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Abstract

Inspired by the magic sets for Datalog, we present a novel
goal-driven approach for answering queries over terminating
existential rules with equality (aka TGDs and EGDs). Our
technique improves the performance of query answering by
pruning the consequences that are not relevant for the query.
This is challenging in our setting because equalities can po-
tentially affect all predicates in a dataset. We address this
problem by combining the existing singularization technique
with two new ingredients: an algorithm for identifying the
rules relevant to a query and a new magic sets algorithm. We
show empirically that our technique can significantly improve
the performance of query answering, and that it can mean the
difference between answering a query in a few seconds or not
being able to process the query at all.

1 Introduction

Existential rules with equality, also known as tuple- and
equality generating dependencies (TGDs and EGDs) or
Datalog± rules, extend Datalog by allowing rule heads to
contain existential quantifiers and the equality predicate ≈.
Answering a conjunctive query Q over a set of existential
rules Σ and a base instance B is key to dealing with in-
complete information in information systems (Fagin et al.
2005). The problem is undecidable in general, but many de-
cidable cases are known (Baget et al. 2011b; König et al.
2015; Baget et al. 2015a; Gottlob, Manna, and Pieris 2015;
Leone et al. 2012). Systems such as Llunatic (Geerts et
al. 2014), RDFox (Motik et al. 2014), DLV∃ (Leone et al.
2012), ChaseFUN (Bonifati, Ileana, and Linardi 2017), On-
top (Calvanese et al. 2017), and Graal (Baget et al. 2015b)
implement various query answering techniques. One solu-
tion to this problem is to evaluate the query in a univer-
sal model of Σ ∪B, and a common and practically rel-
evant case is when a finite universal model can be com-
puted using a chase procedure. Many chase variants have
been proposed. Although checking chase termination is un-
decidable for all variants (Deutsch, Nash, and Remmel 2008;
Marnette 2009), numerous sufficient acyclicity conditions
(Marnette 2009; Krötzsch and Rudolph 2011; Grau et al.
2013) guarantee termination of at least the oblivious Skolem
chase; we call such Σ ∪B terminating.
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Computing a universal model in full when only a specific
query is to be answered may be inefficient. We experimen-
tally show that query answers often depend only on a small
subset of the universal model, particularly for queries con-
taining constants, so the chase may perform a lot of unnec-
essary work. Moreover, universal models sometimes cannot
be computed due to their size. In such cases, goal-driven
query answering techniques, which take the query into ac-
count, hold the key to efficient query answering.

One possibility, implemented in systems such as Ontop
(Calvanese et al. 2017) and Graal (Baget et al. 2015b), is
to rewrite the relevant rules into a new query that can be
evaluated directly on the base instance. Rewriting into first-
order queries is possible for DL-lite (Calvanese et al. 2007),
linear TGDs (Calı̀, Gottlob, and Lukasiewicz 2012), and
sticky TGDs (Gottlob, Orsi, and Pieris 2014; Calı̀, Gottlob,
and Pieris 2010), among others. Frontier-guarded (Baget et
al. 2011a), weakly-guarded (Gottlob, Rudolph, and Simkus
2014), and Horn-SHIQ (Eiter et al. 2012) rules can be
rewritten into Datalog. Rewriting approaches, however, can-
not handle common properties that can be handled via the
chase, such as transitivity, and they typically support only
“innocuous” equalities that do not affect query answers.

In Datalog and logic programming, the magic sets al-
gorithm (Bancilhon et al. 1986; Beeri and Ramakrishnan
1991) annotates the rules with magic atoms, which ensure
that bottom-up evaluation of the magic program simulates
top-down query evaluation. This influential idea has been
adapted to disjunctive (Alviano et al. 2012a) and finitely re-
cursive (Calimeri et al. 2009) programs, programs with ag-
gregates (Alviano, Greco, and Leone 2011), and Shy existen-
tial rules (Alviano et al. 2012b). These approaches, however,
do not handle existential rules with equality.

In this paper we present what we believe to be the first
goal-driven query answering technique for terminating exis-
tential rules with equality. Given a set of rules Σ and a query
Q, we compute a logic program P such that, for each base
instance B, the answers to Q on Σ ∪B and P ∪B coincide,
but processing the latter is typically much more efficient.
Our approach combines existing techniques such as singu-
larization (Marnette 2009) with two new ingredients: a new
relevance analysis algorithm that identifies irrelevant rules,
and a new magic sets variant that handles existential rules
with equality. These two techniques are complementary: the
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first one prunes rules whose consequences are irrelevant to
the query, and the second one prunes the irrelevant conse-
quences of the remaining rules. Since equalities can poten-
tially affect any predicate, both techniques are needed to ef-
ficiently identify the relevant equalities.

We have empirically evaluated our technique on a recent
benchmark that includes a diverse set of existential rules
(Benedikt et al. 2017). Our results show that goal-driven
query answering is generally more efficient than computing
the chase in full. In fact, our approach can mean the dif-
ference between success and failure: even though the chase
cannot be computed in several cases, we can answer the rel-
evant queries in a few seconds. We also show that relevance
analysis alone is very effective at eliminating irrelevant rules
even without equalities. Finally, we show that magic sets
alone can be less efficient on queries without constants, but
it greatly benefits queries with constants. A combination of
both techniques usually provides the best performance.

All proofs and further experimental results are given in the
extended version (Benedikt, Motik, and Tsamoura 2017).

2 Preliminaries
We use the standard first-order logic notions of variables,
constants, function symbols, predicates, arity, terms, atoms,
and formulas, and ≈ is the binary equality predicate. Atoms
≈(s, t) are equational and are usually written as s ≈ t, and
all other atoms are relational. A fact is a variable-free atom,
an instance is a (possibly infinite) set of facts, and a base
instance is a finite, function-free instance. We consider two
notions of entailment: |= interprets ≈ as an “ordinary predi-
cate” without any special semantics, whereas |=≈ interprets
≈ under the usual semantics of equality without the unique
name assumption (UNA)—that is, distinct constants can be
derived equal. A theory T satisfies UNA if no two distinct
constants a and b exist such that T |=≈ a ≈ b. For example,
let ϕ = A(a) ∧ a ≈ b. Then, ϕ |=≈ A(b) and ϕ |=≈ b ≈ a,
and ϕ does not satisfy UNA. In contrast, ϕ �|= A(b) and
ϕ �|= b ≈ a. We often abbreviate a tuple t1, . . . , tn as t, and
we often treat t as a set and write ti ∈ t.

