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Abstract

A number of proposals have been made to define inconsis-
tency measures. Each has its rationale. But to date, it is not
clear how to delineate the space of options for measures, nor
is it clear how we can classify measures systematically. In
this paper, we introduce a general framework for comparing
syntactic inconsistency measures. It uses the construction of
an inconsistency graph for each knowledgebase. We then in-
troduce abstractions of the inconsistency graph and use the
hierarchy of the abstractions to classify a range of inconsis-
tency measures.

Introduction

Inconsistency is a key issue for operating in the real world.
If we are to build computing systems that are inconsistency
tolerant (i.e. systems that can handle inconsistency in infor-
mation, opinions, requirements, desires, plans, etc.) then we
need technologies for assessing and acting on inconsistency
(Gabbay and Hunter 1991; Bertossi, Hunter, and Schaub
2004; Calvanese et al. 2008; Eiter et al. 2014).

A key aspect of inconsistency tolerance is the need to
measure inconsistency so that we can better assess the nature
of the inconsistency. By knowing more about the kind and
degree of inconsistency, we are better able to take an appro-
priate action to deal with it. Application areas being devel-
oped that harness measures of inconsistency included soft-
ware engineering (Mu, Liu, and Jin 2012; Borgida, Jureta,
and Zamansky 2015), network intrusion detection (McA-
reavey et al. 2011), reasoning with spatial and temporal
information (Condotta, Raddaoui, and Salhi 2016), answer
set programming (Ulbricht, Thimm, and Brewka 2016), and
robotics (Costa and Martins 2016).

Numerous proposals for inconsistency measures have
been made (Grant 1978; Knight 2001; Hunter 2002;
Konieczny, Lang, and Marquis 2003; Hunter and Konieczny
2004; Grant and Hunter 2006; Hunter and Konieczny 2006;
Ma et al. 2007; Qi and Hunter 2007; Grant and Hunter 2008;
Zhou et al. 2009) and some inter-relationships established
(e.g. (Grant and Hunter 2011; Thimm 2016b)). Furthermore,
some axioms have been proposed for the minimal properties
of such measures (Hunter and Konieczny 2006; 2010), and
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some alternatives have been proposed (e.g. (Besnard 2014))
which offer some groupings of approaches. Nevertheless,
our understanding of inconsistency measures lacks a gen-
eral framework in which to position and compare them. To
address this shortcoming, in this paper we propose a general
framework for syntactic inconsistency measures.

There is currently no formal definition of syntactic incon-
sistency measures, though informally in the literature, they
are regarded as measures defined in terms of the proof the-
ory, rather than for instance the semantics, of a logic. The
majority of syntactic inconsistency measures in the literature
are based on minimal inconsistent subsets (MISs), with each
such measure focusing on a different aspect of these sets. In
this paper, we introduce the notion of an inconsistency graph
to capture substantial information about the minimal incon-
sistent subsets of a knowledgebase. We show how and when
functions on inconsistency graphs yield inconsistency mea-
sures, and identify new measures based on these functions.
In the second part of the paper, we present a way of classify-
ing inconsistency measures in a hierarchy starting with ab-
stractions of the inconsistency graph. We then consider how
existing and new inconsistency measures can be classified
by this hierarchy. This is, as far we know, the first proposal
for a general definition of a (large) family of inconsistency
measures. Interestingly, we show how some examples of in-
consistency measures, that do not appear at first to be syn-
tactic, fit into this hierarchy.

Preliminaries

We assume a propositional language L of formulas com-
posed from a countable set of propositional variables
(atoms) P and the logical connectives ∧, ∨, ¬. We use φ
and ψ for arbitrary formulas and a, b, c, . . . for atoms. A
knowledgebase K is a finite set of formulas. We let � de-
note the classical consequence relation, and write K � ⊥ to
denote that K is inconsistent. We write R

≥0 for the set of
nonnegative real numbers, R≥0

∞ for R≥0 ∪ {∞}, K for the
set of all knowledgebases (in some presumed language L),
and 2X for the set of all subsets (the power set) of any set
X .

For a knowledgebase K, MI(K) is the set of minimal
inconsistent subsets (MISs) of K, and MC(K) is the set
of maximal consistent subsets of K. Also, if MI(K) =
{M1, ...,Mn} then Prob(K) = M1 ∪ ... ∪Mn is the set of
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problematic formulas in K, and Free(K) = K \ Prob(K)
is the set of free formulas in K. The set of formulas in K
that are individually inconsistent is given by the function
Selfcontradictions(K) = {φ ∈ K | {φ} � ⊥}). Atoms(K)
gives the atoms used as subformulas in the formulas in a
knowledgebase K. In the next section we will use these
functions in definitions for syntactic measures of inconsis-
tency.

