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Abstract

Causal discovery without intervention is well recognized as
a challenging yet powerful data analysis tool, boosting the
development of other scientific areas, such as biology, as-
tronomy, and social science. The major technical difficulty
behind the observation-based causal discovery is to effectively
and efficiently identify causes and effects from correlated
variables given the existence of significant noises. Previous
studies mostly employ two very different methodologies un-
der Bayesian network framework, namely global likelihood
maximization and locally complexity analysis over marginal
distributions. While these approaches are effective in their re-
spective problem domains, in this paper, we show that they can
be combined to formulate a new global optimization model
with local statistical significance, called structural equational
likelihood framework (or SELF in short). We provide thorough
analysis on the soundness of the model under mild conditions
and present efficient heuristic-based algorithms for scalable
model training. Empirical evaluations using XGBoost validate
the superiority of our proposal over state-of-the-art solutions,
on both synthetic and real world causal structures.

Introduction
Causal discovery is well recognized as a challenging yet pow-
erful data analysis tool (Pearl 2009; Spirtes, Glymour, and
Scheines 2000), used to support a wide class of important
applications, including biology (Grosse-Wentrup et al. 2016;
Cai, Zhang, and Hao 2013a), computational astronomy
(Schölkopf et al. 2016) and social science (Cai et al. 2017).
Given a group of observation samples, causal discovery
identifies the cause variables and effect variables, which
explains the underlying mechanism of the physical world.
While intervention is heavily exploited in the process of
traditional causal discovery, recent research efforts mostly
focus on analysis without intervention (Mooij et al. 2016b;
Spirtes and Zhang 2016), due to the forbidden cost.

Causal diagram is commonly used to model the causal
structure behind the multivariate observations, such that each
variable is statistically determined by only a number of causal
variables. The problem of causal discovery is therefore equiv-
alent to the reconstruction of the causal structure, especially
over the target effect variables. There are two general method-
ologies explored in the existing studies, which look into
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the problem in global and local views respectively. The ap-
proaches based on global view include the constraint-based
methods (Spirtes, Glymour, and Scheines 2000; Pearl and
Verma 1995), and the score-based approaches (Tsamardi-
nos, Brown, and Aliferis 2006; Lam and Bacchus 1994;
Ramsey et al. 2017). One common challenge behind the
global view methods is the problem of Markov equivalence
class (Andersson et al. 1997), such that certain causal graphi-
cal structures are indistinguishable based on marginal distri-
bution information only, even when there is no noise injected
into the stochastic generative process.

The approaches based on local view attempt to tackle the
problem by looking into the coding complexity of the vari-
ables in the generative model, taking errors and noises into
account. Specifically, the complexity of the generative pro-
cess from cause variables to effect variables is supposed to
be lower than the synthetic generative process on reversed di-
rection. While the general Kolmogorov complexity is not
computable (Janzing and Schölkopf 2010), a number of
simpler complexity models are proposed in the literature,
based on various assumptions over the generative process
beneath the distributions, post-nonlinear model (Zhang and
Hyvärinen 2009), additive noise model (Hoyer et al. 2009;
Peters et al. 2014) and Information-geometric approach
(Janzing et al. 2012). Most of these approaches look at
a small number of variables, two in most cases, because
of limited scalability rooted at the theory and algorithms
(Mooij et al. 2016a). While a variety of scalability enhance
schemes are proposed in the literature (Xie and Geng 2008;
Cai, Zhang, and Hao 2013b), the improvement is limited,
especially when local views over the variables include inac-
curate causal results.

We believe these two general methodologies based on
global and local views are not contradicted but complement to
each other. Local views provide more accurate insight into the
causal directions between individual pairs of variables, while
global views are capable of correcting minor mistakes of local
views by choosing most reasonable network structures over
various options of directed edges extracted from the local
views. The combination of these methodologies, however, is
non-trivial. The key is to design an optimization framework
with appropriate objective and constraints, unifying the local
and global views of the Bayesian network in a consistent
way.
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Figure 1: The causal graphical model consists of three vari-
ables {X1, X2, X3}. The underlying generative process runs
by injecting noises into the variables after a deterministic
function, e.g., F2(⋅) for X2, is applied based on the graphi-
cal model. Therefore, the probability of an observation on a
variable is equivalent to the probability of an observation on
the noise variable.

