databases) (Baget et al. 2011; Calı̀, Got-
tlob, and Lukasiewicz 2012), have recently been redis-
covered as a promising family of ontology languages for
ontology-based query answering and attracted a great deal
of interest. Existential rules are sufficiently expressive to
describe ontologies in datalog, EL and the DL-Lite fam-
ily (Calı̀, Gottlob, and Lukasiewicz 2012), which underpin
the three profiles of OWL 2 web ontology language; and
reasoning for existential rules benefits from the rich legacy
of rule-based systems. However, issues of ontology mainte-
nance, including module extraction, ontology reuse and on-
tology change, are much less studied for existential rules.

Forgetting (Lin and Reiter 1994) is an operation of elim-
inating or hiding a certain set Σ of non-logical symbols
(deemed to be irrelevant or private) from a knowledge base
Π to obtain a new knowledge base Π′ that contains no
occurrence of the symbols from Σ and preserves all rele-
vant logical consequences of Π over the remaining sym-
bols. It has found its application in ontology maintenance,
such as ontology comparison, version control, reuse, ob-
fuscation, and revision (Konev, Walther, and Wolter 2009;
Lutz and Wolter 2011; Ludwig and Konev 2014; Wang,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Wang, and Topor 2015). However, due to its technical chal-
lenge, a theory of forgetting for existential rules is still miss-
ing in the literature, while researchers are aware of this prob-
lem and its importance.

Most of approaches in description logics define forgetting
to preserve concept inclusions, i.e., Π′ entails the same con-
cept inclusions outside Σ as Π does (Lutz and Wolter 2011;
Lutz, Seylan, and Wolter 2012; Wang et al. 2014; Nikitina
and Rudolph 2014; Ludwig and Konev 2014; Koopmann
and Schmidt 2014), which we refer to as inclusion-based for-
getting. Inclusion-based forgetting is useful for ontological
schema reasoning, but is not suitable for query answering.
Others define forgetting to preserve models, i.e., the models
of Π′ and Π have the same interpretation on symbols out-
side Σ (Wang et al. 2008; Zhao and Schmidt 2016), which
we call model-based forgetting. Model-based forgetting is
the strongest form of forgetting in that it requires Π′ to pre-
serve all second-order entailment of Π (outside Σ) (Romero
et al. 2016), which is too strong for ontology-based query
answering and often renders the results of forgetting inex-
pressible in first-order logic. It seems a definition of for-
getting that preserves query answering (Konev, Walther, and
Wolter 2009; Wang et al. 2010), called query-based forget-
ting, is more suitable for existential rules.

To develop a theory of forgetting, one also has to deal
with two important issues—expressibility and computa-
tion of forgetting. The expressibility concerns whether a
result of forgetting can be expressed as a finite theory
in the same language of the initial ontology, and inex-
pressibility was discovered even for rather simple ontolo-
gies. For instance, it is shown that model- and query-
based forgetting about a role (i.e., binary predicate) are in
general inexpressible for DL-Lite ontologies (Wang et al.
2010), and all the three notions of forgetting are gener-
ally inexpressible for EL ontologies (Konev, Walther, and
Wolter 2009). Regarding the computation of forgetting, sev-
eral algorithms have been proposed for various description
logics. Algorithms to inclusion-based forgetting are pro-
posed based on automata theory (Lutz and Wolter 2011;
Lutz, Seylan, and Wolter 2012) and regular tree language
(Nikitina and Rudolph 2014) mostly for deriving theoreti-
cal bounds. More practical algorithms are developed based
on resolution (Wang et al. 2010; Ludwig and Konev 2014;
Koopmann and Schmidt 2014) and the Ackermann approach

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

2013

(Zhao and Schmidt 2016). We note that these approaches
usually rely on the tree-model property, restricted predicate
arity, or certain normal forms of description logics. Since
predicates of arbitrary arity and models of complex struc-
tures are allowed, it is unclear how existing results for for-
getting can be extended to existential rules.

In this paper we tackle the above open problem by estab-
lishing a theory of forgetting for existential rules. We investi-
gate some important issues for forgetting, including (i) suit-
able definition and syntactic characterisation of forgetting;
(ii) expressibility of forgetting; and (iii) practical computa-
tion of forgetting. Our contribution to forgetting in existen-
tial rules in this paper can be summarised as follows.

1. Based on query answering, we introduce a definition of
forgetting for existential rules.

2. To provide a syntactic characterisation for the notion of
forgetting, we introduce a novel form of unfolding for ex-
istential rules and show that the forgetting can be captured
by the unfolding. Unfolding is a standard and important
technique in logic programming. But it is non-trivial to
define a suitable form of unfolding for existential rules
due to the presence of existential quantifiers and conjunc-
tions in the rule heads.

3. We show that the expressibility of forgetting is undecid-
able; yet for ontologies that have acyclic rule dependency,
forgetting is always expressible. These results are ob-
tained by establishing a connection between the express-
ibility of forgetting and a variant of boundedness, which
again is an important notion in datalog but less explored
for existential rules.

4. We develop an algorithm of unfolding, which actually
provides an algorithm for computing forgetting for exis-
tential rules. Our algorithm first transforms the existen-
tial rules into datalog rules and tracks the application of
those datalog rules. This generates a graph of rule appli-
cation (GRA), which extends the existing notion of graphs
of rule dependency (GRD). By establishing the termina-
tion and correctness of our algorithm on ontologies with
acyclic GRA, we obtain a larger class of ontologies than
the known class of acyclic GRD, on which forgetting is
always expressible.

Preliminaries

We assume standard first-order logic notions, such as predi-
cates, constants, variables, terms, (ground) atoms, formulas,
entailment (|=) and equivalence (≡). A signature is a set of
predicates; for a formula φ, sig(φ) denotes the signature of
φ, which naturally extends to sets of formulas. An instance
is a (possibly infinite) set of atoms. For brevity, we often
identify a finite instance with the conjunction of its atoms
where all the variables are existentially quantified, and vice
versa. For an instance I , var(I) denotes the variables in I . A
dataset is a finite ground instance.

A substitution, expressed as a (possibly empty) set
{t1/t′1, . . . , tn/t′n}, is a functional mapping between two
sets of terms {t1, . . . , tn} and {t′1, . . . , t′n}. For a set T of
terms, σ|T denotes the substitution {t/t′ ∈ σ | t ∈ T}. If t

is a constant or is not in the domain of σ, we write tσ = t;
otherwise if t/t′ ∈ σ, tσ = t′; and it naturally extends to
(sets of) atoms and formulas. A homomorphism from an in-
stance I to an instance I ′ is a substitution σ from the terms
occurring in I to those in I ′ such that Iσ ⊆ I ′. A unifier
between two instances I and I ′ is a substitution τ such that
Iτ = I ′τ ; and τ is a most general unifier satisfying condi-
tion C if for each unifier τ ′ between I and I ′ satisfying C,
there exists a substitution σ such that τ ′ = τσ.

