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Abstract

We provide formal definitions of degree of blameworthiness
and intention relative to an epistemic state (a probability over
causal models and a utility function on outcomes). These, to-
gether with a definition of actual causality, provide the key
ingredients for moral responsibility judgments. We show that
these definitions give insight into commonsense intuitions in
a variety of puzzling cases from the literature.

1 Introduction

The need for judging moral responsibility arises both in
ethics and in law. In an era of autonomous vehicles and,
more generally, autonomous AI agents that interact with
or on behalf of people, the issue has now become rele-
vant to AI as well. We will clearly need to imbue AI
agents with some means for evaluating moral responsibil-
ity. There is general agreement that a definition of moral
responsibility will require integrating causality, some no-
tion of blameworthiness, and intention (Cushman 2015;
Malle, Guglielmo, and Monroe 2014; Weiner 1995). Previ-
ous work has provided formal accounts of causality (Halpern
2016); in this paper, we provide formal definitions of blame-
worthiness and intention in the same vein.

These notions are notoriously difficult to define carefully.
The well-known trolley problem (Thomson 1985) illustrates
some of them: Suppose that a runaway trolley is headed to-
wards five people who will not be able to get out of the
train’s path in time. If the trolley continues, it will kill all
five of them. An agent ag is near a switchboard, and while
ag cannot stop the trolley, he can pull a lever which will di-
vert the trolley to a side track. Unfortunately, there is a single
man on the side track who will be killed if ag pulls the lever.

Most people agree that it is reasonable for ag to pull
the lever. But now consider a variant of the trolley prob-
lem known as loop (Thomson 1985), where instead of the
side track going off in a different direction altogether, it re-
joins the main track before where the five people are tied up.
Again, there is someone on the side track, but this time ag
knows that hitting the man on the loop will stop the train be-
fore it hits the five people on the main track. How morally
responsible is ag for the death of the man on the side track if
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he pulls the lever? Should the answer be different in the loop
version of the problem? Pulling the lever in the loop condi-
tion is typically judged as less morally permissible than in
the condition without a loop (Mikhail 2007).

The definitions given here take as their starting point
the structural-equations framework used by Halpern and
Pearl (2005) (HP from now on) in defining causality. This
framework allows us to model counterfactual statements like
“agent ag would have still performed action a even if out-
come ϕ had not occurred”. Evaluating such statements is
the key to defining intention and moral responsibility, just as
it is for defining actual causation. To evaluate such coun-
terfactual statements requires a model of what ag would
have done in that new situation. We assume that ag is an
expected utility maximizer with beliefs expressed as prob-
abilities over causal models and preferences expressed as a
utility function over outcomes. This makes it possible to de-
fine ag’s degree of blameworthiness; rather than ag either
being blameworthy or not for an outcome, he is only blame-
worthy to some degree (a number in [0,1]). Using the same
framework, we can also define intention. Roughly speaking,
an agent who performs action a intends outcome ϕ if he
would not have done a if a had no impact on whether ϕ oc-
curred.

2 Structural equations and HP causality

The HP approach assumes that the world is described in
terms of variables and their values. Some variables have
a causal influence on others. This influence is modeled by
a set of structural equations. It is conceptually useful to
split the random variables into two sets: the exogenous vari-
ables, whose values are determined by factors outside the
model, and the endogenous variables, whose values are ulti-
mately determined by the exogenous variables. We assume
that there is a special endogenous variable A called the ac-
tion variable; the possible values of A are the actions that
the agent can choose among.1

1In a more general setting with multiple agents, each perform-
ing actions, we might have a variable Aag for each agent ag. We
might also consider situations over time, where agents perform se-
quences of actions, determined by a strategy, rather than just a sin-
gle action. Allowing this extra level of generality has no impact on
the framework presented here.
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For example, in the trolley problem, we can assume that
A has two possible values: A = 0 if the lever was not pulled
and A = 1 if it was. Which action is taken is determined
by an exogenous variable. The two possible outcomes in the
trolley problem are described by two other endogenous vari-
ables: O1, which is 1 if the five people on the main track die,
and 0 if they don’t, and O2, which is 1 if the person on the
sidetrack dies, and 0 otherwise.

A causal model M is a pair (S,F), where S is a signa-
ture, that is, a tuple (U ,V,R), where U is a set of exogenous
variables, V is a set of endogenous variables, and R asso-
ciates with every variable Y ∈ U ∪ V a nonempty setR(Y )
of possible values for Y (i.e., the set of values over which
Y ranges), and F is a set of modifiable structural equations,
relating the values of the variables. Formally, F associates
with each endogenous variable X ∈ V a function denoted
FX such that FX : (×U∈UR(U))× (×Y ∈V−{X}R(Y ))→
R(X). In the trolley problem as modeled above, there are
two equations: O1 = 1− A (the five people die if the agent
does nothing) and O2 = A (the one person on the side track
dies if the agent pulls the lever).