Some semantics use Priest’s three valued logic (3VL)
(Priest 1979) where the classical two valued semantics is
augmented by a third truth value denoting inconsistency. An
interpretation i is a function that assigns to each atom that
appears in K one of three truth values: i : Atoms(K) →
{F,B, T}, where Atoms(K) denotes the atoms occurring
in K. The truth value of a conjunction φ ∧ ψ (respectively
disjunction φ ∨ ψ) is the minimum (respectively maximum)
of the truth value of φ and ψ where the truth values are
ranked as T > B > F . The truth value of a negation
¬φ is F (respectively B, T ) when φ is T (respectively B,
F ). An interpretation i whose range is {F, T} is said to be
classical. For an interpretation i, Conflictbase(i) = {a |
i(a) = B} denotes the set of atoms that are assigned the
non-classical truth value B, and Truebase(i,K) = {φ ∈
K | i(φ) = T} denotes the set of formulas evaluated as
T in K. For a knowledgebase K we define the models as
the set of interpretations where no formula in K is assigned
the truth value F : Models(K) = {i | for all φ ∈ K, i(φ) =
T or i(φ) = B}. Then, as a measure of inconsistency for K
we define Contension(K) = Min{|Conflictbase(i)| | i ∈
Models(K)}. So the contension gives the minimal number
of atoms that need to be assigned B in order to get a 3VL
model of K.

When a set of classical interpretations H is such that, for
each φ ∈ K, there is an i ∈ H such that i(φ) = T , H is said
to be a hitting set of K1.

Some measures are based on the probabilistic satisfia-
bility problem (PSAT). Let IC denote the set of classical
interpretations. A probability mass over a given set X is
a function π : X → R

≥0 such that
∑

x∈X π(x) = 1. For
each probability mass π : IC → R

≥0, let Pπ : L → R be
the function defined for all φ ∈ L as Pπ(φ) =

∑{π(i) |
i ∈ IC , i(φ) = T}. A PSAT instance Γ = {P (φi) ≥ pi |
1 ≤ i ≤ m} is satisfiable if there is a probability mass
π : IC → R

≥0 such that Pπ(φi) ≥ pi for all 1 ≤ i ≤ m.

Review of measures of inconsistency

An inconsistency measure assigns a nonnegative real value
to every knowledgebase.

Definition 1. A function I : K → R
≥0
∞ is an inconsistency

measure if the following two conditions hold ∀K,K ′ ∈ K:

1. I(K) = 0 iff K is consistent.
2. If K ⊆ K ′, then I(K) ≤ I(K ′).

The first requirement ensures that all and only consis-
tent knowledgebases get measure 0. The second requirement

1This concept of hitting sets differs from Reiter’s (1987).

enforces that the addition of a set of formulas cannot de-
crease the inconsistency measure2 The above requirements
are from (Hunter and Konieczny 2006) where (1) is called
consistency and (2) is called monotony. Other properties, al-
though not satisfied by all inconsistency measures, serve to
better characterise their behaviour. For instance, let K,K ′
denote knowledgebases and φ, ψ ∈ L:

Independence If φ ∈ Free(K), then I(K) = I(K \ {φ}).
MI-separability If MI(K ∪ K ′) = MI(K) ∪ MI(K ′) and

MI(K)∩MI(K ′) = ∅, then I(K∪K ′) = I(K)+I(K ′).
Penalty If φ ∈ Prob(K), then I(K) > I(K \ {φ}).
Super-additivity If K ∩ K ′ = ∅, then I(K ∪ K ′) ≥
I(K) + I(K ′).

Attenuation If K,K ′ are MISs and |K| < |K ′|, then
I(K) > I(K ′).

Equal Conflict If K,K ′ are MISs and |K| = |K ′|, then
I(K) = I(K ′).

Almost Consistency If K1,K2, . . . is a sequence of MISs
with lim

i→∞
|Ki| = ∞, then lim

i→∞
I(Ki) = 0.

The Independence and MI-separability properties were
proposed in (Hunter and Konieczny 2008). Penalty and
Super-additivity come from (Thimm 2009). Attenuation,
Equal Conflict, and Almost Consistency were proposed in
(Mu, Liu, and Jin 2011).