An existential rule (or a rule) r is a formula of the form

∀�x.∀�y.[φ(�x, �y) → ∃�z.ψ(�x, �z)]
where �x, �y and �z are pairwise disjoint vectors of variables,
and φ(�x, �y) and ψ(�x, �z) are conjunctions of atoms with vari-
ables from respectively �x∪�y and �x∪�z. Formula φ is the body
of the rule r, denoted body(r), and formula ψ is the head of
r, denoted head(r); again, they can be seen as (existentially
quantified conjunctions of) sets of atoms. For brevity, uni-
versal quantifiers in a rule are often omitted, and we some-
times express rule r as body(r) → head(r). We use Xr, Yr
and Zr to denote the sets of the variables in respectively, �x, �y
and �z of rule r. A datalog rule r is an existential rule whose
head consists of a single atom and Zr is empty. For conve-
nience, we assume each rule employs a disjoint set of vari-
ables from other rules and from the instances. 1 An ontol-
ogy is a finite set of rules. For simplicity, we disallow trivial
rules r, i.e., body(r) |= body(r) ∧ head(r), and duplicated
rules (up to variable renaming) in an ontology. When we talk
about expressibility, we refer to expressibility as ontologies.

A rule r is applicable to an instance I if there is a ho-
momorphism σ from body(r) to I , and the result of apply-
ing r to I with σ is rσ↑ (I) = I ∪ head(r)σ′, where σ′ is
a safe extension of σ|Xr

on Zr, that is, σ|Xr
⊆ σ′ and for

each z ∈ Zr, zσ′ is a distinct fresh variable not occurring
in I . The forward chaining, a.k.a. chase, of a set of rules Π
on I is a sequence of instances Ii (i ≥ 0), where I0 = I ,
Ii+1 =

⋃
r∈Π,σ r

σ
↑ (Ii). For k ≥ 0, let Πk

↑(I) = Ik, and
Π↑(I) =

⋃∞
i=0 Ii.

A Boolean conjunctive query (BCQ) is an existentially
closed conjunction of atoms, which can be seen as a finite
instance. A union of BCQ is a disjunction of BCQs, which
is seen as a finite set of finite instances.

Backward chaining is defined through the notion of piece
unification for a given query and a rule (Leclère, Mugnier,
and Ulliana 2016). So, we give the definition of piece unifi-
cation for a given instance I and a rule r. First, for a subset
I ′ of I , we say that a variable occurring in I ′ but not in
I \ I ′ is an exclusive variable for I ′ in I . A piece unification
of I and r is a triple μ = (I ′, H, τ), where ∅ ⊂ I ′ ⊆ I ,
H ⊆ head(r), and τ is a most general unifier between I ′
and H such that the following condition is satisfied for each
z ∈ Zr: If a term t (t = z) in I ′ ∪H is unified with z, i.e.,
zτ = tτ , then t is an exclusive variable for I ′ in I . We call a
minimal subset I ′ satisfying the above conditions a piece of
I w.r.t. r.
I is rewritable by r if there exists a piece unification μ =

(I ′, H, τ) of I and r, and the result of rewriting I by r with μ

1This is not reflected in our examples for simplicity.

2014

is rμ↓ (I) = (I \I ′)τ ∪body(r)τ ′ where τ ′ is a safe extension
of τ |var(H) on Yr ∪ (Xr \ var(H)). For a set S of instances
and a set Π of rules, the backward chaining, a.k.a. rewriting,
of Π on S is a sequence of sets of instances Si (i ≥ 0), where
S0 = S and Si+1 = Si ∪ {rμ↓ (Ii) | r ∈ Π, Ii ∈ Si}. For
k ≥ 0, let Πk

↓(S) = Sk, and Π↓(S) =
⋃∞

i=0 Si.
Ontology-based query answering (König et al. 2015;

Gottlob, Orsi, and Pieris 2014) concerns essentially the rea-
soning problem of deciding for an ontology Π, a dataset D
and a BCQ Q, whether Π ∪D |= Q. Forward chaining and
backward chaining for existential rules are both sound and
complete for query answering. In particular, it holds that
Π ∪ D |= Q iff Πk

↑(D) |= Q for some k ≥ 0, and iff
D |= Πl

↓({Q}) for some l ≥ 0 (Leclère, Mugnier, and Ul-
liana 2016).

Forgetting and Unfolding

As discussed above, query answering is a primary reasoning
task for ontologies in existential rules, and we adopt a query-
based definition for forgetting. More specifically, a result of
forgetting about a signature Σ in an ontology Π is a logically
weaker ontology Π′ not containing any occurrence of pred-
icates from Σ, such that Π′ preserves query answering of Π
for any BCQ and any dataset outside Σ.

Definition 1 (Forgetting). Let Π be an ontology and Σ a
signature. An ontology Π′ is a result of forgetting about Σ
in Π if (1) sig(Π′) ⊆ sig(Π)\Σ, (2) Π |= Π′, and (3) for each
dataset D and each BCQ Q such that sig(D ∪Q) ∩ Σ = ∅,
Π ∪D |= Q implies that Π′ ∪D |= Q.

We use the following running example to illustrate our
definitions and methods in the rest of this paper.

Example 1. Consider an ontology Πe consisting of the fol-
lowing rules

r1 = A(x) → ∃y.[B(x, y) ∧ C(x, y)],

r2 = C(x, y) ∧ D(x) → ∃z.E(y, z),
r3 = B(x, y) ∧ E(y, z) → E(x, z),

r4 = F(x) → D(x).

A result of forgetting about Σ = {B,D} in Πe consists of
the following three rules:

A(x) → ∃y.C(x, y),
C(x, y) ∧ F(x) → ∃z.E(y, z),
A(x) ∧ F(x) → ∃y, z.[C(x, y) ∧ E(y, z) ∧ E(x, z)].

We show that a result of forgetting is unique (up to logi-
cal equivalence). Hence, we denote a result of forgetting as
forget(Π,Σ).

Proposition 1. If Π′ and Π′′ are both results of forgetting
about signature Σ in ontology Π then Π′ ≡ Π′′.

To prove this proposition, we need a lemma.