Just as HP do, we restrict attention to acyclic causal mod-
els, where there is a total ordering≺ of the endogenous vari-
ables (the ones in V) such that if X ≺ Y , then X is indepen-
dent of Y , that is, FX(. . . , y, . . .) = FX(. . . , y′, . . .) for all
y, y′ ∈ R(Y ). If X ≺ Y , then the value of X may affect the
value of Y , but the value of Y cannot affect the value of X .
It should be clear that if M is an acyclic causal model, then
given a context, that is, a setting �u for the exogenous vari-
ables in U , there is a unique solution for all the equations.

Given a causal model M = (S,F), a vector �X of distinct
variables in V , and a vector �x of values for the variables
in �X , the causal model M �X←�x is identical to M , except
that the equation for the variables �X in F is replaced by
�X = �x. Intuitively, this is the causal model that results when
the variables in �X are set to �x by some external action that
affects only the variables in �X (and overrides the effects of
the causal equations).

To define causality carefully, it is useful to have a lan-
guage to reason about causality. Given a signature S =
(U ,V,R), a primitive event is a formula of the form X = x,
for X ∈ V and x ∈ R(X). A causal formula (over S) is
one of the form [Y1 ← y1, . . . , Yk ← yk]ϕ, where ϕ is
a Boolean combination of primitive events, Y1, . . . , Yk are
distinct variables in V , and yi ∈ R(Yi). Such a formula
is abbreviated as [�Y ← �y]ϕ. The special case where k = 0
is abbreviated as ϕ. Intuitively, [Y1 ← y1, . . . , Yk ← yk]ϕ
says that ϕ would hold if Yi were set to yi, for i = 1, . . . , k.

A pair (M,�u) consisting of a causal model and a context
is called a causal setting. A causal formula ψ is true or false
in a causal setting. As in HP, (M,�u) |= ψ if the causal for-
mula ψ is true in the causal setting (M,�u). The |= relation
is defined inductively. (M,�u) |= X = x if the variable X
has value x in the unique (since we are dealing with acyclic
models) solution to the equations in M in context �u (i.e., the
unique vector of values for the exogenous variables that si-
multaneously satisfies all equations in M with the variables

in U set to �u). The truth of conjunctions and negations is de-
fined in the standard way. Finally, (M,�u) |= [�Y ← �y]ϕ if
(M�Y←�y, �u) |= ϕ.

In the full paper,2 the HP definition of causality is given.
The details are not necessary for understanding the re-
maining definitions. Indeed, the HP definition could be re-
placed by another definition of causality (e.g., (Glymour
and Wimberly 2007; Hall 2007; Halpern and Pearl 2005;
Hitchcock 2001; 2007; Woodward 2003; Wright 1988)).

3 Degree of blameworthiness

We now apply this formal language to study blameworthi-
ness. For agent ag to be morally responsible for an outcome
ϕ, he must be viewed as deserving of blame for ϕ. Among
other things, for ag to be deserving of blame, he must have
placed some likelihood (before acting) on the possibility that
a would cause ϕ. If ag did not believe it was possible for a
to cause ϕ, then in general we do not want to blame ag for
ϕ (assuming that ag’s beliefs are reasonable; see below).

In general, an agent has uncertainty regarding the struc-
tural equations that characterize a causal model and about
the context. This uncertainty is characterized by a probabil-
ity distribution Pr on a set K of causal settings.3 Let K
consist of causal settings (M,�u), and let Pr be a probabil-
ity measure on K. Pr should be thought of as describing the
probability before the action is performed. For ease of ex-
position, we assume that all the models in K have the same
signature (set of endogenous and exogenous variables). We
assume that an agent’s preferences are characterized by a
utility function u on worlds, where a world is a complete
assignment to the endogenous variables. Thus, an epistemic
state for an agent ag consists of a tuple E = (Pr,K,u).

Given an epistemic state for an agent ag, we can deter-
mine the extent to which ag performing action a affected, or
made a difference, to an outcome ϕ (where ϕ can be an ar-
bitrary Boolean combination of primitive events). Formally,
we compare a to all other actions a′ that ag could have per-
formed. Let [[ϕ]]K = {(M,�u) ∈ K : (M,�u) |= ϕ}; that
is, [[ϕ]]K consists of all causal settings in K where ϕ is true.
Thus, Pr([[[A = a]ϕ]]K) is the probability that performing
action a results in ϕ. Let

δa,a′,ϕ = max(0,Pr([[[A = a]ϕ)]]K − Pr([[[A = a′]ϕ]]K)),

so that δa,a′,ϕ measures how much more likely it is that ϕ
will result from performing a than from performing a′ (ex-
cept that if performing a′ is more likely to result in ϕ than
performing a, we just take δa,a′,0 to be 0).