Next we recall ten inconsistency measures from the liter-
ature: the rationale for each is given below.
Definition 2. For a knowledgebase K, the inconsistency
measures IB , IM , IA, IP , IC , I#, IH , Inc, Ihs and Iη are
such that
• IB(K) = 1 if K � ⊥ and IB(K) = 0 if K �� ⊥
• IM (K) = |MI(K)|
• IA(K) = (|MC(K)|+ |Selfcontradictions(K)|)− 1

• IP (K) = |Prob(K)|
• IC(K) = Contension(K)

• I#(K) =

{
0 if K is consistent∑

X∈MI(K)
1

|X| otherwise
• IH(K) = min{|X| |X ⊆ K and ∀M ∈MI(K)X ∩M �= ∅}
• Inc(K) = |K| −max{n | ∀K ′ ⊆ K

|K ′| = n implies K ′ �� ⊥}
• Ihs(K) = min{|H| | H is a hitting set of K} − 1

with min∅ = ∞
• Iη(K) = 1−max

{
η ∈ [0, 1]|{P (φ) ≥ η |

φ ∈ K} is satisfiable
}

We explain the measures as follows: IB (Hunter and
Konieczny 2008) assigns the same value, 1, to all inconsis-
tent knowledgebases. IM (K) (Hunter and Konieczny 2008)
counts the number of minimal inconsistent subsets of K.
IA(K) (Grant and Hunter 2011) counts the sum of the num-
ber of maximal consistent subsets together with the number

2We consider only absolute inconsistency measures and ex-
clude relative inconsistency measures (ratios) such as IMUS =
|Atoms(MI(K))|

|Atoms(K)| defined in (Xiao and Yue 2012).
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of contradictory formulas but 1 must be subtracted to make
I(K) = 0 when K is consistent. IP (K) (Grant and Hunter
2011) counts the number of formulas in minimal inconsis-
tent subsets of K. IC(K) (Konieczny, Lang, and Marquis
2003; Grant and Hunter 2011) counts the minimum num-
ber of atoms that need to be assigned B amongst the 3VL
models of K. I#(K) (Hunter and Konieczny 2008) com-
putes the weighted sum of the minimal inconsistent sub-
sets of K, where the weight is the inverse of the size of
the minimal inconsistent subset (and hence smaller mini-
mal inconsistent subsets are regarded as more inconsistent
than larger ones). IH(K) (Grant and Hunter 2013) is the
size of the smallest set that has a non-empty intersection
with every minimal inconsistent subset (originally called the
d-hit inconsistency measure). Inc(K) (Doder et al. 2010;
Thimm 2016b) finds the maximum size for a subset of K to
be surely consistent and subtracts it from the size of the K.
Ihs(K) (the hitting set measure) (Thimm 2016b) computes
the minimum number of classical interpretations i ∈ IC

needed for all formulas in K to be evaluated to T by some
i; then one is subtracted. This minimum will be infinite if
there is a selfcontradiction in K. Iη(K) (Knight 2001) is
one minus the maximum probability lower bound one can
consistently assign to all formulas in K. Each of these mea-
sures satisfies the definition of being an inconsistency mea-
sure (i.e. Definition 1) and, apart from Inc, the property of
independence. To see the failure of independence, consider
K = {a ∧ ¬a, b}. Here b is free in K, but Inc(K) = 2 and
Inc(K \ {b}) = 1. For other properties that hold for these
measures, see (Thimm 2016a).

The use of minimal inconsistent subsets, such as for IM ,
IP , and I#, and the use of maximal consistent subsets such
as IA, have been proposed previously for measures of in-
consistency (Hunter and Konieczny 2004; 2008). The idea
of a measure that is sensitive to the number of formulas to
produce an inconsistency emanates from Knight (2001) in
which the more formulas needed to produce the inconsis-
tency, the less inconsistent the set. As explored in (Hunter
and Konieczny 2008), this sensitivity is obtained with I#.
Another approach involves looking at the part of the lan-
guage that is touched by the inconsistency, such as IC . which
is a semantic approach based on three-valued logic (Grant
and Hunter 2011), and similar to the ones based on four-
valued logic (e.g. (Hunter 2002)).

Graphical Representation of Inconsistency

We now introduce graphical representations of a knowledge-
base.

Definition 3. A bipartite graph (or bigraph) is a tupleG =
〈U, V,E〉 where U and V are disjoint sets of vertices and E
is the set of edges between U and V ; i.e., e ∈ E implies
e = {u, v} for some u ∈ U and v ∈ V .

An edge e = {u, v} is said to connect (and be incident
to) u and v, which are then called adjacent vertices. We
write Adj(v) for the set of vertices adjacent to v. A vertex
is said to be isolated if there is no edge incident to it. Then
deg(v) = |Adj(v)|. The null bigraph is 〈∅,∅,∅〉.

We now introduce a representation for the structure of the
minimal inconsistent sets of a knowledgebase.

Definition 4. An inconsistency graph for knowledgebase
K is a bigraph IG(K) = 〈U, V,E〉 such that there are bi-
jections bU : U → Prob(K) and bV : V → MI(K) yielding
E = {{u, v} | bU (u) ∈ bV (v)}.