Lemma 1. For an ontology Π and a rule r, Π |= r iff
Π ∪ body(r)σ |= head(r)σ, where σ = {x/cx | x ∈
var(body(r))} and each cx is a fresh constant for x.

Proof Sketch for Proposition 1: For each rule r ∈ Π′\Π′′, let
σ be as in Lemma 1. Clearly, Π′ ∪ body(r)σ |= head(r)σ.
Since sig(r) ⊆ sig(Π) \ Σ, by the definition of forgetting,
Π ∪ body(r)σ |= head(r)σ, and also, Π′′ ∪ body(r)σ |=
head(r)σ. By Lemma 1, Π′′ |= r; that is, Π′′ |= Π′. The
other direction also follows similarly.

The definition of forgetting does not provide us any clue
on the existence or the computation of forgetting. In order
to develop an algorithm for the forgetting, we first provide a
syntactic characterisation of forgetting in terms of a form of
unfolding for existential rules.

Definition 2 (Unfolding). A rule r is unfoldable by a rule r′
if there exists a piece unification μ = (B,H, τ) of body(r)
and r′. Here r and r′ are not necessarily different.

The result of unfolding r by r′ with μ is the following rule
denoted r��μr′:

(body(r)\B)τ∪body(r′)τ ′ → ∃�z.[head(r)τ ′′∪head(r′)τ ′]
where τ ′ is a safe extension of τ |var(H) on var(r′) \ var(H),
τ ′′ is a safe extension of τ |Xr

on Zr, and �z consists of all
the variables in the head but not in the body.

The unfold chaining on a set of rules Π is a sequence of
rule sets Πi (i ≥ 0), where Π0 = Π and Πi+1 = Πi ∪
{ r��μr′ | r, r′ ∈ Πi }. The unfolding of Π is unfold(Π) =⋃∞

i=0 Π
i.

Unlike unfolding in propositional and first-order logic
programs (Zhou 2015), our definition requires piece unifi-
cations and that H is not eliminated from head(r′) after un-
folding, in order to correctly handle the existential quanti-
fiers in the rule heads.

Example 2. In Πe of Example 1, r3 is unfoldable by r2 with
piece unification μ = ({E(y, z)}, {E(y, z)}, ∅), and the
result of unfolding r3 by r2 with μ is

r = B(x′, y) ∧ C(x, y) ∧ D(x) → ∃z.[E(y, z) ∧ E(x′, z)].

And r is unfoldable by r1 with piece unification μ′ =
({B(x′, y),C(x, y)}, {B(x, y),C(x, y)}, {x′/x}), and the
result of unfolding r by r1 with μ′ is

A(x)∧D(x) → ∃y, z.[B(x, y)∧C(x, y)∧E(y, z)∧E(x, z)].

Note that μ′′ = ({B(x′, y)}, {B(x, y)}, {x′/x}) is not a
piece unification of body(r) and r1, as y is not an exclusive
variable for {B(x, y)} in body(r).

Let Π be a set of rules of the form Bi → Hi (1 ≤ i ≤ n),
and we recall that distinct rules have disjoint sets of vari-
ables. An aggregated rule of Π is of the form Bl1 ∧ . . . ∧
Blk → Hl1 ∧ . . . ∧Hlk where 1 ≤ lj ≤ n for j = 1, . . . , k,
and where if an aggregated rule involves multiple copies of
the same rule from Π then each copy has a distinct set of
variables (Leclère, Mugnier, and Ulliana 2016). The follow-
ing result shows the soundness and completeness of unfold-
ing regarding ontological reasoning.

Proposition 2. Let Π be an ontology, r a rule, D a dataset
and Q a BCQ. Then

(1) Π |= r for r ∈ unfold(Π).

2015

(2) Π ∪D |= Q iff there are k ≥ 0 and an aggregated rule r
of Πk s.t. {r} ∪D |= Q.

(3) Π |= r iff r′ |= r for some k ≥ 0 and some aggregated
rule r′ of Πk.

Proof Sketch: (1) is easy to see, and (3) can be shown by (2)
and Lemma 1.

(2, ⇒): By the completeness of backward chaining, Π ∪
D |= Q implies that D |= Πl

↓({Q}) for some l ≥ 0. If
Q′ ∈ Πl

↓({Q}) is mapped to D with homomorphism σ′,
then by the definition of Πl

↓({Q}), there are 0 ≤ n ≤ l and
a sequences of BCQs Qi (0 ≤ i ≤ n), such that Q0 = Q,
Qi+1 = ri

μi

↓ (Qi) for some ri ∈ Π and piece unification μi,
and Qn = Q′. W.l.o.g., we assume r0, . . . , rm (0 ≤ m ≤ n)
rewrites atoms solely from Q, and each ri with m < i ≤ n
rewrites body atoms of some rj with 0 ≤ j < i. It is not
hard to see that rj is unfoldable by ri with some piece unifi-
cation μ′

i. Let k = n −m, we have an aggregated rule r by
combining all the rules in Πk that are obtained by unfold-
ing r0, . . . , rm by rm+1, . . . , rn. It is not hard to see that
body(r) can be mapped to Q′ with some homomorphism τ .
Taking σ = τσ′, we have rσ↑ (D) |= Q.

(2, ⇐): By (1), Π |= r and hence Π ∪D |= Q.

For an instance I and a signature Σ, I|Σ consists of the
atoms in I that are over Σ. Let

Π|Σ = { body(r) → head(r)|Σ | r ∈ Π, head(r)|Σ = ∅,
and body(r)|Σ = body(r) }

and Π|Σ = Π|sig(Π)\Σ.
The following result shows that rule unfolding captures

the notion of forgetting.

Theorem 1. For an ontology Π and a signature Σ, a result
of forgetting about Σ in Π is expressible iff unfold(Π)|Σ is
so. In this case, forget(Π,Σ) ≡ unfold(Π)|Σ.

Proof Sketch: Suppose unfold(Π)|Σ can be expressed as an
ontology Π′, assume sig(Π′) ⊆ sig(Π) \ Σ. By Proposi-
tion 2 (1), Π |= Π′. For each dataset D and each BCQ Q
s.t. sig(D ∪Q) ∩ Σ = ∅, by Proposition 2 (2), Π ∪D |= Q
implies that there is an aggregated rule r of unfold(Π) s.t. r
is applicable to D with homomorphism σ and rσ↑ (D) |= Q.
If r is obtained by aggregating r0, . . . rn in unfold(Π), then
since r is applicable to D, body(ri) is over sig(Π) \ Σ for
each 0 ≤ i ≤ n. Then, r′i = body(ri) → head(ri)|sig(Π)\Σ
is in Π′ for each 0 ≤ i ≤ n. Let r′ be the aggregated rule ob-
tained by combining all the r′i (0 ≤ i ≤ n). As rσ↑ (D) |= Q

and sig(Q)∩Σ = ∅, r′σ↑ (D) |= Q. That is, Π′∪D |= Q. By
the uniqueness of forgetting, forget(Π,Σ) ≡ Π′.