A term t occurs in a term, atom, tuple, or set X if X
contains t possibly nested inside another term; vars(X) is
the set of variables occurring in X; and X is ground if
vars(X) = ∅. For σ a mapping of variables and/or constants
to terms, σ(X) replaces each occurrence of a term t in X
with σ(t) if the latter is defined, and σ is a substitution if its
domain is finite and contains only variables. For μ a mapping
of ground terms to ground terms, μ�X� replaces each occur-
rence of a term t not nested in a function symbol with μ(t)
if the latter is defined. For example, let A = R(f(x), g(a));
then, σ(A) = R(f(b), g(c)) for σ = {x �→ b, a �→ c}, and
μ�A� = R(f(x), h(d)) for μ = {a �→ b, g(a) �→ h(d)}.

Existential rules are logical implications of two forms:
∀x.[λ(x) → ∃y.ρ(x,y)] is a tuple-generating dependency
(TGD), and ∀x.[λ(x) → t1 ≈ t2] is an equality-generating
dependency (EGD), where λ(x) and ρ(x,y) are conjunc-
tions of relational, function-free atoms with variables in x
and x ∪ y, respectively, t1 and t2 are variables from x or
constants, and each variable in x occurs in λ(x). Quantifiers
∀x are commonly omitted. Conjunction λ(x) is the body of

a rule, and ρ(x,y) and t1 ≈ t2 are its head. We assume that
queries are defined using a query predicate Q that does not
occur in rule bodies or under existential quantifiers. A tuple
a of constants is an answer to Q on a finite set of existential
rules Σ and a base instance B iff Σ ∪B |=≈ Q(a).

When treating ≈ as “ordinary,” we allow rule bodies to
contain equality atoms, and we can axiomatize the “true”
semantics of ≈ for Σ as follows. Let R(Σ) and C(Σ) contain
the reflexivity (1) and congruence (2) axioms, respectively,
instantiated for each n-ary predicate R in Σ distinct from ≈
and each 1 ≤ i ≤ n. Let ST contain the symmetry (3) and the
transitivity (4) axioms. We assume that each base instance
contains only the predicates of Σ, since the equality axioms
are then determined only by Σ. Then, for each base instance
B and tuple of constants a, we have Σ ∪B |=≈ Q(a) if and
only if Σ ∪ R(Σ) ∪ C(Σ) ∪ ST ∪B |= Q(a).

R(. . . , xi, . . . ) → xi ≈ xi (1)

R(. . . , xi, . . . ) ∧ xi ≈ x′
i → R(. . . , x′

i, . . . ) (2)
y ≈ x → x ≈ y (3)

x ≈ y ∧ y ≈ z → x ≈ z (4)

Our algorithms use logic programming, which we define
next. A rule r has the form R(t) ← R1(t1) ∧ · · · ∧Rn(tn),
where R(t) and Ri(ti) are atoms possibly containing func-
tion symbols. Each variable in r must occur in some ti.
To distinguish existential from logic programming rules, we
use → for the former and ← for the latter. Conjunction
b(r) = R1(t1) ∧ · · · ∧Rn(tn) is the body of r and we of-
ten treat it as a set, and atom h(r) = R(t) is the head of r.
Predicate ≈ is always ordinary in logic programming, so R
and Ri can be ≈. A (logic) program P is a finite set of rules,
and it is interpreted in first-order logic as usual. Again, we
assume that a query in P is defined using the predicate Q
not occurring in rule bodies. For I an instance, TP (I) is the
result of extending I with σ(h(r)) for each rule r ∈ P and
substitution σ such that σ(b(r)) ⊆ I . Finally, for B a base
instance, we inductively define a sequence of interpretations
where I0 = B and Ii = TP (Ii−1) for i > 0; then, the least
fixpoint of P on B is T∞

P (B) =
⋃

i≥0 Ii. It is well known
that P ∪B |= F iff F ∈ T∞

P (B) holds for each fact F .
Our algorithms reduce query answering over existential

rules to reasoning in logic programming. We eliminate ex-
istential quantifiers by computing the Skolemization sk(Σ)
of a set Σ of existential rules. Set sk(Σ) contains each
EGD of Σ as a logic programming rule and, for each TGD
τ = λ(x) → ∃y.ρ(x,y) ∈ Σ and each R(t) ∈ ρ(x,y), set
sk(Σ) contains the rule σ(R(t)) ← λ(x) where σ is a
substitution mapping each variable y ∈ y to fτ,y(x

′) for
x′ = vars(λ(x)) ∩ vars(ρ(x,y)) and fτ,y a fresh function
symbol unique for τ and y. Let P = sk(Σ); if Σ and B
do not contain ≈, then for each predicate R and tuple a of
constants, we have Σ ∪B |= R(a) iff P ∪B |= R(a). If Σ
or B contains ≈, we can axiomatize equality using axioms
R(P ), C(P ), and ST defined analogously to (1)–(4); then,
P ′ = P ∪ R(P ) ∪ C(P ) ∪ ST captures the intended seman-
tics of ≈, and Σ ∪B |=≈ R(a) iff P ′ ∪B |= R(a).

Now let P and P ′ be as in the previous paragraph. We
could answer queries over such P ′ by computing T∞

P ′ (B)
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and evaluating Q on it, but this is inefficient even when P is
just a Datalog program (Motik et al. 2015) since firing con-
gruence rules can be prohibitively expensive. The chase for
logic programs offers a more efficient method for reason-
ing with P ′ ∪B by efficiently computing a representation
of T∞

P ′ (B). It is applicable if P does not contain constants,
function symbols, or ≈ in the rule bodies. The algorithm
constructs a sequence of pairs 〈Ii, μi〉, i ≥ 0, where Ii is an
instance and μi maps ground terms to ground terms. The al-
gorithm initializes I0 to a normalized version of B where
all constants reachable by ≈ in B are replaced by a repre-
sentative, and it records these replacements in μ0. For each
i > 0, the chase selects a rule r ∈ P and a substitution σ
with σ(b(r)) ⊆ Ii−1 and (i) if σ(h(r)) is of the form s ≈ t
and s �= t, then one term, say s, is selected as the represen-
tative, and Ii and μi are obtained from Ii−1 and μi−1 by
replacing t with s and setting μi(t) = s; and (ii) if σ(h(r))
does not contain ≈ and σ(h(r)) �∈ Ii−1, then μi = μi−1 and
Ii = Ii−1 ∪ {μi�σ(h(r))�}. The computation proceeds until
no rule is applicable and then returns the final pair 〈In, μn〉.
If the representatives are always chosen as smallest in an ar-
bitrary, but fixed well-founded order on ground terms, then
the result is unique for P and B and it is called the chase of
P on B, written chase(P,B). The following properties of
the chase are well known (Benedikt et al. 2017).
Proposition 1. For each program P , base instance B,
chase(P,B) = 〈I, μ〉, and P ′ = P ∪ R(P ) ∪ C(P ) ∪ ST,
(i) μ(t1) = μ(t2) if and only if P ′ ∪B |= t1 ≈ t2, for all
ground terms t1 and t2, and (ii) P ′ ∪B |= R(t) if and only
if R(μ�t�) ∈ I , for each ground relational atom R(t).