In Figure 1, we illustrate the general motivation behind
our new framework. In our example, the samples are gen-
erated following the graphical model over 3 variables, with
noises independently injected into the variables. Given a
group of structural equations corresponding to the underly-
ing generative processes of the variables, the distribution of
the observations on the variables is fully determined by the
distribution of the noises. The likelihood of the observations
is thus maximized when the noise estimations, based on op-
timized structural equations, over the variables provide the
best match to the expected distribution of the noises. On the
other hand, the random noises are supposed to be statisti-
cally independent of the cause variables, following the local
views on the generative process. Therefore, we propose a
novel structural equational likelihood framework (or SELF in
short), which focuses on the noise estimation, by maximizing
the global likelihood of the entire Bayesian network while
preserving local statistical independence between noise and
cause variables.

Based on the SELF framework, this paper covers a suite of
technical contributions, including: (1) a mathematical formal-
ization of the structural equational likelihood framework; (2)
an effective and efficient implementation based on XGBoost
to support a wide class of candidate regression models for the
structural equations; (3) a theoretical analysis on the sound-
ness of the model under mild conditions on the Bayesian
network; (4) extensive empirical evaluations over linear non-
Gaussain and nonlinear additive noise models by using both
synthetic and real world causal structures.

Structural Equational Likelihood Framework

This section introduces the mathematical formalization of
our structural equational likelihood framework (SELF).

We use upper case letters to denote variables and lower
case letters to denote concrete values. G is the ground-

truth causal graph, with vertices representing variables, i.e.,
X = {X1, X2, ..., Xn}, and directed edges representing
causal directions, i.e., {Xi → Xj}. A variable Xi is called
a parent of Xj , if Xi → Xj holds. Each variable Xi cor-
responds to a distribution Pr(Xi = x) indicating the prob-
ability of Xi = x for any valid x. The conditional distri-
bution Pr(Xi ∣ Pi) indicates the probability of observa-
tions on Xi with conditions on the values of all its par-
ents. Give the causal graph G and the validity of the causal
Markov condition(Spirtes, Glymour, and Scheines 2000;
Pearl 2009), the joint distribution Pr(X) can be decom-
posed as the product of conditional distributions, as Pr(X) =
∏n

i=1 Pr(Xi ∣ XPi
), where XPi

includes all parents of Xi in
G. Following the common practice in causality research, we
simply assume the causal graph is faithful to the result distri-
bution. Given a group of observations O = {o1, o2, . . . , om},
with each oj as a n-dimensional vector (oj,1, . . . , oj,n), we
use oj,Pi

to denote the sub-vector of oj containing values
on variables in XPi

only. Combined with the joint distribu-
tion Pr(X) and the causal graph G, the log-likelihood of the
observations is calculated as

L(G;O) = m

∑
j=1

n

∑
i=1

log (Pr(Xi = oj,i ∣ XPi
= oj,Pi

)) (1)

Given the definition of log-likelihood over the observa-
tions, it is straightforward to design algorithms searching for
optimal Bayesian network structure maximizing the likeli-
hood. However, existing studies imply that such optimization
may not return true causality structures, because of the exis-
tence of graphical structures rending exactly the same like-
lihood. These graphical structures are called Markov equiv-
alence classes. Recall our example in Figure 1. Without the
effect of noise, i.e., zero noise in the generative process, the
log-likelihood of the ground-truth structure is identical to
other structures, e.g., X1 ← X2 → X3.

To address the challenge, we introduce the idea of struc-
tural equation as well as probabilistic noise into the likelihood
maximization scheme, in order to dissolve the ambiguity
from the Markov equivalent classes. We use the additive noise
model (Hoyer et al. 2009) Xi = Fi(XPi

) + Ei to present
the causal mechanism behind the data, where Fi is the causal
function of Xi belonging to a wide class of functions. Par-
ticularly, the randomized noise variable Ei is independent of
the causal variables in XPi

, i.e., Ei ⫫ XPi
.

Given the presence of the structural equation Fi for vari-
able Xi and the assumption of independence between Ei and
the parents of Xi, it is easy to verify the correspondence be-
tween the probability of an observation oj and the probability
of the noise observation.

Pr (Xi = oj,i ∣ XPi
= oj,Pi

)
Xi=Fi(XPi )+Ei=============== Pr (Ei = oj,i − Fi(oj,Pi

)∣XPi
))

XPi⫫Ei========= Pr (Ei = oj,i − Fi(oj,Pi
))

(2)

Let S = ⟨G,F ⟩ denote the causal structure and its cor-
responding structural equation, the log-likelihood over the
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observations given in Formula 1 could be converted into
the log-likelihood over the noise estimations, such that the
maximization target is the noises instead of the observations,
as

L(S;O) = m

∑
j=1

n

∑
i=1

log(Pr(Ei = oj,i − Fi(oj,Pi
)) (3)

The major benefit of the new log-likelihood formulation
is the binding of likelihood with the noises. It further en-
ables us to associate the noises with the independence con-
straints from the additive noise assumption, in the sense that
these constraints can be directly achieved in the optimization
formulation by manipulating the noise estimations. Conse-
quently, it is straightforward to design a new optimization
framework, as formalized in the following definition of struc-
tural equational likelihood framework (SELF).