Suppose forget(Π,Σ) can be expressed as an ontology Π′,
thus sig(Π′) ⊆ sig(Π) \ Σ. For each r ∈ Π′, by the defini-
tion of forgetting, Π |= r. By Proposition 2 (3), r′ |= r for
some aggregated rule of unfold(Π). Similar as above, there
is an aggregated rule r′′ of unfold(Π)|Σ s.t. r′′ |= r. That is,
unfold(Π)|Σ |= Π′. For each dataset D and each BCQ Q s.t.
sig(D∪Q)∩Σ = ∅ and Π∪D |= Q, unfold(Π)|Σ∪D |= Q.
By the uniqueness of forgetting, unfold(Π)|Σ ≡ Π′.

Expressibility and Boundedness

For an ontology Π and a signature Σ, there may not exist
a result of forgetting about Σ in Π. For example, consider
Π = {A(x) → B(x), B(x) ∧ C(x, y) → B(y), B(x) →
D(x) }, and Π entails A(x1) → D(x1), A(x1)∧C(x1, x2) →
D(x2), A(x1)∧C(x1, x2)∧C(x2, x3) → D(x3), . . . Thus, a
result of forgetting about {B} in Π needs to capture all these
infinite number of rules, which is not expressible as a finite
first-order theory. Hence, it is important to study whether
the expressibility of forgetting is decidable and to identify
conditions under which expressibility is guaranteed.

In this section, we show the expressibility of forgetting is
undecidable for existential rules, by establishing a connec-
tion between the expressibility and a variant of boundedness
called predicate boundedness. We also show that for a class
of ontologies that are known to be bounded, their forgetting
is guaranteed to be expressible.

Boundedness is a well studied notion for datalog (Cos-
madakis et al. 1988; Gaifman et al. 1993), and recently for
existential rules (Leclère, Mugnier, and Ulliana 2016). For-
mally, an ontology Π is program bounded if there exists
k ≥ 0 such that for each dataset D, Πk

↑(D) ≡ Πk+1
↑ (D).

Program boundedness of an ontology is undecidable, which
holds already for datalog programs (Gaifman et al. 1993).
Special classes of bounded ontologies have been identified
in the literature, a notable example being the class of aGRD
ontologies (Baget et al. 2011; Grau et al. 2013). Given two
rules r and r′, r′ depends on r if there is a dataset D, a ho-
momorphism σ from body(r) to D, and a homomorphism
σ′ from body(r′) to rσ↑ (D) such that body(r′)σ′ ⊆ D and
head(r′)σ′ ⊆ rσ↑ (D). The graph of rule dependency (GRD)
for Π is a directed graph whose nodes are the rules in Π
and whose edges are the dependency relationships between
rules. We say Π is aGRD if its GRD is acyclic.

Since the expressibility of forgetting clearly depends on
the predicates to be forgotten, we define a variant of bound-
edness in terms of predicates.

Definition 3 (Predicate Boundedness). An ontology Π is
predicate bounded w.r.t. signatures Σd and Σq if there exists
k ≥ 0, for each dataset D over Σd and each BCQ Q over
Σq with Π ∪D |= Q, the following condition is satisfied:

For each instance Ii and each minimal subset I ⊆ Ii s.t.
Π ∪ I |= Q, there exists some instance Ij with j ≤ i and a
subset I ′ ⊆ Ij s.t. sig(I ′) ⊆ Σd and Πk

↑(I
′) |= I .

Here the sequence I0, . . . , In is a forward chaining for Π ∪
D |= Q, i.e., I0 = D and In |= Q with the minimum n.

Intuitively, Π is predicate bounded w.r.t. Σd and Σq if
there exists a bound k ≥ 0 such that in the forward chain-
ing derivation of every query Q over Σq from Π and some
D over Σd, each intermediate result (i.e., I) can be derived
from some facts over Σd (i.e, I ′) within k steps of forward
chaining. This definition thus excludes any unbounded chain
of derivation on facts outside Σd (while derivation in Σd

can be unbounded). Our definition generalises the predicate
boundedness for datalog (Gaifman et al. 1993), where Π is

2016

a datalog program, Σd consists of the EDB predicates2, Σq

consists of a single IDB predicate, and Q is a singleton of a
ground atom. Note that in this case, I ′ is over Σd and hence
must be a subset ofD, and so Π is predicate bounded on Σq .
Moreover, for existential rules, our predicate boundedness
coincides program boundedness when we require I ′ = D,
sig(Π) ⊆ Σd and sig(Π) ⊆ Σq , which can be seen from
Proposition 4 in (Leclère, Mugnier, and Ulliana 2016).

We are now able to establish a connection between predi-
cate boundedness and the expressibility of forgetting.
Theorem 2. For an ontology Π and a signature Σ, let Σd =
Σq = sig(Π) \ Σ, a result of forgetting about Σ in Π is
expressible iff Π is predicate bounded w.r.t. Σd and Σq .

To prove Theorem 2, we first define a boundedness on un-
folding. A set Π of rules is unfolding bounded w.r.t. a signa-
ture Σ if there exists k ≥ 0 such that Πk|Σ ≡ unfold(Π)|Σ.
Lemma 2. For an ontology Π and a signature Σ, a result
of forgetting about Σ in Π is expressible iff Π is unfolding
bounded w.r.t. sig(Π) \ Σ.
Lemma 3. Let D be a dataset, Q be a BCQ and Π be an
ontology in which each rule has at mostm body atoms. Then

(1) For any k ≥ 0, if there is an aggregated rule r of Πk s.t.
{r} ∪D |= Q then Π2k

↑ (D) |= Q.

(2) For any l ≥ 0, if Πl
↑(D) |= Q then there is an aggregated

rule r of Πlm s.t. {r} ∪D |= Q.

Proof Sketch for Theorem 2: By Lemma 2, we only need to
show that Π is predicate bounded w.r.t. Σd and Σq iff Π is
unfolding bounded w.r.t. sig(Π) \ Σ.

(⇒): We only need to show that there exists k ≥ 0 s.t. for
each rule r ∈ unfold(Π)|Σ, Πk|Σ |= r. By Proposition 2 (1),
Π |= r, and by Lemma 1, Π ∪ body(r)σ |= head(r)σ. Let
D = body(r)σ and Q = head(r)σ. We want to show that
Πk|Σ∪D |= Q, which by Lemma 1, would imply Πk|Σ |= r.