We cannot tell the size of the original knowledgebase
from its inconsistency graph because the free formulas are
not included. To capture the free formulas, we define an aug-
mented version, called the augmented inconsistency graph
IG+(K) = 〈U, V,E〉 where the only difference between the
two is the inclusion of the nodes in U corresponding to free
formulas, i.e. the bijection is bU : U → K. The sets V andE
are the same for the inconsistency graph and the augmented
inconsistency graph.

The inconsistency graph of a consistent knowledgebaseK
is the null bigraph. Note that, by definition, an inconsistency
graph cannot have any isolated vertices.

Clearly, the inconsistency graph IG(K) is a subgraph of
the augmented inconsistency graph IG+(K).

Example 1. Let K = {a,¬a∨¬b, b,¬a∨ c,¬c∨ d,¬d, e∨
f}. Note that MI(K) = {{a,¬a ∨ ¬b, b}, {a,¬a ∨ c,¬c ∨
d,¬d}}. The inconsistency graph for K is below.

The augmented inconsistency graph is below.

We do not put the labels on the nodes since we do not need
them: only the structure of the graphs is important for our
purpose.

Even though minimal inconsistent subsets of a knowl-
edgebase are a natural starting point for considering how
the inconsistency permeates a knowledgebase, we only need
their structure, abstracted in the (augmented) inconsistency
graphs, to capture the existing syntactic inconsistency mea-
sures.

Our first result about inconsistency graphs is a represen-
tation theorem. We show under what conditions a bigraph
may represent an augmented inconsistency graph.

Theorem 1. Let G = 〈U, V,E〉 be a bigraph. Then G =
IG+(K) for some knowledgebase K iff the following two
conditions hold for G:

1. No vertex in V is isolated.
2. For all v, v′ ∈ V , if v �= v′ then Adj(v) �⊆ Adj(v′).

Corollary 1. Let G = 〈U, V,E〉 be a bigraph. Then G =
IG(K) for some knowledgebaseK iff the following two con-
ditions hold for G:

1. G contains no isolated vertex.
2. For all v, v′ ∈ V , if v �= v′ then Adj(v) �⊆ Adj(v′).
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The graphs are a convenient way of conceptualizing the
required abstractions that we need to consider. In addition,
for small examples, the (augmented) inconsistency graphs
are a simple way of visualizing the nature of the inconsis-
tencies and of their measures. However, we are not propos-
ing inconsistency graphs as a visualization tool for practical
applications. Our aim in this paper is to show that the ex-
ploitation of this structure is the common ground of most
syntactical inconsistency measures, and that it also offers a
practical tool to define and classify such measures.

IG Inconsistency Measures

In this section we investigate the relation of inconsistency
graphs to inconsistency measures. We show how several in-
consistency measures from the literature can be represented
as functions from the inconsistency graph and study when
functions on inconsistency graphs yield inconsistency mea-
sures. Employing only the inconsistency graph for a knowl-
edgebase, as the free formulas are not needed, we can cal-
culate a number of the syntactic measures of inconsistency,
without needing the knowledgebase itself, as we show next.
Proposition 1. Let IG(K) = 〈U, V,E〉 be the inconsistency
graph for a knowledgebase K. Then,

1. IB(K) =

{
0 if V = ∅

1 otherwise
2. IM (K) = |V |
3. IP (K) = |U |
4. I#(K) =

{
0 if V = ∅∑

v∈V
1

| deg(v)| otherwise

5. IH(K) = min{|X| | X ⊆ U and every v ∈ V
is adjacent to some u ∈ X}

To characterize inconsistency measures that are functions
of the inconsistency graph, such as in Proposition 1, we
denote by G (G+) the set of all (augmented) inconsistency
graphs 3

Definition 5. An inconsistency measure I : K → R
≥0
∞ is IG

(resp. augmented IG) if there is a function f : G → R
≥0
∞

such that I(K) = f(IG(K)) (resp. I(K) = f(IG+(K)))
for all K ∈ K.
Proposition 2. The inconsistency measures IB , IM , IP , I#
and IH are IG measures.

Since inconsistency graphs are recovered from augmented
inconsistency graphs by simply discarding the isolated ver-
tices (which correspond to the free formulas), every IG in-
consistency measure is also an augmented IG measure. Even
though we will show that the converse does not hold, in gen-
eral most augmented IG inconsistency measures in the lit-
erature are indeed IG measures; thus we focus on the lat-
ter. This is due to the fact that IG measures are exactly the
augmented IG measures satisfying the independence prop-
erty, which holds for most measures in the literature (Thimm
2016a). Intuitively, the independence property guarantees
that free formulas do not affect the inconsistency measure.

3Two isomorphic graphs G1, G2 ∈ G (resp. G+) will be con-
sidered the same element in G (resp. G+).