Intuitively, μ(t) is a unique representative of each ground
term t, and the chase maintains and propagates facts only
among the representative facts of T∞

P ′ (B), instead of naı̈vely
firing congruence rules. The algorithm is used in systems
such as Llunatic and RDFox (Benedikt et al. 2017).

When reasoning with equality, an important question is
whether programs are allowed to equate constants. We say
that P and B satisfy UNA if P ′ ∪B |= a ≈ b implies a = b.
Our algorithms do not require UNA to be satisfied, but cer-
tain steps can be optimized if we know that UNA is satisfied.

3 Motivation and Overview

To understand the challenges of goal-driven query answer-
ing over existential rules with ≈, let Σex consist of (5)–(9).

A(x) ∧R(x, y) → Q(x) (5)
S(x, z) → ∃y.R(x, y) (6)

R(x, y) ∧ S(x, x′) ∧R(x′, y′) → y ≈ y′ (7)
B(x) → ∃y.T (x, y) ∧A(y) (8)

T (x, y) → x ≈ y (9)

Let Bex = {B(a1)} ∪ {S(ai−1, ai) | 1 < i ≤ n}. One can
check that Σex ∪Bex |= Q(ai) holds only for i = 1; how-
ever, all bottom-up techniques known to us will “fire” (6)
and (7) for all ai. In logic programming, goal-driven or top-
down approaches, such as SLD resolution, start from the
query and search for proofs backwards. The magic sets al-
gorithm transforms a program so that evaluating the result

Algorithm 1 Compute the answers to query Q over a finite
set of existential rules Σ and a base instance B
1: Σ1 ··= sg(Σ)
2: P2 ··= sk(Σ1)
3: P3 ··= relevance(P2, B)
4: P4 ··= magic(P3)
5: P5 ··= defun(P4)
6: P6 ··= desg(P5)
7: 〈I, μ〉 ··= chase(P6, B)
8: for each Q(a) ∈ I where a are constants do
9: output each tuple of constants b with μ�b� = a

bottom-up mimics top-down evaluation. These approaches
are not directly applicable to existential rules, but we can
apply them to the program P ′ = P ∪ R(P ) ∪ C(P ) ∪ ST,
obtained by Skolemizing TGDs as P = sk(Σex) and then
axiomatizing equality. This, however, is inefficient since the
congruence axioms introduce many redundant proofs. In
particular, Skolemizing (6) produces R(x, f(x)) ← S(x, z).
By rule (7), we have P ′ |= f(ai−1) ≈ f(ai) for 1 < i ≤ n
so, by the reflexivity, symmetry, and transitivity axioms for
≈, we have P ′ |= f(ai) ≈ f(aj) for 1 ≤ i, j ≤ n. Hence,
by the congruence axioms, we have P ′ |= R(ai, f(aj)).
Thus, P ′ |= Q(a1) has (at least) n proofs, where the first step
uses a ground rule instance Q(a1) ← A(a1) ∧R(a1, f(ai))
for each 1 ≤ i ≤ n. The magic sets algorithm will explore
all of these proofs, which is very expensive. In contrast, our
technique can answer the query by considering this rule in-
stantiated only for i = 1 (see Example 5).

We present an approach that gives the benefits of top-
down approaches, while radically pruning the set of consid-
ered proofs. Our approach has additional benefits. It does not
require UNA, but certain steps can be optimized if Σ ∪B
satisfies UNA (e.g., if an earlier UNA check succeeded).
Moreover, it preserves chase termination, and it includes an
optimized magic set transformation using the symmetry of
equality to greatly reducing the number of output rules.

Our technique is presented in the pipeline shown in Al-
gorithm 1. Instead of axiomatizing equality, we first ap-
ply singularization (line 1), a well-known transformation
that makes all relevant equalities explicit (Marnette 2009;
ten Cate et al. 2009), and then we convert the result to a
logic program using Skolemization (line 2). Next, we ap-
ply a relevance analysis algorithm (line 3) that identifies the
rules relevant to the query. We next apply the magic sets
transformation optimized for ≈ (line 4); the removal of irrel-
evant equality atoms during relevance analysis ensures that
this step produces a smaller program. Finally, we remove the
function symbols (line 5) and equalities (line 6) from rule
bodies, obtaining a program that can be safely evaluated us-
ing the chase for logic programs (lines 7–9). We explain the
components in detail in the following sections.

4 Singularization

Singularization is an alternative to congruence axioms.

Definition 1. A singularization of an existential rule τ is ob-
tained from τ by exhaustively (i) replacing each occurrence
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of a constant c in a relational body atom with a fresh vari-
able x and adding atom x ≈ c to the body, and (ii) for each
variable x occurring at least twice in (not necessarily dis-
tinct) relational body atoms, replacing one such occurrence
with a fresh variable x′ and adding atom x′ ≈ x to the body.

A singularization of a set of existential rules Σ defining
the query predicate Q is obtained by replacing each TGD of
the form ϕ → Q(x1, . . . , xn) with (10) for x′

1, . . . , x
′
n fresh

variables, and then singularizing all existential rules.

ϕ ∧
∧n

i=1 xi ≈ x′
i → Q(x′

1, . . . , x
′
n) (10)

Example 1. On Σex, singularization leaves (6), (8), and (9)
intact since their bodies do not contain repeated variables.
Rules (5) and (7) are singularized as (11) and (12).

A(x′′) ∧ x ≈ x′′ ∧R(x, y) ∧ x ≈ x′ → Q(x′) (11)
R(x, y) ∧ x ≈ x′′ ∧

S(x′′, x′) ∧ x′ ≈ x′′′ ∧R(x′′′, y′) → y ≈ y′ (12)

The result of singularization is not unique: (5) could also
produce A(x) ∧ x ≈ x′′ ∧R(x′′, y) ∧ x ≈ x′ → Q(x′). In
our approach, we let sg(Σ) be any singularization of Σ.