The difference δa,a,ϕ′ is clearly an important component
of measuring the blameworthiness of a relative to a′. But
there is another component, which we can think of as the
cost of doing a. Suppose that Bob could have given up his
life to save Tom. Bob decided to do nothing, so Tom died.
The difference between the probability of Tom dying if Bob
does nothing and if Bob gives up his life is 1 (the maxi-
mum possible), but we do not typically blame Bob for not

2Available at www.cs.cornell.edu/home/halpern/moralresp.pdf.
3Chockler and Halpern (2004) also used such a probability to

define a notion of degree of blame.
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giving up his life. What this points out is that blame is also
concerned with the cost of an action. The cost might be cog-
nitive effort, time required to perform the action, emotional
cost, or (as in the example above) death.

We assume that the cost is captured by some outcome
variables. The cost of an action a is then the impact of per-
forming a on these variables. We call the variables that we
consider the action-cost variables. Intuitively, these are vari-
ables that talk about features of an action: Is the action dif-
ficult? Is it dangerous? Does it involve emotional upheaval?
Which variables count as action-cost variables depends in
part on the modeler, but we do assume that the action-cost
variables satisfy some minimal properties. To make these
properties precise, we need some definitions.

Given a causal setting (M,�u) and endogenous variables
�X in M , let wM, �X←�x,�u be the unique world determined by

setting �X to �x in (M,�u). Thus, for each endogenous variable
V , the value of V in world wM, �X←�x,�u is v iff (M,�u) |=
[ �X ← �x](V = v). Given an action a and outcome variables
�O, let �oM,A←a,�u be the value of �o when we set A to a in the
setting (M,�u); that is, (M,�u) |= [A← a]( �O = �oM,A←a,�u).
Thus, wM,�O←�oM,A←a,�u,�u

is the world that results when �O is
set to the value that it would have if action a is performed in
causal setting (M,�u). To simplify the notation, we omit the
M and �u in the subscript of �o (since they already appear in
the subscript of w), and just write wM,�O←�oA←a,�u

. The world

wM,�O←�oA←a,�u
isolates the effects of a on the variables in �O.

With this background, we can state the properties that we
expect the set �Oc of action-cost variables to have:
• for all causal settings (M,�u) and all actions a, we have

u(wM,�Oc←�oA←a,�u
) ≤ 0

(so performing a is actually costly, as far as the variables
in �Oc go);

• for all causal settings (M,�u), all actions a, and all subsets
�O′ of �Oc, we have

u(wM,�Oc←�oA←a,�u
) ≤ u(wM,�O′←�o′

A←a
,�u)

(so all variables in �Oc are costly—by not considering
some of them, the cost is lowered).

Definition 3.1: The cost of action a (with respect to �Oc),
denoted c(a), is |u(wM,�Oc←�oA←a,�u

)|.
If we think of ϕ as a bad outcome of performing a, then

the blameworthiness of a for ϕ relative to a′ is a combina-
tion of the likelihood to which the outcome could have been
improved by performing a′ and cost of a relative to the cost
of a′. Thus, if c(a) = c(a′), the blameworthiness of a for
ϕ relative to a′ is just δa,a′,ϕ. But if performing a′ is quite
costly relative to performing a, this should lead to a decrease
in blameworthiness. How much of a decrease is somewhat
subjective. To capture this, choose N > maxa′ c(a′) (in
general, we expect N to be situation-dependent). The size
of N is a measure of how important we judge cost to be in
determining blameworthiness; the larger N is, the less we
weight the cost.

Definition 3.2: The degree of blameworthiness of a for ϕ
relative to a′ (given c and N ), denoted dbN (a, a′, ϕ), is
δa,a′,ϕ

N−max(c(a′)−c(a),0)
N . The degree of blameworthiness

of a for ϕ, denoted dbN (a, ϕ) is maxa′ dbN (a, a′, ϕ).

Intuitively, we view the cost as a mitigating factor when
computing the degree of blameworthiness of a for ϕ. We
can think of N−max(c(a′)−c(a),0)

N as the mitigation fac-
tor. No mitigation is needed when comparing a to a′ if
the cost of a is greater than that of a′. And, indeed,
because of the max(c(a) − c(a′), 0) term, if c(a) ≥
c(a′) then the mitigation factor is 1, and db(a, a′, ϕ) =

δa,a′,ϕ. In general, N+max(c(a)−c(a′),0)
N ≤ 1. Moreover,

limN→∞ dbN (a, a′, ϕ) = δa,act′,ϕ. Thus, for large values
of N , we essentially ignore the costliness of the act. On the
other hand, if N and c(a′) are both close to maxa′′ c(a′′) and
c(a) = 0, then dbN (a, a′, ϕ) is close to 0. Thus, in the exam-
ple with Bob and Tom above, if we take costs seriously, then
we would not find Bob particularly blameworthy for Tom’s
death if the only way to save Tom is for Bob to give up his
own life.

The need to consider alternatives when determining
blameworthiness is certainly not new, as can be seen from
the essays in (Widerker and McKenna 2006). What seems
to be new here is the emphasis on blameworthiness with re-
spect an outcome and taking cost into account. The follow-
ing example shows the impact of the former point.