Consider the derivation forest F for Q where each node
is a pair of the form (f, 0) with f ∈ D or (f, i) with f ∈
Ii \ Ii−1 for some 0 < i ≤ n, and each edge is labelled
with rσ with r ∈ Π and σ a substitution. The roots consist
of the facts in Qσ′ s.t. Qσ′ ⊆ In. A node (f, i) has a child
(g, j) connected via an edge labelled rσ iff f ∈ head(rσ),
g ∈ body(rσ) and j < i. We only need to show that Πk|Σ ∪
D |= f for each f occurring in the derivation forest.

Consider a node (f, i) with the largest i that has a child
over Σ, suppose the edge between them is labelled with
rσ. For each ancestor (g, x) of (f, i), (g, x) connects to its
children via edges labelled by rules whose bodies are over
sig(Π) \ Σ. That is, to show Πk|Σ ∪ D |= g, we only need
to show Πk|Σ ∪ D |= f . Thus, (f, i) can be our starting
point. Since Π ∪ D |= f and f is clearly over Σq , from
the assumption that Π is predicate bounded w.r.t. Σd and
Σq , there are l ≥ 0 (independent of D and f) and (by tak-
ing I = body(rσ)) an instance I ′ ⊆ Ij for some j < i
satisfying sig(I ′) ⊆ Σd and Πl

↑(I
′) |= body(rσ). Since

Πl+1
↑ (I ′) |= f , by Lemma 3 (2), let k = (l + 1)m (m is

2EDB predicates are those not occurring in the rule heads, and
the others are IDB predicates.

as in Lemma 3 (2)), there is an aggregated rule r′ of Πk s.t.
{r′} ∪ I ′ |= f . Since sig(I ′ ∪ {f}) ∩ Σ = ∅, body(r′)
is over sig(Π) \ Σ. Thus, there is an aggregated rule r′′
of Πk|Σ that can be obtained from r′ by eliminating head
atoms s.t. {r′′} ∪ I ′ |= f . That is, by Proposition 2 (2),
Πk|Σ ∪ I ′ |= f . To show Πk|Σ ∪ D |= f , we only need to
show that Πk|Σ ∪ D |= I ′. We have reduced the proof to
showing Πk|Σ ∪ D |= g for some nodes (g, j) with j < i.
By recursively applying the reduction, it finally reduces to
Πk|Σ ∪D |= h for some nodes (h, 0), which clearly holds.

(⇐): Again, we consider the derivation forest F for Q,
and w.l.o.g., we assume all the facts f ∈ I occur in F . Note
that the roots (leaves) of F consist of facts in Qσ′ (resp., D)
and thus are all outside Σ. Take the sub-forest F ′ of F where
• the roots consist of all the nodes (f, i) outside Σ with

smallest i s.t. there is a path through (f, i) in F from a
root of F to a node containing a fact in I;

• the leaves consist of all the nodes (g, j) outside Σ with
largest j s.t. there is a path in F from a root of F ′ to it;

• an edge connects two nodes in F ′ iff it does in F .
Let Q′ consists of all such facts f , I ′ consists of all such
facts g, m be the maximum i and n be the minimum j. We
want to show that m − n ≤ k for the bound k. It is clear
that Π ∪ I ′ |= Q′. As sig(I ′ ∪ Q′) ∩ Σ = ∅, by the defini-
tion of forgetting, forget(Π,Σ) ∪ I ′ |= Q′. By Theorem 1,
unfold(Π)|Σ ∪ I ′ |= Q′. From the assumption that Π is un-
folding bounded w.r.t. Σ, there is l ≥ 0 (independent of D
and Q) s.t. Πl|Σ ≡ unfold(Π)|Σ. That is, Πl|Σ ∪ I ′ |= Q′.
Since that every internal node in F ′ are over Σ, there is an
aggregated rule r′ of Πl|Σ s.t. {r′} ∪ I ′ |= Q′ (as otherwise
(Πl|Σ)1↑(I ′) would be outside Σ and have smaller indexes
than Q′, leading to a contradiction). Thus, there is an aggre-
gated rule r′′ of Πl that can be obtained from r′ by adding
head atoms s.t. {r′′}∪ I ′ |= Q′. By Lemma 3 (1), let k = 2l

(independent of D and Q), then Πk
↑(I

′) |= Q′. From the
construction of Q′, Πk

↑(I
′) |= I .

Further, we show that program boundedness can be re-
duced to the expressibility of forgetting, thus establishing its
undecidability. For an ontology Π, Π† is obtained from Π
by adding two rules Al(�x) → A(�x) and A(�x) → Ar(�x) for
each predicate A occurring in Π, where Al and Ar are fresh
predicates and have the same arity as A.
Proposition 3. An ontology Π is program bounded iff a re-
sult of forgetting about sig(Π) in Π† is expressible.

As with boundedness, the expressibility of forgetting is
guaranteed for aGRD ontologies.
Proposition 4. For an aGRD ontology Π and a signature Σ,
a result of forgetting about Σ in Π is expressible.

Computation of Forgetting
Although unfolding provides a syntactic characterisation for
forgetting, computation based on blind unfolding is imprac-
tical due to the huge numbers of possible rule combinations
and piece unifications during complete unfolding. To pro-
vide an algorithm for forgetting, we first show that unfold-
ing of rules can always be done in a sequential manner. An

2017

unfolding sequence of an ontology Π is inductively defined
as follows: each rule r ∈ Π is an unfolding sequence and the
result of the sequence is r; and if α is an unfolding sequence
whose result is r and r is unfoldable by a rule r′ ∈ Π with
piece unification μ, then αμr′ is an unfolding sequence, and
the result of the sequence is r��μr′.

Proposition 5. For an ontology Π, unfold(Π) consists of
exactly the results of all the unfolding sequences of Π (up to
variable renaming).