Singularization highlights the relevant equalities originat-
ing from joins, which in turn preserves all query answers
without relying on congruence axioms: for each base in-
stance B and tuple a of constants, we have Σ ∪B |=≈ Q(a)
if and only if sg(Σ) ∪ R(Σ) ∪ ST ∪B |= Q(a). Singular-
ization still relies on reflexivity axioms. As an important op-
timization, we prove that these do not need to be analyzed
in the remaining steps of our pipeline, which ensures that
our pipeline produces smaller, more efficient programs. To
achieve this, we show that our transformations produce rules
satisfying the following condition.

Definition 2. A rule r is ≈-safe if, for each equality atom
A ∈ b(r), the atom is of the form x ≈ y or x ≈ s for s a
ground term, and vars(A) ∩ ti �= ∅ for some relational atom
Ri(ti) ∈ b(r). A program is ≈-safe all its rules are ≈-safe.

Intuitively, ≈-safety ensures that each fact t ≈ t match-
ing a body atom of a rule r can be derived from another
relational body atom of r. Thus, we do not need to pass the
reflexivity axiom as input to the steps of our pipeline in or-
der to determine which of these are pertinent to Q. Instead,
the pertinent reflexivity axioms are determined directly by
the predicates occurring in the result of each pipeline step.

We apply Skolemization after singularization to eliminate
existential quantifiers.

Example 2. In our running example, only (6) and (8) con-
tain existential quantifiers, so they are replaced by (14), and
(16) and (17); all other rules are reinterpreted as logic pro-
gramming rules. Program P2 contains rules (13)–(18).

Q(x′) ← A(x′′) ∧ x ≈ x′′ ∧R(x, y) ∧ x ≈ x′ (13)
R(x, f(x)) ← S(x, z) (14)

y ≈ y′ ← R(x, y) ∧ x ≈ x′′ ∧ S(x′′, x′) ∧
x′ ≈ x′′′ ∧R(x′′′, y′) (15)

T (x, g(x)) ← B(x) (16)
A(g(x)) ← B(x) (17)

x ≈ y ← T (x, y) (18)

The answers to Q on Σ ∪B and P2 ∪ R(P2) ∪ ST ∪B
coincide on each base instance B, but the absence of con-
gruence axioms considerably reduces the number of proofs:
EGD (7) still ensures P2 |= f(ai) ≈ f(aj) for 1 ≤ i, j ≤ n,
but P2 |= R(ai, f(aj)) holds only for i = j. Thus, the only
remaining proof of P2 |= Q(a1) is via the ground instance
Q(a1) ← C(a1) ∧R(a1, f(a1)), which benefits all goal-
driven techniques, including magic sets. Also, none of the
facts derived by EGD (7) contribute to a proof of Q(a1),
so singularization makes EGD redundant; in Section 5 we
present way to detect and eliminate such rules.

5 Relevance Analysis

The next step of the pipeline eliminates rules all of whose
consequences are irrelevant to Q. The idea is to homomor-
phically embed B into a much smaller instance B′ called an
abstraction of B. If B′ is sufficiently small, we can analyze
ways to derive answers to Q on B′; since homomorphism
composition is a homomorphism, this will uncover all ways
to derive an answer to Q on the original base instance B.

Definition 3. A base instance B′ is an abstraction of a base
instance B w.r.t. a program P if there exists a homomor-
phism η from B to B′ preserving the constants in P—that
is, η maps constants to constants such that η(B) ⊆ B′ and
η(c) = c for each constant c occurring in P .

To abstract B into B′, we can use the critical instance for
B: for C the set of constants of P and ∗ a fresh constant,
we let B′ contain R(a) for each n-ary predicate R occur-
ring in B and each a ∈ (C ∪ {∗})n. We can further refine
the abstraction if predicates are sorted (i.e., each predicate
position is associated with a sort such as strings or integers):
we introduce a distinct fresh constant ∗i per sort, and we
form B′ as above while honoring the sorting requirements.

Algorithm 2 takes an ≈-safe program P and a base in-
stance B, and it returns the rules relevant to answering Q on
B. It selects an abstraction B′ of B w.r.t. P (line 1), com-
putes the consequences I of P on B′ (line 2), and identifies
the rules of P contributing to the answers of Q on B′ by a
form of backward chaining. It initializes the “ToDo” set T to
all homomorphic images of the answers to Q on B′ (line 3)
and then iteratively explores T (lines 5–12). In each itera-
tion, it extracts a fact F from T (line 6) and then identifies
each rule r and substitution ν matching the head of r to F
and the body of r in I (line 7). Such ν captures ways of de-
riving a fact represented by F from B via r, so r is added to
the set R of relevant rules if such μ exists (line 8). Finally,
the matched body atoms must be derivable as well, so they
are all added to T (line 11). The “done” set D ensures that
each fact is added to T just once, which ensures termination.

We can optimize the algorithm if P ∪B is known to sat-
isfy UNA (e.g., if an earlier UNA check was conducted). If
ν matches an atom x ≈ t ∈ b(r) as c ≈ c, the correspond-
ing derivation from P and B necessarily matches x ≈ t to
d ≈ d for some constant d; due to ≈-safety, we can derive
d ≈ d using reflexivity axioms, so we do not need to exam-
ine other proofs for d ≈ d (line 10). Moreover, if all matches
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Algorithm 2 relevance(P,B)

1: choose an abstraction B′ of B w.r.t. P
2: I ··= T∞

P ′ (B′) for P ′ = P ∪ R(P ) ∪ ST
3: D ··= T ··= {Q(a) ∈ I | a is a tuple of constants}
4: R ··= ∅ and B ··= ∅
5: while T �= ∅ do
6: choose and remove some fact F from T
7: for each r ∈ P ∪ ST and substitution ν such that

ν(h(r)) = F and ν(b(r)) ⊆ I do
8: if r �∈ R ∪ ST then add r to R
9: for each Gi ∈ ν(b(r)) do

10: if Gi is not of the form c ≈ c with c a constant, or
P ∪B is not known to satisfy UNA then

11: if Gi �∈ D then add Gi to T and D
12: if Gi is an equality then add 〈r, i〉 to B
13: if P and B and known to satisfy UNA then
14: for each r ∈ R and each i-th atom of b(r) of the form

x ≈ t with t a term and 〈r, i〉 �∈ B do
15: remove x ≈ t from r and replace x with t in r

16: return R

of x ≈ t are of such a form, then we can replace x with t in
r and inform the subsequent magic sets transformation step
that no equalities are relevant to this atom. To this end, Algo-
rithm 2 maintains a set B of “blocked” body equality atoms
that records all body equality atoms that can be matched to
an equality not of the form d ≈ d (line 12). After considering
all possibilities for deriving certain answers, body equality
atoms that have not been blocked are removed (lines 13–15).