Proposition 3. An inconsistency measure is an IG measure
iff it is an augmented IG measure satisfying independence.

Showing that some measures are (augmented) IG mea-
sures can be fairly complicated as they require an algorith-
mic definition to generate them from the (augmented) in-
consistency graph (in contrast to the measures considered in
Proposition 1 that can be generated by simple functions).

Proposition 4. (i) IC is not an augmented IG measure. (ii)
Inc is not an IG measure, but it is an augmented IG measure.
(iii) IA, Ihs and Iη are IG measures.

An augmented IG inconsistency measure depends only on
how the formulas in a knowledgebase can be combined to
form minimal inconsistent subsets and on the quantity of
free formulas. Hence, inconsistency measures that are sensi-
tive to the formulas themselves are not augmented IG mea-
sures.

The inconsistency measure Iη (Knight 2001), although
formulated in terms of a probabilistic semantics, does not
take into account the exact content of each formula in the
knowledgebase, but only the consistency of its subsets.

We can use inconsistency graphs not just for classifying
existing inconsistency measures but also for defining new in-
consistency measures. As an illustration, we will define sev-
eral new IG inconsistency measures I(K) = f(IG(K)), via
functions f on the inconsistency graph. If f : G → R

≥0
∞ is

a function on inconsistency graphs, we denote by If : K →
R

≥0
∞ the function on knowledgebases defined as If (K) =

f(IG(K)) for every K ∈ K. Not every f : G → R
≥0
∞ yields

a function If : K → R
≥0
∞ that is an inconsistency measure,

for If must satisfy the postulates given in Definition 1.
We use the following definition of a subgraph induced by

a subset of U to obtain a correspondence between subsets of
a knowledgebase and subgraphs of the inconsistency graph
of the knowledgebase.

Definition 6. Let G = 〈U, V,E〉 be a bigraph and W ⊆ U .
Let V ′ = {v ∈ V | adj(v) ⊆W}. Then, let U ′ = {u ∈W |
∃v ∈ V ′ such that {u, v} ∈ E}. Finally, let E′ = {{u, v} ∈
E|u ∈ U ′ and v ∈ V ′}. Then we say thatG′ = 〈U ′, V ′, E′〉
is U-induced by W .

Proposition 5. Let G = 〈U, V,E〉 be the inconsistency
graph of a knowledgebaseK whereK = {φ1, . . . , φm} and
each ui ∈ U represents the corresponding φi ∈ K and also
MI(K) = {Δ1, . . . ,Δn} and each vj ∈ V represents the
corresponding Δj . Let K ′ ⊆ K. Then G′ = 〈U ′, V ′, E′〉
is the inconsistency graph of K ′ iff G′ is the bigraph U-
induced from G by W s.t. W ⊆ U corresponds to the ele-
ments of K ′.

Proposition 5 gives the exact process of obtaining all the
inconsistency graphs for all the subsets of a knowledgebase.
This allows us to specify a necessary and sufficient condi-
tion that a function f on inconsistency graphs must satisfy
in order for If to be an inconsistency measure.

Theorem 2. Let f : G → R
≥0
∞ . If : K → R

≥0
∞ is an

inconsistency measure iff the following two conditions hold:

1. f(G) = 0 iff G = 〈∅,∅,∅〉;
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2. If G′ = 〈U ′, V ′, E′〉 is U-induced by W (W ⊆ U ) from
G = 〈U, V,E〉 then f(G′) ≤ f(G).

Corollary 2. Let f : G → R
≥0
∞ be such that

1. f(G) = 0 iff G = 〈∅,∅,∅〉,
2. If G′ ⊆ G then f(G′) ≤ f(G)

Then If is an inconsistency measure.
Besides the inconsistency measures from Proposition 1,

we can conceive of a number of IG measures If based on
functions on inconsistency graphs.
Proposition 6. The following functions f : G → R

≥0
∞ , de-

fined below for all G = 〈U, V,E〉 ∈ G, yield inconsistency
measures If : K → R

≥0
∞ . (We put in parentheses the mean-

ing for the corresponding knowledgebase.)
• f1(G) = |U | + |V | (the number of problematic formulas

plus the number of minimal inconsistent subsets)
• f2(G) = |E| (the sum of the sizes of the MISs)
• f3(G) = |U |+ |V |+ |E| (f1(G) + f2(G))

• f4(G) =

⎧⎨
⎩

0 if U = ∅∑
v∈V

∑

u∈Adj(v)

deg(u)

deg(v)2 otherwise

(0 if K is consistent, otherwise the sum of the reciprocals
of the sizes of the MISs weighted by the average number
of MISs containing their elements)