Proof Sketch: We only need to show that for each rule r
as a result of r1μ1(r2��μ2

r3), where ri ∈ unfold(Π) (i =
1, 2, 3), r is also a result of r1μ′

1r2μ
′
2r3 or r1μ′

1r3μ
′
2r2 for

some μ′
j (j = 1, 2). Let r′ = r2��μ2

r3, then head(r′) ⊆
(head(r2) ∪ head(r3))τ2. Suppose μj = (Bj , Hj , τj) and
μ′
j = (B′

j , H
′
j , τ

′
j), and for simplicity we use τj and τ ′j to de-

note their safe extensions in unfolding. B1 ⊆ body(r1) and
H1 ⊆ head(r′), and thus H1 ⊆ (head(r2) ∪ head(r3))τ2.
If H1 ⊆ head(r2)τ2, it is not hard to see that r is a re-
sult of r1μ′

1r2μ
′
2r3; and if H1 ⊆ head(r3)τ2 then r is a

result of r1μ′
1r3μ

′
2r2. Otherwise, if B1 does not contain a

piece I of body(r1) w.r.t. r′ such that I unifies (by μ1) with
atoms from both head(r2)τ2 and head(r3)τ2, then by taking
H ′

1 = H1τ
−
2 ∩head(r2) andH ′

2 = H2∪(H1τ
−
2 ∩head(r3)),

r is a result of r1μ′
1r2μ

′
2r3. If B1 contains such a piece I ,

let Z = Zr′ ∩ var(head(r2)τ2) ∩ var(head(r3)τ2). That
is, Z are the existential variables in r′ that “glue” atoms
from the heads of r2 and r3 together (that lead to piece
I). We want to show that Zτ−2 are not existential vari-
ables in r2, and thus I is not a piece w.r.t. r2 and as a re-
sult, r1 is unfoldable by r2. By the definition of unfold-
ing, Z ⊆ var(head(r2)τ2) ∩ var(head(r3)τ2) implies that
Z ⊆ var(B2τ2)∩var(H2τ2). That is, Z ⊆ var(body(r2)τ2).
Thus, I is not a piece w.r.t. r2. By taking H ′

1 = H1τ
−
2 ∩

head(r2) and H ′
2 = H2 ∪ (H1τ

−
2 ∩ head(r3)), r is a result

of r1μ′
1r2μ

′
2r3.

To compute forgetting, we can generate rules by searching
all valid unfolding sequences. However, the search space can
still be infinite, noting the large numbers of potential com-
binations of rules and a significant portion of unfolding se-
quences resulting rules with unwanted predicates. In what
follows, we introduce graphs of rule application (GRA),
which can be constructed by tracking application of data-
log rules, and use GRA to guide the unfolding in order to
narrow down the search.

Our approach is inspired by (Romero et al. 2016), which
employs datalog reasoning to extract a module of an ontol-
ogy. It first transforms an ontology Π into a datalog program
Πd as follows: each rule r ∈ Π is transformed into a datalog
rule rd by replacing existential variables z ∈ Zr with fresh
constants cz . It also uses a dataset D∗ based on a fresh con-
stant ∗ and a signature Γ such thatD∗ = {A(∗, . . . , ∗) | A ∈
Γ }. It then applies the rules in Πd (through forward chain-
ing) onD∗ and keeps track of the rule application. The mod-
ule Π′ consists of all the rules r from Π such that rd is in-
volved in the derivation of some facts over Γ. It is shown
that Π ∪ D |= Q iff Π′ ∪ D |= Q for each BCQ Q and
dataset D over Γ (Romero et al. 2016). Clearly, by taking

Γ = sig(Π) \ Σ, forgetting about Σ in Π can be computed
via unfolding Π′ instead of Π.

Moreover, we define the GRA of Π w.r.t. Σ based on
the forward chaining of Πd on D∗, denoted I0, . . . , In3. We
say a pair (r1, σ1) triggers a (not necessarily different) pair
(r2, σ2) if (i) r2 depends on r1, (ii) rd1 is applicable to some
Ii (0 ≤ i < n) with homomorphism σ1, and (iii) rd2 is ap-
plicable to Ij for some i < j ≤ n with a homomorphism
σ2 such that body(rd2)σ2 ∩ head(rd1)σ1 = ∅. The graph of
rule application (GRA) of Π w.r.t. Σ is defined as a directed
graph GΣ

Π = (N,E) with the nodes N = { (r, σ) | r ∈
Π, rd is applicable to some Ii with homomorphism σ }, and
the edges E = { ((r, σ), (r′, σ′)) | (r, σ) triggers (r′, σ′)}.
That is, a node of the GRA is a rule in Π coupled its instanti-
ation that is involved in the forward chaining, and the edges
in the GRA capture the triggering relationships.
Example 3. Let Πe in Example 1 be extended with one more
rule r5 = E(y, z) → C(y, z). Then, Πd

e can be obtained by
replacing r1 and r2 with the following two datalog rules

rd1 = A(x) → B(x, c1) ∧ C(x, c1),

rd2 = C(x, y) ∧ D(x) → E(y, c2).

Take Σ = {B,D} and thus Γ = {A,C,E,F}. Then,
D∗ = {A(∗),C(∗, ∗),E(∗, ∗),F(∗)}. New facts derived
in the forward chaining of Πd

e on D∗ include B(∗, c1),
C(∗, c1), D(∗), E(c1, c2), E(∗, c2), C(c1, c2), C(∗, c2),
E(c2, c2), and C(c2, c2). Let σ1 = {x/∗, y/c1, z/c2},
σ2 = {x/∗, y/∗, z/c2}, σ3 = {x/∗, y/∗, z/∗}, and σ4 =
{x/∗, y/c2, z/c2}. The GRA of Πe w.r.t. Σ is as follows.

(r1, σ1) (r2, σ1)

(r3, σ1)

(r4, σ1)

(r5, σ1)

(r2, σ2) (r2, σ4)(r5, σ2) (r5, σ3)

(r5, σ4)

Figure 1: The GRA of Πe w.r.t. Σ = {B,D}.

A GRA is always finite. If Π has n rules and each rule
has at most m occurrences of variables, then the number of
nodes (i.e., rule instantiations) inGΣ

Π is at most n(nm+1)m.
We show that a GRA captures all relevant unfolding se-

quences. Define an unravelling tree of a GRA G to be a pair
(T, λ) where T is a tree and λ is a mapping from each node
in T to a node in G such that n has child n′ in T iff there is
an edge from λ(n′) to λ(n) in G.
Proposition 6. For an ontology Π and a signature Σ, if
r ∈ unfold(Π)|Σ is obtained from the result of an unfolding
sequence r1μ1r2μ2 . . . μn−1rn (by eliminating head atoms),
then there is an unravelling tree of GΣ

Π whose nodes are
labelled with (r1, σ1), . . . , (rn, σn) for some substitutions
σ1, . . . , σn and whose root is (r1, σ1).

3We do not assume classical chase termination here. Instead,
the forward chaining terminates only when the GRA is stable.