Example 3.3: Suppose that agent ag is faced with the fol-
lowing dilemma: if ag doesn’t pull the lever, six anonymous
people die; if ag does pull the lever, the first five people will
still die, but the sixth will be killed with only probability
0.2. If ag does not pull the lever, ag is not blameworthy for
the five deaths (no matter what he did, the five people would
have died), but has some degree of blameworthiness for the
sixth. The point here is that just the existence of a better ac-
tion a′ is not enough. To affect ag’s blameworthiness for
outcome ϕ, action a′ must be better in a way that affects ϕ.

Defining the degree of blameworthiness of an action for a
particular outcome, as done here, seems to be consistent with
the legal view. A prosecutor considering what to charge a
defendant with is typically considering which outcomes that
defendant is blameworthy for.

Blameworthiness is defined relative to a probability dis-
tribution. We do not necessarily want to use the agent’s sub-
jective probability. For example, suppose that the agent had
several bottles of beer, goes for a drive, and runs over a
pedestrian. The agent may well have believed that the prob-
ability that his driving would cause an accident was low, but
we clearly don’t want to use his subjective probability that
he will cause an accident in determining blameworthiness.
Similarly, suppose that a doctor honestly believes that a cer-
tain medication will have no harmful side effects for a pa-
tient. One of his patients who had a heart condition takes the
medication and dies as a result. If the literature distributed to
the doctor included specific warning about dire side-effects
for patients with this heart condition but the doctor was lazy
and didn’t read it, again, it does not seem reasonable to use
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the doctor’s probability distribution. Rather, we want to use
the probability distribution that he should have had, had he
read the relevant literature. We can use whatever probability
distribution we consider most appropriate in the definition.

In using the term “blameworthiness”, we have implicitly
been thinking of ϕ as a bad outcome. If ϕ is a good outcome,
it seems more reasonable to use the term “praiseworthiness”.
However, defining praiseworthiness raises some significant
new issues. We mention a few of them here:

• Suppose that all actions are costless, Bob does nothing
and, as a result, Tom lives. Bob could have shot Tom, so
according to the definition Bob’s degree of blameworthi-
ness for Tom living is 1. Since living is a good outcome,
we may want to talk about praiseworthiness rather than
blameworthiness, but it still seems strange to praise Tom
for doing the obvious thing. This suggests that for praise-
worthiness, we should compare the action to the “stan-
dard” or “expected” thing to do. To deal with this, we
assume that there is a default action a0, which we can
typically think of as “doing nothing” (as in the example
above), but does not have to be. Similarly, we typically
assume that the default action has low cost, but we do
not require this. The praiseworthiness of an act is typi-
cally compared just to the default action, rather than to
all actions. Thus, we consider just δa,a0,ϕ, not δa,a′,ϕ for
arbitrary a′.

• It does not seem that there should be a lessening of praise
if the cost of a is even lower than that of the default. On
the other hand, it seems that there should be an increase
in praise the more costly a is. For example, we view an
action as particularly praiseworthy if someone is risking
his life to perform it. This suggests that the degree of
praiseworthiness of a should be δa,a0,ϕ if c(a) ≤ c(a0),
and δa,a0,ϕ

M−c(a0)+c(a)
M if c(a) > c(a0). But this has

the problem that the degree of praiseworthiness might be
greater than 1. If the agent put a lot of effort into a (i.e.,
c(a) − c(a0) is large) because his main focus was some
other outcome ϕ′ 	= ϕ, and there is another action a′ that
would achieve ϕ at much lower cost, then it seems un-
reasonable to give the agent quite so much praise for his
efforts in achieving ϕ.

• We typically do not praise someone for an outcome that
was not intended (although we might well find someone
blameworthy for an unintended outcome).

In the full paper, we give a definition of praiseworthiness
that takes these concerns into account.

The focus of these definitions has been on the blame (or
praise) due to a single individual. Things get more compli-
cated once we consider groups. Consider how these defini-
tions play out in the context of the Tragedy of the Commons
(Hardin 1968), where there are many agents, each of which
can perform an action (like fishing, or letting his sheep graze
on the commons) which increases his individual utility, but if
all agents perform the action, they all ultimately suffer (fish
stocks are depleted; the commons is overgrazed).

Example 3.4: Consider a collective of fishermen. Suppose
that if more than a couple of agents fail to limit their fishing,

the fish stocks will collapse and there will be no fishing al-
lowed the following year. The fisherman in fact all do fish,
so the fish stocks collapse.

Each agent is clearly part of the cause of the outcome. To
determine a single agent’s degree of blameworthiness, we
must consider that agent’s uncertainty about how many of
the other fisherman will limit their fishing. If the agent be-
lieves (perhaps justifiably) that, with high probability, very
few of them will limit their fishing, then his blameworthiness
will be quite low. As we would expect, under minimal as-
sumptions about the probability measure Pr, the more fish-
erman there are and the larger the gap between the expected
number of fish taken and the number that will result in over-
fishing limitations, the lower the degree of blameworthiness.
Moreover, a fisherman who catches less fish has less blame-
worthiness. In all these cases, it is less likely that changing
his action will lead to a change in outcome.