The computation of I in line 2 may not terminate in gen-
eral, but we shall apply Algorithm 2 in our pipeline only
in cases where termination is guaranteed. Theorem 1 shows
that, in that case, the query answers remain preserved.
Theorem 1. For each ≈-safe program P defining the query
predicate Q and base instance B where line 2 of Algorithm 2
terminates, program R = relevance(P,B) is ≈-safe, and,
for each tuple a of constants, P ∪ R(P ) ∪ ST ∪B |= Q(a)
if and only if R∪ R(R) ∪ ST ∪B |= Q(a).

If computing T∞
P ′ (B′) in line 1 is difficult (as is the case in

some of our experiments), we can replace each term f(x) in
P with a fresh constant cf unique for f . This does not affect
the algorithm’s correctness, since T∞

P ′ (B) can still be homo-
morphically embedded into T∞

P ′ (B′). Moreover, the result-
ing program then does not contain function symbols, and so
the computation in line 2 necessarily terminates.
Example 3. In our running example, UNA holds on Σex

and Bex, and we shall assume that this is known in advance.
Moreover, we shall take B′ to be the critical instance, con-
taining facts B(∗) and S(∗, ∗). Computing the least fixpoint
in line 2 of Algorithm 2 produces the following instance I .

B(∗) S(∗, ∗) R(∗, f(∗)) f(∗) ≈ f(∗)
T (∗, g(∗)) A(g(∗)) ∗ ≈ ∗ ∗ ≈ g(∗)
g(∗) ≈ ∗ g(∗) ≈ g(∗) Q(∗) Q(g(∗))

Algorithm 2 starts by considering Q(∗). Matching the fact to
the head of (13) and evaluating the body in I produces the
ground rule instance

Q(∗) ← A(g(∗)) ∧ ∗ ≈ g(∗) ∧R(∗, f(∗)) ∧ ∗ ≈ ∗;

thus, rule (13) is identified as relevant. UNA is known to
hold, so atom ∗ ≈ ∗ is not considered any further, but the al-
gorithm must consider the remaining body atoms. Matching
g(∗) ≈ f(∗) to the head of (18) and evaluating the body in I
produces the ground rule instance ∗ ≈ g(∗) ← T (∗, g(∗)),
so rule (18) is identified as relevant; moreover, matching
T (∗, g(∗)) to the head of (16) produces the ground rule in-
stance T (∗, g(∗)) ← B(∗), so rule (16) is identified as rele-
vant as well. In contrast, matching ∗ ≈ g(∗) to the head of
(15) produces query

R(x, ∗)∧ ≈ x′′ ∧ S(x′′, x′) ∧ x′ ≈ x′′′ ∧R(x′′′, g(∗)),
which has no matches in I; thus, rule (15) is not added
to R. Next, matching R(∗, f(∗)) to the head of (14) and
evaluating the body in I produces the ground rule instance
R(∗, f(∗)) ← S(∗, ∗); thus, rule (14) is identified as rele-
vant. Finally, B(∗) and S(∗, ∗) do not match any rule head,
so the algorithm terminates. Thus, the algorithm returns
all rules apart from (15). Moreover, atom x ≈ x′′ in (13)
is matched to ∗ ≈ f(∗) so it cannot be removed—that is,
this equality is relevant. In contrast, atom x ≈ x′ in (13) is
matched only to ∗ ≈ ∗; since we know that UNA holds, this
equality is irrelevant and it is removed in lines 13–15 of Al-
gorithm 2. Consequently, the algorithm returns program P3

consisting of rules (19)–(23).

Q(x) ← A(x′′) ∧ x ≈ x′′ ∧R(x, y) (19)
R(x, f(x)) ← S(x, z) (20)
T (x, g(x)) ← B(x) (21)
A(g(x)) ← B(x) (22)
x ≈ y ← T (x, y) (23)

6 Magic Sets for Existential Rules with ≈
We now present our variant of the magic sets transformation.
Our technique also mimics top-down evaluation, but with a
specialized treatment of equality that takes the symmetry of
≈ into account and further prunes the set of proofs for facts
of the form t ≈ t. In particular, singularization critically re-
lies on reflexivity axioms, and passing these to the magic
sets algorithm would significantly blow up the resulting rule
set. The ≈-safety of the rules implies that our magic trans-
formation does not need to be applied to the reflexivity rules,
which results in a much more efficient magic program.

We follow Beeri and Ramakrishnan (1991) in defining
adornments and magic predicates for predicates other than
≈, but, as we discuss shortly, we optimize these notions for
≈. Intuitively, an adornment identifies which arguments of
an atom will be bound by sideways information passing, and
a magic predicate will “collect” the passed arguments.
Definition 4. An adornment for an n-ary predicate R other
than ≈ is a string α of length n over alphabet b (“bound”)
and f (“free”), and mα

R is a fresh magic predicate unique
for R and α with arity equal to the number of b-symbols in
α. An adornment for ≈ has the form bb, bf, or fb, and mbb

≈
and mb�f

≈ are fresh magic predicates for ≈ of arity two and
one, respectively. For α an adornment of length n and t an
n-tuple of terms, tα contains in the same relative order each
ti ∈ t for which the i-th element of α is b.
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Definition 4 takes into account that, if one argument of
an equality atom is bound, the other argument will also be
bound due to the symmetry of ≈. Thus, predicate mb�f

≈ is
used for both bf and fb, where notation b�f stresses that
the positions of b and f are interchangeable. Moreover, at
least one argument of an equality atom must be bound, so ≈
cannot be adorned by ff. Definition 5 introduces a sideways
information passing strategy (SIPS), which determines how
information is propagated through the rule bodies. Function
reorder reorders the rule bodies to maximize information
passing, and function adorn decides which arguments of an
atom should be bound given a set of available bindings.

Definition 5. A sideways information passing strategy con-
sists of the following two functions.

For ϕ a conjunction of atoms and T a set of terms,
reorder(ϕ, T ) returns an ordering 〈R1(t1), . . . , Rn(tn)〉 of
the conjuncts of ϕ such that, for each equality atom Ri(ti) of
the form x ≈ y or x ≈ s where s is ground, z ∈ vars(ti) ex-
ists such that z ∈ T or z ∈ tj for some j < i with Rj �= ≈.