• f5(G) =

{
0 if U = ∅

1 + |{u ∈ U | deg(u) ≥ 2}| otherwise
(0 if K is consistent, otherwise one plus the number of
formulas that are in at least two MISs)

• f6(G) =

⎧⎨
⎩

0 if U = ∅

1 +
∑

1
|Adj(v)∩Adj(v′)| otherwise

∀v, v′ ∈ V, v �= v′,Adj(v) ∩Adj(v′) �= ∅

(0 if K is consistent, otherwise one plus the sum of the
reciprocals of the sizes of the intersections of each pair of
minimal inconsistent subsets)

• f7(G) =

{
0 if U = ∅

max{deg(u) | u ∈ U} otherwise
(0 if K is consistent, otherwise the maximum number
of minimal inconsistent subsets containing the same for-
mula)

• f8(G) =

{
0 if U = ∅

|{v ∈ V | deg(v) = 1}|+
max{deg(u) | u ∈ U} otherwise

(0 if K is consistent, otherwise the number of self-
contradictions plus the maximum number of minimal in-
consistent subsets containing the same formula)

Proposition 7. Ifi satisfies independence for 1 ≤ i ≤ 8,
MI-separability for i = 2, penalty for 1 ≤ i ≤ 4, super-
additivity for 1 ≤ i ≤ 6, attenuation for i = 4, equal conflict
for 1 ≤ i ≤ 8 and almost consistency for i = 4.

Consistency Graphs

The structure of the maximal consistent subsets of a knowl-
edgebase can also be represented by bigraphs. Again, free
formulas can be either included or ignored, yielding two
types of bigraphs for maximal consistent subsets. To keep a

parallel with inconsistency graphs, free formulas are ignored
in what is defined as the consistency graph, but allowed for
in its augmented form:

Definition 7. An (augmented) consistency graph for
knowledgebase K is a bigraph 〈U, V,E〉 such that there are
bijections bU : U → Prob(K) (bU : U → K) and bV :
V → MC(K) yielding E = {{u, v} | bU (u) ∈ bV (v)}.

Even though the (augmented) consistency graph of a
knowledgebase is based on its maximal consistent subsets, it
encodes the structure of the minimal inconsistent subsets as
well. Conversely, from the (augmented) inconsistency graph
one can recover the (augmented) consistency graph. Let Gc

(G+
c ) be the set of all (augmented) consistency graphs.

Theorem 3. There is a computable bijection h : G+ → G+
c

(h : G → Gc) such that, for any K ∈ K, G = IG+(K) iff
h(G) = CG+(K) (G = IG(K) iff h(G) = CG(K)).

As a consequence of Theorem 3, an inconsistency mea-
sure that is a function of the (augmented) consistency
graph is also a function of the (augmented) inconsistency
graph, and vice-versa. Nonetheless, some measures can be
described more economically and intuitively through the
consistency graph. For instance, if CG(K) = 〈U, V,E〉,
IA(K) = |V |+ |{u ∈ U | deg(u) = 0}| − 1.

Abstracting the Inconsistency Graph

So far we have considered four representations for a knowl-
edgebase: the inconsistency and consistency graphs and
their augmented versions. We also investigated inconsis-
tency measures that can be calculated from such graphs. But
some inconsistency measures that can be computed from the
inconsistency graph (the ones we called IG measures) do not
actually use all the information provided by the inconsis-
tency graph. This suggests that there are simpler representa-
tions that still convey enough information to calculate them.
In this section we will build a hierarchy of such representa-
tions and a corresponding hierarchy for inconsistency mea-
sures based on how much information is needed to compute
them.

We call such a representation an abstraction as it abstracts
some information from a knowledgebase in a uniform way.
We write A for the set of objects for a particular abstrac-
tion and call A an abstraction space. For instance so far we
have used the set of bigraphs as an abstraction space. We
also need a mapping that takes each knowledgebase to an
object in the abstraction space. We do not formally define
what types of operations are allowed for a mapping but note
that determining if a set of formulas is consistent or incon-
sistent is allowed.

Definition 8. An abstraction class C (or simply a class) is
a pair C = 〈A,mC〉 where mC : K → A. An inconsistency
measure I is in class C if there is a function fC : A→ R

≥0
∞

such that I(K) = fC(mC(K)) for all knowledgebases K.
We then call I a C measure.