2018

Proof Sketch: We only need to show that for each ri (1 ≤
i ≤ n), there is a node (ri, σi) in GΣ

Π (for some σi), and if
i > 1, there are a node (rj , σj) with 1 ≤ j < i (and some
σj) and an edge from (ri, σi) to (rj , σj) in GΣ

Π.
We first show by induction that in the forward chaining

I0, . . . , Im of Πd on D∗, each rdi is applicable to some Il
(0 ≤ l ≤ m) with some homomorphism σi. Clearly, rdn is
applicable to D∗ with the homomorphism σn mapping all
the variables to the constant ∗. For 1 ≤ k < n, suppose the
claim holds for all rdi with i > k, we show it for i = k. By
the definition of unfolding, each atom a ∈ body(rdk) either
remains in the body of r (under variable renaming) or unifies
with a head atom a′ in some rule rj with k < j ≤ n. In the
former case, a maps to D∗; and in the latter case, by the
induction hypothesis, a′σj exists in some Ilj for some σj .
Let l be the maximum lj , then rdk is applicable to Il.

We have shown that (ri, σi) is in GΣ
Π for each 1 ≤ i ≤ n.

If i > 1, we want to show that there are a node (rj , σj)
with 1 ≤ j < i (and some σj) and an edge from (ri, σi)
to (rj , σj) in GΣ

Π. In the unfolding sequence, ri unfolds
the result of r1μ1 . . . ri−1, and thus some head atoms of ri
unifies with some body atoms from r1, . . . , ri−1. Suppose
H ⊆ head(ri) unifies with B ⊆ body(rj) with 1 ≤ j < i.
From the above discussion, rdi and rdj are applicable to re-
spectively some Ili and Ilj with homomorphisms σi and σj
s.t. li < lj . Also, body(rdj)σj ∩ head(rdi)σi = Hσi = ∅.
Taking D = body(rdi)σi ∪ (body(rdj)σj \ head(rdi)σi), it is
clear that rj depends on ri. By the definition of rule trigger-
ing, (ri, σi) connects to (rj , σj) in GΣ

Π.
For ontology Πe in Example 3, an unfolding sequence

is r3μr2μ′r1μr4 with μ = ∅ and μ′ = {x′/x}. A cor-
respondent unravelling tree has four nodes n1, n2, n3 and
n4, labelled with respectively (r3, σ1), (r1, σ1), (r2, σ1) and
(r4, σ1), where n1 is the root and has two children n2 and
n3, and n4 is a child of n3.

Now, we present an algorithm (Algorithm 1) to compute
forgetting via unfolding guided by the GRA. For a set N of
nodes in the GRA G and a predicate A, let preA(N) con-
sist of all the nodes (r, σ) in G such that there are a node
(r′, σ′) ∈ N and an edge from (r, σ) to (r′, σ′) in G with A
occurring in head(r)σ ∩ body(r′)σ′.

In the following example, we explain the execution of Al-
gorithm 1 on the GRA in Example 3.

Example 4. We focus on the case when r3 is popped from
R at line 3. Then, Ar3 = {B(x, y)} and Nr3 = {(r3, σ1)}.
At line 7, B(x, y) is popped, and preB(Nr3) consists of only
(r1, σ1). Yet r3 is not unfoldable by r1. At line 14, E(y, z)
is pushed into Ar3 . Again, at line 7, E(y, z) is popped,
and preE(Nr3) consists of only (r2, σ1). r3 is unfoldable
by r2, which results in a rule r = B(x′, y) ∧ C(x, y) ∧
D(x) → ∃z.[E(y, z) ∧ E(x′, z)] pushed into R, with Nr =
{(r3, σ1), (r2, σ1)} and Ar = {B(x′, y),D(x)}.

In the next iteration, at line 3, r is popped, and at line 7,
B(x′, y) is popped with preB(Nr) consisting of only (r1, σ1).
This time, r is unfoldable by r1, which result in a rule r′ =
A(x)∧D(x) → ∃y, z.[B(x, y)∧C(x, y)∧E(y, z)∧E(x, z)]
pushed into R, with Nr′ = {(r3, σ1), (r2, σ1), (r1, σ1)} and

Algorithm 1 Compute forgetting via GRA-guided unfold-
ing
Input: an ontology Π and a signature Σ
Output: an ontology Π′ as forget(Π,Σ)

1: initiate Π′ := ∅, a stack R containing the rules in Π,
and for each r ∈ Π, a stack Ar containing
body(r)|Σ
and a set Nr consisting of all the nodes (r, σ) in GΣ

Π
2: while R is not empty do
3: pop a rule r from R
4: if body(r)|Σ = ∅ and head(r)|Σ = ∅ then

5: add body(r) → head(r)|Σ to Π′

6: while Ar is not empty do
7: pop an atom a from Ar, with its predicate A
8: for each node (r′, σ′) ∈ preA(Nr) do
9: if r is unfoldable by r′ with some μ then

10: push r′′ = r��μr
′ into R

11: assign Nr′′ := Nr ∪ {(r′, σ′)}
12: let Ar′′ contain the atoms in body(r′′)|Σ
13: else
14: push atoms in body(r) \ {a} to Ar

15: return Π′

Ar′ = {D(x)}.
In a third iteration, at line 3, r′ is popped, and at line 7,

D(x) is popped, and preD(Nr′) consists of only (r4, σ1). r′
is unfoldable by r4, which result in a rule r′′ = A(x) ∧
F(x) → ∃y, z.[B(x, y) ∧ C(x, y) ∧ E(y, z) ∧ E(x, z)] to be
pushed into R. Finally, A(x) ∧ F(x) → ∃y, z.[C(x, y) ∧
E(y, z) ∧ E(x, z)] is added into Π′ at line 5.

For a signature Σ, we say an ontology Π is Σ-aGRA if
GΣ

Π is acyclic. The class of Σ-aGRA ontologies strictly sub-
sumes the class of aGRD ontologies, as it is easy to see that
for an aGRD ontology, its GRA is also acyclic; and on the
other hand, some Σ-aGRA ontologies are not aGRD. The
ontology Πe in Example 3 is such a case.

The following result states that our algorithm terminates
on Σ-aGRA ontologies and computes a result of forgetting.
Theorem 3. For a signature Σ and an ontology Π satisfying
Σ-aGRA, Algorithm 1 terminates and computes a result of
forgetting about Σ in Π.

The following corollary extends the known class (i.e.,
aGRD) of ontologies whose forgetting is expressible.
Corollary 1. For a signature Σ, a result of forgetting about
Σ in a Σ-aGRA ontology is expressible.