For R(t1, . . . , tk) an atom and V a set of variables,
adorn(R(t1, . . . , tk), V ) returns an adornment α for R such
that vars(tj) ⊆ V if the j-th element of α is b.

Algorithm 3 implements the magic sets transformation
optimized for ≈. It initializes the “ToDo” set T with the
magic predicate for the query (line 1) and processes T it-
eratively. For each magic predicate mα

R in T (line 3), it
identifies each rule r that can derive R (line 4). Adornment
α = b�f is processed as both bf and fb (lines 6–7), and each
other α is processed as is (line 9). In all cases, the algo-
rithm produces the modified rule by restricting the body of
r by the magic predicate corresponding to the head predi-
cate (line 12), and then it reorders (line 13) and processes
(lines 14–19) the body of r. For each body atom Ri(ti) with
Ri occurring in the head of P , the algorithm uses the SIPS to
determine an adornment γ identifying the bound arguments
(line 15), and it generates the magic rule that populates mb�f

≈
or mγ

Ri
with the bindings for Ri (line 18). The algorithm

takes into account that mb�f
≈ captures both bf and fb (line 16–

17). The magic rule would not be ≈-safe if Ri(ti) were an
equality atom with no arguments bound, which, at the end
of our pipeline, could produce a rule with variables occur-
ring the head but not the body. Thus, Definition 4 does not
introduce the ff adornment for ≈, and Definition 5 requires
at least one argument of each equality atom to be bound. Fi-
nally, the magic predicate must also be processed (line 19),
and the “done” set D ensures that this happens just once.

Theorem 2 shows that Algorithm 3 preserves ≈-safety
and query answers, and Theorem 3 shows that it also pre-
serves chase termination. The latter does not hold for all
programs with function symbols; for example, transform-
ing A(x) ← A(f(x)) can produce the nonterminating rule
mf

A(f(x)) ← mf
A(x). However, in Algorithm 1, the magic

sets are applied in line 4 only to programs P3 that do not
contain function symbols in the body, which suffices to show
that the heads of the magic rules are function-free and cannot
derive terms of unbounded depth, and therefore the transfor-
mation does not affect termination.

Algorithm 3 magic(P )

1: D ··= T ··= {mα
Q} and R ··= {mα

Q ←}, α = f · · · f
2: while T �= ∅ do
3: choose and remove some mα

R from T
4: for each r ∈ P ∪ ST such that h(r) = R(t) do
5: if R = ≈ and α = b�f then
6: process(r, α, bf)
7: process(r, α, fb)
8: else
9: process(r, α, α)

10: return R

11: procedure process(r, α, β) where h(r) = R(t)
12: add h(r) ← mα

R(t
β) ∧ b(r) to R

13: 〈R1(t1), . . . , Rn(tn)〉 ··= reorder(b(r), tβ)
14: for 1 ≤ i ≤ n s.t. Ri is ≈ or it occurs in P in a head do
15: γ ··= adorn(Ri(ti), vars(t

β) ∪
⋃i−1

j=1 vars(tj))

16: if Ri = ≈ and γ ∈ {bf, fb} then S ··= mb�f
≈

17: else S ··= mγ
Ri

18: add S(tγi ) ← mα
R(t

β) ∧
∧i−1

j=1 Rj(tj) to R
19: if S �∈ D then add S to T and D
Note: please remember that t1 ≈ t2 can also be written as
≈(t1, t2), so R(t) and Ri(ti) can be equality atoms.

Theorem 2. For each ≈-safe program P defining the query
predicate Q, program R = magic(P ) is ≈-safe; moreover,
for each base instance B and each tuple t of ground terms,

P ∪ R(P ) ∪ ST ∪B |= Q(t) iff
R∪ R(R) ∪ ST ∪B |= Q(t).

Theorem 3. Let P be a program where the body of each
rule is function-free, and let P1 = P ∪ R(P ) ∪ ST and
P2 = R∪ R(R) ∪ ST for R = magic(P ). For each base
instance B, if T∞

P1
(B) is finite, then T∞

P2
(B) is finite as well.

Example 4. Applying Algorithm 3 to P3 produces program
P4 consisting of rules (24)–(36). Horizontal lines separate
the rules produced in each invocation of process. Please note
that (23) produces (30) and (31) when b�f is interpreted as
bf, and (30) and (31) when b�f is interpreted as bf.

mf
Q ← (24)

Q(x) ← mf
Q ∧A(x′′) ∧ x ≈ x′′ ∧R(x, y) (25)

mf
A ← mf

Q (26)

mb�f
≈ (x′′) ← mf

Q ∧A(x′′) (27)

mbf
R(x) ← mf

Q ∧A(x′′) ∧ x ≈ x′′ (28)
A(g(x)) ← mf

A ∧B(x) (29)
x ≈ y ← mb�f

≈ (x) ∧ T (x, y) (30)

mbf
T (x) ← mb�f

≈ (x) (31)
x ≈ y ← mb�f

≈ (y) ∧ T (x, y) (32)

mfb
T (y) ← mb�f

≈ (y) (33)
T (x, g(x)) ← mbf

T (x) ∧B(x) (34)
T (x, g(x)) ← mfb

T (g(x)) ∧B(x) (35)
R(x, f(x)) ← mbf

R(x) ∧ S(x, z) (36)

1766



7 Final Transformations

The final steps ensure that the resulting program can be eval-
uated efficiently using the chase for logic programs, which,
as explained in Section 2, can handle only programs with no
constants, function symbols, and ≈ in the rule bodies. The
magic sets transformation can introduce body atoms with
function symbols, so Definition 6 removes these by intro-
ducing fresh predicates. Proposition 2 shows the query an-
swers remain preserved since the fresh predicates can always
be interpreted to reflect the structure of the ground functional
terms encountered during the chase.
Definition 6. Program defun(P ) is obtained from a pro-
gram P by exhaustively applying the following steps.
1. In the body of each rule, replace each occurrence of a

constant c with a fresh variable zc unique for c, add atom
Fc(zt) to the body, and add the rule Fc(c) ←.

2. In the body of each rule, replace each occurrence of a
term t of the form f(s) with a fresh variable zt unique for
t, and add atom Ff (s, zt) to the body.

3. For each rule r and each term of the form f(s) occurring
in h(r) with f a function symbol considered in the second
step, add the rule Ff (s, f(s)) ← b(r).