The way that blameworthiness is assigned to an individ-
ual fisherman in Example 3.4 essentially takes the actions
of all the other fisherman as given. But it is somewhat dis-
concerting that if each of N fisherman justifiably believed
that all the other fisherman would overfish, then each might
have degree of blameworthiness significantly less than the
1/N that we might intuitively give them if they all caught
roughly the same number of fish.

One way to deal with this is to consider the degree of
blame we would assign to all the fisherman, viewed as a
collective (i.e., as a single agent). The collective can clearly
perform a different action that would lead to the desired out-
come. Thus, viewed as a collective, the fishermen have de-
gree of blameworthiness close to 1.

How should we allocate this “group moral blameworthi-
ness” to the individual agents? We believe that Chockler and
Halpern’s (2004) notion of responsibility and blame can be
helpful in this regard, because they are intended to mea-
sure how responsibility and blame are diffused in a group.
It seems that when ascribing moral responsibility in group
settings, people consider both an agent as an individual and
as a member of a group. Further research is needed to clarify
this issue.

4 Intention

The definition of degree of blameworthiness does not take
intention into account. In the trolley problem, an agent who
pulls the lever so that only one person dies is fully blame-
worthy for that death. However, it is clear that the agent’s
intent was to save five people, not kill one; the death was an
unintended side-effect. Usually, agents are not held respon-
sible for accidents and the moral permissibility of an action
does not take into account unintended side-effects.

Two types of intention have been considered in the liter-
ature (see, e.g., (Cohen and Levesque 1990)): (1) whether
agent ag intended to perform action a (perhaps it was an ac-
cident) and (2) did ag (when performing a) intend outcome
ϕ (perhaps ϕ was an unintended side-effect of a, which was
actually performed to bring about outcome o′). Intuitively,
an agent intended to perform a (i.e., a was not accidental) if
his expected utility from a is at least as high as his expected
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utility from other actions. The following definition formal-
izes this intuition.

Definition 4.1: Action a is intended in (M,�u) given epis-
temic state E = (Pr,K,u) if (M,�u) |= A = a (a was
actually performed in causal setting (M,�u)), |R(A)| ≥ 2 (a
is not the only possible action), and for all a′ ∈ R(A),

∑

(M,�u)∈K
Pr(M,�u)(u(wM,A←a,�u)− u(wM,A←a′,�u)) ≥ 0.

The assumption that |R(A)| ≥ 2 captures the intuition
that we do not say that a was intended if a was the only
action that the agent could perform. We would not say that
someone who is an epileptic intended to have a seizure, since
they could not have done otherwise. What about someone
who performed an action because there was a gun held to
his head? In this case, it depends on how we model the set
A of possible actions. If we take the only feasible action to
be the act a that was performed (so we view the agent as
having no real choice in the matter), then the action was not
intentional. But if we allow for the possibility of the agent
choosing whether or not to sacrifice his life, then we would
view whatever was imposed as intended.

The intuition for the agent intending outcome �O = �o is
that, had a been unable to affect �O, ag would not have per-
formed a. But this is not quite right for several reasons, as
the following examples show.

Example 4.2: Suppose that a patient has malignant lung can-
cer. The only thing that the doctor believes that he can do to
save the patient is to remove part of the lung. But this opera-
tion is dangerous and may lead to the patient’s death. In fact,
the patient does die. Certainly the doctor’s operation is the
cause of death, and the doctor intended to perform the op-
eration. However, if the variable O represents the possible
outcomes of the operation, with O = 0 denoting that the pa-
tient dies and O = 1 denoting that the patient is cured, while
the doctor intended to affect the variable O, he certainly did
not intend the actual outcome O = 0.

Example 4.3: Suppose that Louis plants a bomb at a table
where his cousin Rufus, who is standing in the way of him
getting an inheritance, is going to have lunch with Sibella.
Louis get 100 units of utility if Rufus dies, 0 if he doesn’t
die, and −200 units if he goes to jail. His total utility is the
sum of the utilities of the relevant outcomes. He would not
have planted the bomb if doing so would not have affected
whether Rufus dies. On the other hand, Louis would still
have planted the bomb even if doing so had no impact on
Sibella. Thus, we can conclude that Louis intended to kill
Rufus but did not intend to kill Sibella.

Now suppose that Louis has a different utility function,
and prefers that both Rufus and Sibella die. Specifically,
Louis get 50 units of utility if Louis dies and 50 units of
utility if Sibella dies. Again, he gets −200 if he goes to jail,
and his total utility is the sum of the utilities of the rele-
vant outcomes. With these utilities, intuitively, Louis intends
both Rufus and Sibella to die. Even if he knew that planting

the bomb had no impact on whether Rufus lives (perhaps
because Rufus will die of a heart attack, or because Rufus
is wearing a bomb-proof vest), Louis would still plant the
bomb (since he would get significant utility from Sibella dy-
ing). Similarly, he would plant the bomb even if it had no
impact on Sibella. Thus, according to the naive definition,
Louis did not intend to kill either Rufus or Sibella.