Definition 1. Given the observations O, construct a graph-
ical model G and corresponding structural equations {Fi}
for all variables in X , to maximize the log-likelihood of the
observations in Eq. 3, under the assumption of independence
between the noise Ei and Pi for each variable Xi.

In the rest of this section, we focus on the implementation
of causal discovery algorithm under SELF. On a data set with
limited sample size, the proposed L(S;O) tend to produce
excessive redundant causal edges, when the optimization
does not include any regularization on the complexity of the
causal structure. To mitigate this effect, we introduce the
Bayesian Information Criterion (BIC) penalty di log(m)

2
into

the L(S;O), where di is the number of coefficients used in
the estimation of Xi. The new objective with BIC penalty is
given in Formula 4.

LB(S;O)= n

∑
i=1

( m

∑
j=1

log(Pr(Ei=oj,i−Fi(oj,Pi
)))− di log(m)

2
)

(4)
The maximization of the above objective function

can be solved by an augmented optimization algorithm
with two steps in each iteration, i.e., maxLB(S;O) =
maxG supF LB(⟨G,F ⟩;O). The first step is the estimation
of supFLB(⟨G,F ⟩;O). The second step is the searching of
the best causal graph with highest maxG LB(⟨G,F ⟩;O).

The optimization of supFLB(⟨G,F ⟩;O) is solved by
adopting the following two-step procedure. First, a regression
with L2 norm of the residual (i.e., ∑n

i=1 ∣∣Ei∣∣2) is conducted
to obtain the estimated noise Ei. Second, the kernel density
estimation is employed to approximate the distribution of the
noise. Here we do not directly optimize the entropy, because
of the following two reasons: 1) there is no regression method
whose objective function is the entropy of the residual, 2) the
minimization of the entropy is equivalent to the minimiza-
tion of the variance in a variety of distributions, such as the
exponential family (Ahmed and Gokhale 1989). Consider-
ing the various formals of F in the real world applications,
we employ XGBoost in this work as the function class for
candidate regression models.

Algorithm 1 Hill-Climbing Based Causal Structure Search
Input: Observation O
Output: Causal structure ⟨G,F ⟩
1: G← empty graph, F ← null function
2: Initialize L according to Formula 4, L∗ ← 0
3: while L∗ ≤ L do
4: for every G

′ ∈ V(G) do

5: Updating Fi, L′
i for Xi ∈ Δ(G,G

′)
6: L′ ← ∑i L′

i

7: end for
8: ⟨G∗

, F
∗
,L∗⟩← ⟨G′

, F
′
,L′⟩ with largest L′

9: if L∗ > L then
10: ⟨G,F,L⟩← ⟨G∗

, F
∗
,L∗⟩

11: end if
12: end while
13: return ⟨G,F ⟩

In the searching of G with highest maxG LB(⟨G,F ⟩;O),
the hill-climbing based local search algorithm is used. In
the hill-climbing algorithm, each iteration searches around
the vicinity of the current causal graph structure G with
only one causal edge added, deleted or reversed, denoted
by V(G). Because the LB(S;O) can be decomposed to the
sum of the likelihood of the variables, the objective func-
tion can be efficiently estimated by conducting local up-
dating scheme on the nodes belongs to the incremental set
Δ(G,G

′) between G and G
′. The variable set Δ(G,G

′) con-
tains all the variables whose parents are different in G and G

′.
The local updating rule for Xi is as follows: LBi

(S;O) =
∑m

j=1 log(Pr(Ei=oj,i−Fi(oj,Pi
))) − di log(m)

2
.

The details of the hill-climbing algorithm are provided
in Algorithm 1. Specifically, the algorithm first initializes
L with the empty graph G and null function F (Line 1-2).
Then search the best fit graph iteratively by performing the
add, delete, reverse operations on G to generate the can-
didate graphs in V(G) at each iteration (Line 4). In each
iteration, in order to calculate the score for each candidate
G

′, the algorithm locally updates the nodes belongs to the set
Δ(G,G

′) (Line 5). The algorithm then identifies the highest
score and its corresponding causal structure among the candi-
date graphs (Line 8). It repeats the local search process until
the score is no longer improved.