Proposition 2. For each program P and P ′ = defun(P ),
base instance B, predicate R not of the form Ff , and tuple
t of ground terms, P ∪ R(P ) ∪ ST ∪B |= R(t) if and only
if P ′ ∪ R(P ′) ∪ ST ∪B |= R(t).

Definition 7 reverses the effects of singularization and re-
moves all body equality atoms. As a side-effect, this reduces
the number of rule variables, which simplifies rule matching.
Definition 7. The desingularization of a rule is obtained by
repeatedly removing each body atom of the form x ≈ t while
replacing x with t everywhere in the rule. For P a program,
desg(P ) contains a desingularization of each rule of P .

We evaluate the final program using the chase for logic
programs, which captures the effects of congruence axioms.
Note, however, that program P5 from Algorithm 1 contains
fresh predicates introduced by the magic sets transformation
and the elimination of function symbols, to which the chase
will (implicitly) apply congruence axioms as well. Theo-
rem 4 shows that this preserves the query answers, and its
proof is not trivial: adding congruence axioms to a program
produces new consequences, so the proof depends on the
fact program P5 was obtained as shown in Algorithm 1.
Theorem 4. For each finite set of existential rules Σ defin-
ing the query predicate Q, each base instance B, each tu-
ple of constants a, and program P6 obtained from Σ and
B by applying Algorithm 1, Σ ∪B |=≈ Q(a) if and only if
P6 ∪ R(P6) ∪ C(P6) ∪B |= Q(a).

Theorem 5 shows that our entire pipeline is correct. Note
that, if the Skolem chase of sg(Σ) terminates on every base
instance, then line 2 of Algorithm 2 necessarily terminates.
Theorem 5. For each finite set of existential rules Σ defin-
ing the query predicate Q such that the chase of sg(Σ) ter-
minates on all base instances, and for each base instance
B, Algorithm 1 outputs precisely all answers to Q on Σ ∪B
and then terminates.

Example 5. In our running example, program P6 contains
rules (37)–(52), where (34) produces (48) and (49), and (35)
produces (50) and (51).

mf
Q ← (37)

Q(x) ← mf
Q ∧A(x) ∧R(x, y) (38)

mf
A ← mf

Q (39)

mb�f
≈ (x′′) ← mf

Q ∧A(x′′) (40)

mbf
R(x′′) ← mf

Q ∧A(x′′) (41)
A(g(x)) ← mf

A ∧B(x) (42)

Fg(x, g(x)) ← mf
A ∧B(x) (43)

x ≈ y ← mb�f
≈ (x) ∧ T (x, y) (44)

mbf
T (x) ← mb�f

≈ (x) (45)
x ≈ y ← mb�f

≈ (y) ∧ T (x, y) (46)

mfb
T (y) ← mb�f

≈ (y) (47)
T (x, g(x)) ← mbf

T (x) ∧B(x) (48)

Fg(x, g(x)) ← mbf
T (x) ∧B(x) (49)

T (x, g(x)) ← Fg(x, zg(x)) ∧mfb
T (zg(x)) ∧B(x) (50)

Fg(x, g(x)) ← Fg(x, zg(x)) ∧mfb
T (zg(x)) ∧B(x) (51)

R(x, f(x)) ← mbf
R(x) ∧ S(x, z) (52)

Program P6 contains no constants, function symbols, or
equality atoms in the body, so we can answer Q on P6 and
Bex using the chase for logic programs and thus avoid com-
puting the least fixpoint for a program that explicitly axiom-
atizes equality. Doing so derives the following facts.

mf
Q mf

A A(g(a1)) Fg(a1, g(a1))

mb�f
≈ (g(a1)) mfb

T (g(a1)) T (a1, g(a1))

Next, rule (46) derives a1 ≈ g(a1), so the chase for logic
programs takes a1 as the representative of g(a1) and re-
places g(a1) with a1, thus deriving the following facts.

mf
Q mf

A A(a1) Fg(a1, a1)

mb�f
≈ (a1) mfb

T (a1) T (a1, a1)

After this, the chase further derives the following facts.

mbf
T (a1) mbf

R(a1) R(x, f(a1)) Q(a1)

Note that no facts involving ai with i ≥ 2 are derived, as
these are irrelevant to answering Q. Thus, evaluating P6 on
Bex produces far fewer facts than applying the chase for
logic programs to sk(Σex).

8 Empirical Evaluation

We evaluated our technique using CHASEBENCH (Benedikt
et al. 2017), a recent benchmark offering a mix of scenarios
that simulate data exchange and ontology reasoning appli-
cations. We selected the scenarios summarized in Table 1,
each comprising a set of existential rules, a base instance,
and several queries. LUBM-100 and LUBM-1K are de-
rived from the well-known Semantic Web LUBM (Guo, Pan,
and Heflin 2011) benchmark; DEEP300 is a “stress test”
scenario; DOCTORS-1M simulates data exchange between
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TGDs EGDs Facts Queries
free const.

LUBM-100 136 0 12M 4 10
LUBM-1K 136 0 120M 4 10
DEEP300 1, 300 0 1 k 20 0
DOCTORS-1M 5 4 1M 7 11
STB-128 199 93 1M 24 26
ONT-256 529 348 2M 34 8

Note: “const.” and “free” are the numbers of
queries with and without constants, respectively.

Table 1: Summary of the test scenarios

medical databases; and STB-128 and ONT-256 were pro-
duced using the IBENCH and TOXGENE rule and instance
generators. The first three scenarios contain only TGDs,
and the remaining ones contain EGDs as well. All rules
are weakly acyclic, so the chase always terminates. Finally,
UNA was known to hold in all cases (Benedikt et al. 2017).

To compute the chase of the final program (line 7 of Al-
gorithm 1), we used the RAM-based RDFox system written
in C++.1 We implemented our technique in Java on top of
the CHASEBENCH (Benedikt et al. 2017) library. We used
just one thread while computing the chase. Our system and
the test data are available online.2

No existing goal-driven query answering techniques can
handle these scenarios, as explained in the introduction.
Thus, we primarily compared the performance of comput-
ing the chase with no optimizations (MAT), with the pipeline
that uses just the magic sets and omits the relevance analysis
(MAG), with the pipeline that uses just the relevance analy-
sis and omits the magic sets (REL), and the entire pipeline
with both relevance analysis and magic sets (REL+MAG).
The MAT variant thus provides us with a baseline, and the
remaining tests allow us to identify the relative contribution
of various steps of our pipeline. Note that, in the presence of
EGDs, we always used singularization and the other relevant
steps of our pipeline, rather than the congruence axioms. On
TGDs only, our algorithm becomes equivalent to the classi-
cal algorithm of Beeri and Ramakrishnan (1991).