We will sometimes write a class as C with a subscript
but often it will be convenient to use just the subscript of
C for the class name. Thus CIG = IG = 〈G, IG〉, where G
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Name C A mC(K) hIG,C(G) Examples

problematic-count PC N |Prob(K)| |U | IP

conflict-count CC N |MI(K)| |V | IM

vertex-count VC N
2 〈|Prob(K)|, |MI(K)|〉 〈|U |, |V |〉 IP ,IM

problematic-degree PD 2N
2 {〈x, y〉 | x > 0 and x = |{φ ∈ Prob(K) {〈x, y〉 | x > 0 and If5 , If7

s.t. PFreq(K,φ) = y}|} x = |{u ∈ U | deg(u) = y}|}
conflict-degree CD 2N

2 {〈x, y〉 | x > 0 and x = |{M ∈ MI(K) {〈x, y〉 | x > 0 and I#

s.t. |M | = y}|} x = |{v ∈ V | deg(v) = y}|}
vertex-degree VD 2N

2 × 2N
2 〈mPD(K),mCD(K)〉 〈hIG,PD(G), hIG,CD(G)〉 If4 ,If8

edge-count EC N
∑

Δ∈MI(K)

|Δ| |E| If2

Table 1: Classes based on abstracting the inconsistency graph IG(K) = 〈U, V,E〉. For each class C we give the full name and
class name, the abstraction space, the mapping mC from K, the function hIG,C from the inconsistency graph, and examples of
measures defined in Definition 2 and Proposition 6. Note: PFreq(K,φ) = |{M ∈ MI(K) | φ ∈M}|.

is the set of bigraphs and IG(K) is the inconsistency graph
of K, is a class and the IG inconsistency measures are ex-
actly the ones in CIG. Similarly, the class IG+ = 〈G, IG+〉
contains all augmented IG measures. In order to be precise
in the definition of fC , we should use Range(mC) instead
of A because it is possible that not all elements of A are in
Range(mC). However, since Range(mC) ⊆ A, there is such
fC : A → R

≥0
∞ iff there is a fC : Range(mC) → R

≥0
∞ with

the same required property. Hence, we use both definitions
interchangeably.

Another example is CB = 〈{0, 1}, IB〉, the binary class,
where IB was given in Definition 2. IB is a measure in this
class. In this case fC = ι{0,1}, the identity function on
{0, 1}. Due to the consistency postulate for inconsistency
measures, no class can have a smaller abstraction space. In
general, for any inconsistency measure I we can define the
class CI = 〈R≥0

∞ , I〉. A trivial case occurs if an inconsis-
tency measure I ′ is obtained as a function of some I , that is,
I ′(K) = g(I(K)) in which case an I ′ measure is automati-
cally an I measure. We are interested in classes that encom-
pass genuinely different inconsistency measures, though not
every class yields an inconsistency measure. For example,
let C = 〈N,mC〉 where mC(K) is the number of formu-
las in K. There is no way to get an inconsistency measure
if that is the only information stored about K. We will be
interested only in classes that yield inconsistency measures.
We call such a class proper and will discuss only proper
classes.

We now formulate several classes that are intuitively more
abstract than IG. In all of these cases we first show how to
obtain the value from the knowledgebase and in parentheses
we indicate how to obtain it from the inconsistency graph:
(1) PC counts the number of problematic formulas (the size
of U ); (2) CC counts the number of minimal inconsistent
subsets (the size of V ); (3) VC combines the PC and CC
values into a pair of numbers; (4) PD counts for each pos-
itive integer n the number of formulas (if not 0) that are in
n minimal inconsistent subsets (the number of vertices in U
that have degree n) to form a set of ordered pairs of positive
integers; (5) CD counts for each positive integer n the num-

ber of minimal inconsistent subsets (if not 0) that contain n
formulas (the number of vertices in V that have degree n) to
form a set of ordered pairs of positive integers; (6) VD com-
bines the PD and CD sets into an ordered pair; and (7) EC
counts the sum of the sizes of the minimal inconsistent sets
(the size of E). Table 1 gives all the definitions along with
examples of inconsistency measures in each class.

We compare classes with respect to how abstract they are.
Consider the class CC = 〈N, |MI|〉 which is obtained by
abstracting from the knowledgebase its number of minimal
inconsistent subsets. But we can also calculate the number of
minimal inconsistent subsets from the inconsistency graph
by counting the number of vertices in V . However, given
the number of inconsistent subsets we cannot construct the
inconsistency graph. Thus, intuitively, the class IG is less
abstract than the class CC. The most general class is the one
where we retain the entire knowledgebase. We denote this
class as U = 〈K, ιK〉 where ιK is the identity function on K
and call it the universal class. Next we formally define the
abstraction relation on classes.

Definition 9. A class C = 〈A,mC〉 is less or equally ab-
stract as the class C ′ = 〈A′,mC′〉, denoted C � C ′, if the
relation hC,C′ = {〈mC(K),mC′(K)〉 ∈ A×A′ | K ∈ K}
is a function. We say that C and C ′ are equally abstract
written C ∼ C ′ if both C � C ′ and C ′ � C hold. Further-
more,C is said to be less abstract thanC ′, denotedC ≺ C ′,
when C � C ′ but C �∼ C ′.