Our definition will deal with both of these problems. We
actually give our definition of intent in two steps. First, we
define what it means for agent ag to intend to affect the vari-
ables in �O by performing action a.

To understand the way we formalize this intuition bet-
ter, suppose first that a is deterministic. Then wM,A←a,�u

is the world that results when action a is performed in the
causal setting (M,�u) and wM,(A←a′, �O←�oA←a),�u

is the world
that results when act a′ is performed, except that the vari-
ables in �O are set to the values that they would have had
if a were performed rather than a′. If u(wM,A←a,�u) <
u(wM,(A←a′, �O←�oA←a),�u

), that means that if the variables in
�O are fixed to have the values they would have if a were per-
formed, then the agent would prefer to do a′ rather than a.
Similarly, u(wM,(�O←�oA←a),�u

) > u(wM,(�O←�oA←a′ ),�u) says

that the agent prefers how a affects the variables in �O to how
a′ affects these variables. Intuitively, it will be these two con-
ditions that suggest that the agent intends to affect the values
of the variables in �O by performing a; once their values are
set, the agent would prefer a′ to a.

The actual definition of the agent intending to affect the
variables in �O is slightly more complicated than this in sev-
eral respects. First, if the outcome of a is probabilistic, we
need to consider each of the possible outcomes of perform-
ing a and weight them by their probability of occurrence. To
do this, for each causal setting (M,�u) that the agent con-
siders possible, we consider the effect of performing a in
(M,�u) and weight it by the probability that the agent assigns
to (M,�u). Second, we must deal with the situation discussed
in Example 4.3 where Louis intends both Rufus and Sibella
to die. Let DR and DS be variables describing whether Ru-
fus and Sibella, respectively, die. While Louis certainly in-
tends to affect DR, he will not plant the bomb only if both
Rufus and Sibella die without the bomb (i.e., only if both DR

and DS are set to 0). Thus, to show that the agent intends to
affect the variable DR, we must consider a superset of DR

(namely, {DR, DS}). Third, we need a minimality condi-
tion. If Louis intended to kill only Rufus, and Sibella dying
was an unfortunate byproduct, we do not want to say that he
intended to affect {DR, DS}, although he would not have
planted the bomb if both DR and DS were set to 0. There
is a final subtlety: when considering whether ag intended to
perform a, what alternative actions should we compare a to?
The obvious answer is “all other actions in A”. Indeed, this
is exactly what was done by Kleiman-Weiner et al. (2016)
(who use an approach otherwise similar in spirit to the one
proposed here, but based on influence diagrams rather than
causal models). We instead generalize to allow a reference
set REF (a) of actions which, as the notation suggests, can
depend on a, and compare a only to actions in REF (a).
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As we shall see, we need this generalization to avoid some
problems. We discuss REF (a) in more detail below.

Definition 4.4: An agent ag intends to affect �O by doing
action a given epistemic state E = (Pr,K,u) and reference
set REF (a) ⊆ A if and only if there exists a superset �O′

of �O such that (a)
∑

(M,�u)∈K Pr(M,�u)u(wM,A←a,�u) <

max
a′∈REF(a)

∑

(M,�u)∈K
Pr(M,�u)u(wM,(A←a′, �O′←�o′

A←a
),�u),

and (b) �O′ is minimal; that is, for all strict subsets �O∗

of �O′, we have
∑

(M,�u)∈K Pr(M,�u)u(wM,A←a,�u) ≥
max

a′∈REF(a)

∑

(M,�u)∈K
Pr(M,�u)u(wM,(A←a′, �O′←�o′

A←a
),�u).

Part (a) says that if the variables in �O′ were given the
value they would get if a were performed, then some act a′

becomes better than a. Part (b) says that �O′ is the minimal
set of outcomes with this property.

What should REF (a) be? If there are only two actions in
A, then REF (a) should clearly be the other act. A natural
generalization is to take REF (a) = A−{a}. The following
example shows why this will not always work.

Example 4.5: Suppose that Daniel is a philanthropist who is
choosing a program to support. He wants to choose among
programs that support schools and health clinics and he cares
about schools and health clinics equally. If he chooses pro-
gram 1 he will support 5 schools and 4 clinics. If he chooses
program 2 he will support 2 schools and 5 clinics. Assume
he gets 1 unit of utility for each school or clinic supported.
The total utility of a program is the sum of the utility he gets
for the schools and clinics minus 1 for the overhead of both
programs. We can think of this overhead as the cost of im-
plementing a program versus not implementing any of the
programs. By default he can also do nothing which has util-
ity 0 since it avoids any overhead and doesn’t support any
schools or clinics.