Conclusion and Future Work

In this paper, we present to the best of our knowledge, the
first study on forgetting for existential rules. We have defined
forgetting and unfolding for existential rules, used unfolding
to characterise forgetting, established expressibility results,
and developed an algorithm for forgetting.

There are several interesting open problems. First,
through the connection to boundedness, it is possible to
identify fragments of existential rules for which the express-
ibility of forgetting is decidable. Candidate fragments in-
clude (frontier-) guarded existential rules and those satisfy

2019

certain acyclicity conditions. Other related problems include
the computational complexity of deciding the expressibil-
ity and a bound on the size of a result of forgetting. Also,
we hope to implement our algorithm and evaluate it over
practical ontologies. Furthermore, inseparability and conser-
vative extension (Botoeva et al. 2016) are closely related
to forgetting, which are less studied for existential rules.
Finally, we are working on extending forgetting for logic
programming (Zhang and Foo 2006; Eiter and Wang 2008;
Zhang and Zhou 2009; Ji, You, and Wang 2015; Gonçalves,
Knorr, and Leite 2016) to existential rules (with negation).

Acknowledgments

This work was supported by Australian Research Council
(ARC) under grant DP130102302, National Key Research
and Development Program of China (2017YFC0908400)
and National Natural Science Foundation of China
(61502336).

References

Baget, J.; Leclère, M.; Mugnier, M.; and Salvat, E. 2011.
On rules with existential variables: Walking the decidability
line. Artif. Intell. 175(9-10):1620–1654.
Botoeva, E.; Konev, B.; Lutz, C.; Ryzhikov, V.; Wolter, F.;
and Zakharyaschev, M. 2016. Inseparability and conserva-
tive extensions of description logic ontologies: A survey. In
Lecture Notes of the 12th International Summer School on
Reasoning Web, 27–89.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2012. A general
datalog-based framework for tractable query answering over
ontologies. J. Web Sem. 14:57–83.
Cosmadakis, S. S.; Gaifman, H.; Kanellakis, P. C.; and
Vardi, M. Y. 1988. Decidable optimization problems for
database logic programs (preliminary report). In Proc. of
the 20th Annual ACM Symposium on Theory of Computing,
477–490.
Eiter, T., and Wang, K. 2008. Semantic forgetting in answer
set programming. Artif. Intell. 172(14):1644–1672.
Gaifman, H.; Mairson, H. G.; Sagiv, Y.; and Vardi, M. Y.
1993. Undecidable optimization problems for database logic
programs. J. ACM 40(3):683–713.
Gonçalves, R.; Knorr, M.; and Leite, J. 2016. The ultimate
guide to forgetting in answer set programming. In Proc. of
the 15th KR, 135–144.
Gottlob, G.; Orsi, G.; and Pieris, A. 2014. Query rewrit-
ing and optimization for ontological databases. ACM Trans.
Database Syst. 39(3):25:1–25:46.
Grau, B. C.; Horrocks, I.; Krötzsch, M.; Kupke, C.; Magka,
D.; Motik, B.; and Wang, Z. 2013. Acyclicity notions for
existential rules and their application to query answering in
ontologies. J. Artif. Intell. Res. 47:741–808.
Ji, J.; You, J.; and Wang, Y. 2015. On forgetting postulates in
answer set programming. In Proc. of the 24th IJCAI, 3076–
3083.

Konev, B.; Walther, D.; and Wolter, F. 2009. Forgetting and
uniform interpolation in large-scale description logic termi-
nologies. In Proc. of the 21st IJCAI, 830–835.
König, M.; Leclère, M.; Mugnier, M.; and Thomazo, M.
2015. Sound, complete and minimal UCQ-rewriting for ex-
istential rules. Semantic Web 6(5):451–475.
Koopmann, P., and Schmidt, R. A. 2014. Count and forget:
Uniform interpolation of SHQ-ontologies. In Proc. of the
7th IJCAR, 434–448.
Leclère, M.; Mugnier, M.; and Ulliana, F. 2016. On bounded
positive existential rules. In Proc. of the 29th International
Workshop on Description Logics.
Lin, F., and Reiter, R. 1994. Forget it. In Proc. of the AAAI
Fall Symposium on Relevance, 154–159.
Ludwig, M., and Konev, B. 2014. Practical uniform interpo-
lation and forgetting for ALC TBoxes with applications to
logical difference. In Proc. of the 14th KR.
Lutz, C., and Wolter, F. 2011. Foundations for uniform
interpolation and forgetting in expressive description logics.
In Proc. of the 22nd IJCAI, 989–995.
Lutz, C.; Seylan, I.; and Wolter, F. 2012. An automata-
theoretic approach to uniform interpolation and approxima-
tion in the description logic EL. In Proc. of the 13th KR.
Nikitina, N., and Rudolph, S. 2014. (Non-)Succinctness of
uniform interpolants of general terminologies in the descrip-
tion logic EL. Artif. Intell. 215:120–140.
Romero, A. A.; Kaminski, M.; Grau, B. C.; and Horrocks, I.
2016. Module extraction in expressive ontology languages
via datalog reasoning. J. Artif. Intell. Res. 55:499–564.
Wang, Z.; Wang, K.; Topor, R. W.; and Pan, J. Z. 2008.
Forgetting concepts in DL-Lite. In Proc. of 5th ESWC, 245–
257.
Wang, Z.; Wang, K.; Topor, R. W.; and Pan, J. Z. 2010. For-
getting for knowledge bases in DL-Lite. Ann. Math. Artif.
Intell. 58(1-2):117–151.
Wang, K.; Wang, Z.; Topor, R. W.; Pan, J. Z.; and Antoniou,
G. 2014. Eliminating concepts and roles from ontologies
in expressive descriptive logics. Computational Intelligence
30(2):205–232.
Wang, Z.; Wang, K.; and Topor, R. W. 2015. DL-Lite on-
tology revision based on an alternative semantic characteri-
zation. ACM Trans. Comput. Log. 16(4):31:1–31:37.
Zhang, Y., and Foo, N. Y. 2006. Solving logic program
conflict through strong and weak forgettings. Artif. Intell.
170(8-9):739–778.
Zhang, Y., and Zhou, Y. 2009. Knowledge forgetting: Prop-
erties and applications. Artif. Intell. 173(16-17):1525–1537.
Zhao, Y., and Schmidt, R. A. 2016. Forgetting concept and
role symbols in ALCOIH+

μ (∇,�)-ontologies. In Proc. of
the 25th IJCAI, 1345–1353.
Zhou, Y. 2015. First-order disjunctive logic programming
vs normal logic programming. In Proc. of the 24th IJCAI,
3292–3298.

2020