Proposition 8. The relation � is reflexive and transitive.

Next we present several results that we will use to find
abstraction relations between classes. We start with a char-
acterization for equally abstract classes.

Proposition 9. C = 〈A,mC〉 and C ′ = 〈A′,mC′〉 are
equally abstract iff hC,C′ and hC′,C are inverse functions.

Corollary 3. If C � C ′ and hC,C′ is not one-to-one then
C ≺ C ′.

As we next show the abstraction relation between classes
extends to their inconsistency measures.
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Proposition 10. If C ′ � C (C ′ is less or equally abstract as
C) then every C inconsistency measure is also a C’ incon-
sistency measure.

Corollary 4. If C � C ′ and there is a C inconsistency mea-
sure that is not a C ′ inconsistency measure then C ≺ C ′.

Example 2. U = 〈K, ιK〉 � C = 〈A,mC〉 (the univer-
sal class is less or equally abstract as any class) because
hU,C ⊆ K × A is a function, defined as hU,C(ιK)(K) =
mC(K) = mC(ιK(K)) for all K ∈ K. We place U , the
least abstract class, at the top of the hierarchy.

Going in the opposite direction, we wish to show that for
any proper class C, C is less or equally abstract than the
binary class (i.e. C = 〈A,mC〉 � B = 〈{0, 1}, IB〉). For
this purpose we need to show that hC,B ⊆ A × {0, 1} is
a function. As C is a proper class, there must be an incon-
sistency measure, say IC in C, and so we have IC(K) =
fC(mC(K)), for a function fC : A → R

≥0
∞ . Hence,

hC,B : Range(mC) → {0, 1} is a function defined as
hC,B(mC(K)) = 0 if fC(mC(K)) = 0, hC,B(mC(K)) =
1 otherwise.

Although we do not require the independence property for
inconsistency measures, most measures I in the literature
have this property so that I(K) = I(Prob(K)). Thus we
can formulate the problematic class P = 〈K,Prob〉 where
Prob was defined in the Preliminaries section.

U

IG+ P

IG

VD

PD VC CD

PC EC CC

B

Figure 1: The abstraction hierarchy of inconsistency mea-
sures classes

The abstraction relation among the classes presented in
this section (including Table 1) is given by the next result
and summarized in Figure 1.

Theorem 4. The following abstraction relations hold: (1)
U ≺ IG+,P; (2) IG+,P ≺ IG; (3) IG ≺ VD; (4) VD ≺
PD,VC,CD; (5) PD ≺ PC,EC; (6) VC ≺ PC,CC; (7)
CD ≺ EC,CC; (8) PC,EC,CC ≺ B.

It is straightforward to show how developments of the
measures reviewed in this paper (such as the vector-based
approach of (Mu et al. 2011)) can fit into this hierarchy.

Let us note that there are some related works that have
already used similar graphs (Jabbour, Ma, and Raddaoui

2014) and hypergraphs (Jabbour et al. 2016) for inconsis-
tency measures, but only to define new inconsistency mea-
sures. The main point of our paper is that inconsistency
graphs can be used to compare and classify most syntacti-
cal inconsistency measures.

The general framework we have proposed complements
the framework proposed in (Thimm 2016b) where the ex-
pressivity of an inconsistency measure is quantified in terms
of the size of its range when its domain is restricted some-
how. In contrast, the abstraction classes we propose are
meant to capture the information needed to compute a mea-
sure. When a class C is said to be less abstract than C ′ =
〈A′,m′〉, this means that the information conveyed by the
elements of A′ is not enough to compute all measures in C.
Nevertheless, it may be the case that some measures in C ′
have higher Thimm’s expressivity (in all 4 dimensions) than
measures in C that are not in C ′.

Conclusion and Future Work

In this paper we propose the first, as far as we know, gen-
eral definition of a large family of inconsistency measures,
thanks to the notion of inconsistency graphs, that leads to
a hierarchy of these measures based on how much infor-
mation is needed to compute them. Even though we have
intentionally avoided defining syntactic inconsistency mea-
sures in this paper, the definition of IG measures seems to
formally capture this intuitive idea. Evidence for this is that
most inconsistency measures called syntactic are indeed IG
measures, but no measure said to be semantic is so.

The framework in this paper can be exploited in a precise
way to compare different proposals for inconsistency mea-
sures, and in particular of the information that is required to
calculate a given measure, and to identify new measures. So
for a given application, an awareness of where a measure re-
sides in the hierarchy will facilitate a clearer understanding
of what is being measured, and whether that is appropriate
for that application. Future work includes the classification
of non-syntactic inconsistency measures (e.g. (Konieczny,
Lang, and Marquis 2003)).
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