Clearly his overall utility is maximized by choosing pro-
gram 1. Intuitively, by doing so, he intends to affect both the
schools and clinics. Indeed, if he could support 5 schools and
4 clinics without the overhead of implementing a program,
he would do that. However, if we consider all alternatives,
then the minimality condition fails. If he could support 5
schools he would switch to program 2, but if he could sup-
port 4 clinics he would still choose program 1. This gives
the problematic result that Daniel intends to support only
schools. The problem disappears if we take the reference set
to consist of just the default action: doing nothing. Then we
get the desired result that Daniel intends to both support the
5 schools and the 4 clinics.

It might seem that by allowing REF (a) to be a param-
eter of the definition we have allowed too much flexibility,
leaving room for rather ad hoc choices. There are principled
reasons for restricting REF (a) and not taking it to be all acts
other than a in general. For one thing, the set of acts can be
large, so there are computational reasons to consider fewer
acts. If there is a natural default action (as in Example 4.5),

this is often a natural choice for REF (a). However, we can-
not take REF (a) to be just the default action if a is itself
the default action (since then the first part of Definition 4.4
would not hold for any set �O of outcomes). We discuss the
choice of reference set in more detail in the full paper.

Given the variables that the agent intends to affect, we can
determine the outcomes that the agent intends.

Definition 4.6: Agent ag intends to bring about �O = �o
in (M,�u) by doing action a given epistemic state
E = (Pr,K,u) and reference set REF (a) if and only
if (a) ag intended to affect �O by doing action a in epistemic
state E given REF (a), (b) there exists a setting (M ′, �u′)
such that Pr(M ′, �u′) > 0 and (M ′, �u′) |= [A← a]( �O = �o),
(c) for all values �o∗ of �O such that there is a setting (M ′, �u′)
with Pr(M ′, �u′) > 0 and (M ′, �u′) |= [A← a]( �O = �o∗),
we have

∑
(M,�u)∈K Pr(M,�u)u(wM,�O←�o,�u) ≥∑

(M,�u)∈K Pr(M,�u)u(wM,�O←�o∗,�u).

Part (b) of this definition says that ag considers �O = �o a
possible outcome of performing a (even if it doesn’t happen
in the actual situation (M,�u)). Part (c) says that, among all
possible values of �O that ag considers possible, �o gives the
highest expected utility.

This definition seems to capture natural language usage of
the word “intends” if a is deterministic or close to determin-
istic. But if a is probabilistic, then we typically use the word
“hopes” rather than intends. It seems strange to say that ag
intends to win $5,000,000 when he buys a lottery ticket (if
$5,000,000 is the highest payoff); it seems more reasonable
to say that he hopes to win $5,000,000. Similarly, if a doc-
tor performs an operation on a patient who has cancer that
he believes has only a 30% chance of complete remission, it
seems strange to say that he “intends” to cure the patient, al-
though he certainly hopes to cure the patient by performing
the operation. In addition, once we think in terms of “hopes”
rather than “intends”, it may make sense to consider not just
the best outcome, but all reasonably good outcomes. For ex-
ample, the agent who buys a lottery ticket might be happy to
win any prize that gives over $10,000, and the doctor might
also be happy if the patient gets a remission for 10 years.

5 Complexity considerations
Since wM, �X=�x,�u can be computed in time polynomial in the
size of M , it easily follows that, given an epistemic state
E = (Pr,K,u), δa,a′,ϕ can be computed in time polynomial
in |K|. Thus, the degree of blameworthiness of an action a
for outcome ϕ can be computed in time polynomial in |K|
and the cardinality of the range of A. Similarly, whether a
is (un)intended in (M,�u) given E can be computed in time
polynomial in |K| and the cardinality of the range of A.

The complexity of determining whether A = a is part
of a cause of ϕ in (M,�u) is Σp

2-complete, that is, it is at
the second level of the polynomial hierarchy (Sipser 2012).
This complexity is due to the “there exists–for all” structure
of the problem (there exist sets �X and �W of variables such
that for all strict subsets of �X . . . ). The problem of deter-
mining if ag intended to bring about �O = �o has a similar
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“there exists–for all” structure; we conjecture that it is also
ΣP

2 -complete. While this makes the general problem quite
intractable, in practice, things may not be so bad. Recall that
ag intends to bring about �O = �o if there exists a superset
�O′ of �O (intuitively, all the outcomes that ag intends to af-
fect) with the appropriate properties. In practice, there are
not that many outcomes that determine an agent’s utility. If
we assume that | �O′| ≤ k for some fixed k, then the prob-
lem becomes polynomial in the number of variables in the
model and the number of actions; moreover, the polynomial
has degree k. In practical applications, it seems reasonable
to assume that there exists a (relatively small) k, making the
problem tractable.