In each test run, we computed the program P6 from Algo-
rithm 1 (skipping the relevance analysis and/or magic sets,
as required for the test type), computed chase(P6, B), and
output the certain answers of Q as shown in line 9 of Algo-
rithm 1. We recorded the wall-clock time of each run (with-
out the loading times) and the number of facts derived by the
chase; the latter provides an implementation-independent
measure of the work needed to answer a query. In line 1 of
Algorithm 2, we abstracted the base instance using the typed
critical instance; however, computing the least fixpoint of
such an abstraction was infeasible on DEEP300 so, in this
case only, we used the optimization from Section 5.

Figure 1 summarizes the query times and the numbers
of derived facts for our 158 test queries. The whiskers of
each box plot show the minimum and maximum values,
the box shows the lower quartile, the median, and the up-

1http://www.cs.ox.ac.uk/isg/tools/RDFox/
2http://github.com/tsamoura/chaseGoal

per quartile, and the diamond shows the average. The dis-
tributions of these values are shown in more detail in the
appendix of the extended version (Benedikt, Motik, and
Tsamoura 2017). Table 2 shows the times for computing the
least fixpoint of the abstraction in line 2 of Algorithm 2,
which are insignificant in all cases apart from DEEP300.
On REL and REL+MAG, one query of DEEP300 and nine
queries of STB-128 could not be processed by the rele-
vance analysis for reasons we discuss shortly. Moreover, all
queries of LUBM-1K and DEEP300 on MAT, three queries
of LUBM-1K and one of DEEP300 on MAG, all queries of
LUBM-1K and one of DEEP300 on REL, and three queries
of LUBM-1K on REL+MAG could not be processed due to
memory exhaustion while computing the chase.

Figure 1 clearly shows that our technique is generally very
effective and can mean the difference between success and
failure: the chase for LUBM-1K and DEEP300 could not
be computed on our test machine, whereas REL+MAG can
answer 11 out of 14 queries on LUBM-1K in at most 45 s,
and 19 out of 20 queries on DEEP300 in at most 18 s. The
upper quartile of query times for REL+MAG is at least an
order of magnitude below the times for MAT in all cases
apart from DOCTORS-1M, where this holds for the median.
Overall, REL+MAG achieves the best performance.

In addition, relevance analysis alone can lead to signifi-
cant improvements: the query times for REL and REL+MAG
are almost identical on DEEP300 and ONT-256, suggest-
ing that the improvements are due to relevance analysis,
rather than magic sets. On some queries of STB-128 and
ONT-256, the relevance analysis eliminates all rules and
thus proves that queries have no answers. The benefits of
relevance analysis are marginal only on LUBM, mainly be-
cause its TGDs contain few existential quantifiers.

However, relevance analysis also has its pitfalls: we could
not run it on one query of DEEP300 with eight body atoms,
and on nine queries of STB-128 containing between 11 and
19 output variables that, after singularization, have between
19 and 22 body atoms. Atoms of these queries match to
many facts in the least fixpoint of the abstraction, so query
evaluation explodes either in line 2 or line 7 of Algorithm 2.
One additional query of DEEP300 exhibited similar issues,
which we addressed by (manually) tree-decomposing the
query and thus reducing the number of matches.

To investigate the cases in which magic sets are particu-
larly beneficial, Table 3 shows the minimum, maximum, and
median of the query times and the numbers of derived facts
for queries without and with constants. The maximum num-
bers of derived facts are particularly telling: without con-
stants, REL+MAG derives more facts compared to REL; and
with constants, the numbers for REL+MAG are several or-
ders of magnitude smaller compared to REL. Programs P3

in line 3 of Algorithm 1 are the same in both cases so this
improvement is clearly due to magic sets. In contrast, the
impact of constants is insignificant for REL, highlighting the
different strengths of relevance analysis and magic sets.

Unfortunately, magic sets are not “free”. For example,
MAT and REL are faster than both MAG and REL+MAG on
seven constant-free queries of DOCTORS-1M, and they out-
perform MAG on 17 queries of STB-128 and on 39 queries

1768



103

104

105

Ti
m

e
(m

s)

104

104.5

103

104

105

106

103

104

105

103

104

105

103

104

105

106

LUBM-100
101

104

107

#
Fa

ct
s

LUBM-1K
101

104

107

DEEP300
100

104

108

DOCTORS-1M
101

104

107

STB-128
100

105

ONT-256
100

105

Figure 1: Times and the numbers of derived facts. Black, green, blue and red are MAT, REL, MAG and REL+MAG, respectively.

LUBM DEEP300 DOCTORS-1M STB-128 ONT-256
Time 10ms 4700ms 10ms 200ms 650ms

Table 2: Times for computing the least fixpoints of the base instance abstractions

of ONT-256. In all these cases, the magic sets transforma-
tion increases the number of rules by one or two orders of
magnitude, which introduces considerable overhead during
chase computation. This can be particularly significant on
queries without constants: such queries tend to have more
answers and thus require exploring larger proofs.

Both relevance analysis and magic sets try to identify
proofs deriving a goal. Magic sets do this “at runtime”: the
transformed rules derive only facts that would be explored
by top-down reasoning. In contrast, relevance analysis iden-
tifies rules that can participate in such proofs “offline” by
checking whether all body atoms of a rule are derivable.
Combining the two optimizations is particularly effective at
reducing the overheads described in the previous paragraph.

9 Conclusion & Outlook

We presented a novel approach for goal-driven query an-
swering over terminating existential rules. Our empirical re-
sults clearly show that our technique can lead to significant
performance improvements and can mean the difference be-
tween success and failure to answer a query. In the future,
we shall investigate the use of magic sets for query answer-
ing on nonterminating, but decidable classes of existential
rules (e.g., guarded, linear, or sticky). We shall also consider
adding optimizations such as tabling and subsumption.
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Query times (seconds)

MAG REL REL+MAG
min max median min max median min max median

LUBM-100 N 1.62 93.56 11.43 1.69 26.24 25.29 1.59 77.14 11.30
Y 0.86 2.98 2.58 0.95 26.29 24.92 0.85 3.22 2.68

LUBM-1K
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Y 9.64 40.10 36.19 N/A N/A N/A 8.66 44.93 35.79
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The numbers of derived facts
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Table 3: Running times and the numbers of facts for queries without (“N”) and with (“Y”) constants
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