6 Related work

Amazon lists over 50 books in Philosophy, Law, and Psy-
chology with the term “Moral Responsibility” in the ti-
tle, all of which address the types of issues discussed in
this paper. There are dozens of other books on intention.
Moreover, there are AI systems that try to build in notions
of moral responsibility (see, e.g., (Dehghani et al. 2008;
Mao and Gratch 2012; Scheutz, Malle, and Briggs 2015)).
Nevertheless, there has been surprisingly little work on pro-
viding a formal definition of moral responsibility of the type
discussed here. We now briefly discuss some of the work
most relevant to this project, without attempting to do a com-
prehensive survey of the relevant literature. We go into more
detail in the full paper.

As mentioned in the introduction, Chockler and
Halpern (2004) define a notion of responsibility that tries to
capture the diffusion of responsibility when multiple agents
contribute to an outcome but no agent is a but-for cause of
that outcome, that is, no agent can change the outcome by
just switching to a different action. For example, the degree
of responsibility of a voter for the outcome 1/(1+k), where
k is the number of changes needed to make the vote critical
(i.e., a but-for cause). Chockler and Halpern also use epis-
temic states (although without the utility component): they
define a notion of degree of blame given an epistemic state
E , which is the expected degree of responsibility with re-
spect E . These notions of blame and responsibility do not
take utility into account, nor do they consider potential al-
ternative actions or intention.

Cohen and Levesque (1990) initiated a great deal of work
in AI on reasoning about an agent goals and intentions. They
define a modal logic that includes operators for goals and be-
liefs, and define formulas INTEND1(ag, a)—agent ag in-
tends action a—and INTEND2(ag, p)—agent ag intends
goal p. INTEND1(ag, a) is the analogue of Definition 4.1,
while INTEND2(ag, p) is the analogue of Definition 4.6;
a goal for Cohen and Levesque is essentially an outcome.
Roughly speaking, agent ag intends to bring about ϕ if ag
has a plan that he believes will bring about ϕ (belief is cap-
tured using a modal operator, but we can think of it as corre-
sponding to “with high probability”), is justified in believing
so, and did not intend to bring out ¬ϕ prior to executing the
plan. Their framework does not allow us to model an agent’s
utility, nor can they express counterfactuals.

Kleiman-Weiner et al. (2015) give a definition of inten-
tion in the spirit of that given here. Specifically, it involves
counterfactual reasoning and takes expected utility into ac-
count. It gets the same results for intention in the standard
examples as the definition given here, for essentially the
same reasons. However, rather than using causal models,
they use influence diagrams. The agent’s intention when per-
forming a is then a minimal set of nodes whose fixation in
the influence diagram would result in some action a′ having
expected utility at least as high as that of a. They use their
definition of intention along with a model for the inference
of the agent’s epistemic state and utility function to model
human judgments in many moral dilemmas.

Perhaps closest to this paper is the work of Braham and
van Hees (2012). They say that an agent ag is morally re-
sponsible for an outcome ϕ if (a) his action a was a cause
of ϕ, (b) ag intended to perform a, and (c) ag had no eli-
gible action a′ with a higher avoidance potential. They do
not give a formal definition of intentionality, instead assum-
ing that in situations of interest to them, it is always satis-
fied. Roughly speaking, the avoidance potential of a with
respect to ϕ is the probability that a does not result in ϕ.
Thus, the notion of the avoidance potential of an action a
for ϕ being greater than that of a′ is somewhat related to
having δa,a′,ϕ > 0, although the technical details are quite
different.

In the full paper, other recent work (Berreby, Bourgne,
and Ganascia 2015; Gaudou et al. 2013; Lorini, Longin, and
Mayor 2014; Poel, Royakkers, and Zwart 2015; Vallentyne
2008) is also discussed.

7 Conclusion

People’s ascriptions of moral responsibility seem to involve
three components that we have called here causality, degree
of blameworthiness, and intention. We have given formal
definitions of the latter two. Because it is not clear exactly
how intention and degree of blame should be combined,
we have left them here as separate components of moral
responsibility.4 Considerations of moral responsibility have
become more pressing as we develop driverless cars, robots
that will help in nursing homes, and software assistants. The
framework presented here should help in that regard.

Our definitions of blameworthiness and intention were
given relative to an epistemic state that included a probabil-
ity measure and a utility function. This means that actions
could be compared in terms of expected utility; this played
a key role in the definitions. But there are some obvious
concerns: first, agents do not “have” complete probability
measures and utility functions. Constructing them requires
nontrivial computational effort. Things get even worse if we
try to consider what the probability and utility of a “reason-
able” person should be; there will clearly be far from com-
plete agreement about what these should be. And even if we
could agree on a probability and utility, it is not clear that

4In his influential work, Weiner (1995) distinguishes causality,
responsibility, and blame. Responsibility corresponds roughly to
what we have called blameworthiness, while blame roughly corre-
sponds to blameworthiness together with intention.
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maximizing expected utility is the “right” decision rule. One
direction for further research is to consider how the defini-
tions given here play out if we use, for example, a set of
probability measures rather than a single one, and/or use de-
cision rules other than expected utility maximization (e.g.,
maximin). Another issue that deserves further investigation
is responsibility as a member of the group vs. responsibility
as an individual (see the brief discussion after Example 3.4).
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