Soundness of SELF

In this section, we prove that correct causal structure always
renders highest score in SELF. Secondly, we prove the struc-
ture with the highest SELF score is the correct causal struc-
ture of the data, under certain mild and reasonable assump-
tions. Note that the conclusions are valid for both L(S;O)
and LB(S;O) as the objective function, because the BIC
penalty of LB(S;O) includes dilog(m)

2m
for each sample and

it generally converges to 0 when there are sufficient samples.
Theorem 1. Given a large enough observation O generated
from S, L(S;O) ≥ L(S ′

;O) holds for any S
′.

Proof. The proof is given in Equation 5. The first three equal-
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ities are based on Equation 2 and 3. The fourth equality is
based on the sufficiently large observations. The fifth equality
is based on the definition of KL-divergence. The last inequal-
ity is based on the property of KL-divergence.

L(S;O) − L(S ′
;O)

=
m

∑
j=1

n

∑
i=1

log (Pr(Ei = oj,i − Fi(oj,Pi
))

Pr(Ei = oj,i − F ′
i(oj,P ′

i
)))

=
m

∑
j=1

n

∑
i=1

log (Pr(Xi = oj,i∣Pi = oj,Pi
)

Pr(Ei = oj,i − F ′
i(oj,P ′

i
))

= m
m

∑
j=1

log ( Pr(X = oj)
∏n

i=1 Pr(Ei = oj,i − F ′
i(oj,P ′

i
)))

= mEo∼S log ( Pr(X = o)
∏n

i=1 Pr(Ei = oi − F ′
i(oP ′

i
))

= mKL(Pr(X = o)∣∣ n

∏
i=1

Pr(Ei = oi − F
′
i(oP ′

i
))

≥ 0

(5)

Intuitively, Theorem 1 shows that L(S;O) achieves the
highest likelihood, because the Pr(Ei = oj,i − Fi(oj,Pi

))
reflects the true distribution of the data. However, Theorem 1
does not ensure the structure S with highest L(S;O) is the
correct causal structure.

In the following, to facilitate the further analysis, we prove
the equivalence between the SELF score and the minimiza-
tion of the entropy of noise over the variables in Lemma 1.
With the help of Lemma 1, Lemma 2 and Theorem 2 proves
the final conclusion that the structure with the highest SELF
score is the correct causal structure of the data.

Lemma 1. Assume that the samples are indepen-
dent and identically distributed, argmaxS L(S;O) =
argminS ∑n

i=1 H(Ei∣S) holds.

Proof. We have L(S;O) =
m∑n

i=1
1
m
∑m

j=1 log (Pr (Ei = oj,i − Fi(oj,Pi
))) =

m∑n
i=1 E(log(Pr(Ei))) = −m∑n

i=1 H(Ei∣S). The
second equality holds based on the assumption that the
sample size is large enough, and the last equality is based on
the definition of entropy.

This lemma shows that the maximization of L(S;O) is
equivalent to the minimization of the entropy of noise. In
the following, we employ this property to investigate the
relationship between L(S;O) and the casual structure with
the help of the assumption 1.

Assumption 1. For ∀Xk ∈ XPi
and ∀Xz ∉ XPj

,
H(Ej∣XPj

) − H(Ej∣XPj∪{z}) ≪ H(Ei∣XPi−{k}) −
H(Ei∣XPi

) holds.

The Assumption 1 concerns the relative gap of the con-
ditional entropy when parent and non-parent variables are
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Figure 2: Sketch diagram of the local swap

included in condition set. This assumption ensures the cor-
rect parent node reduces more on entropy than the non-
parental nodes do. The rationality of this assumption is
based on the following two observations: 1) H(Ej∣XPj

)−
H(Ej∣XPj∪{z}) ≤ H(Ej∣XPj

) holds. When given the cor-
rect parents set XPj

of Xj , H(Ej∣XPj
) is a small variable,

thus any non-parent variable has ignorable effect on reducing
entropy of Xj . 2) Any variable Xk ∈ XPi

can greatly reduce
the entropy of Xi, because the state of Xi is determined by its
parents. Thus, the above assumption is reasonable. We also
tested the applicability of Assumption 1 in the experiment
section.

Let T (G) denote the topological order of the directed
acyclic graph G. T (G) is compatible with the ground-truth
causal structure if and only if Xi ⪯ Xj holds for each Xi →
Xj in the ground-truth causal structure.

Lemma 2. When ∑i H(Ei∣S) reaches its minimum on S =⟨G,F ⟩, T (G) is compatible with the ground-truth causal
structure.

Proof. (Proof by Contradiction.) Assume ∑i H(Ei∣S)
reaches its minimum on ⟨G,F ⟩, but T (G) is not compat-
ible with the ground-truth causal structure. We will prove
that there exist a series of local swaps on T (G) which satisfy:
1) T (G) after swapping is compatible with ground-truth, and
2) ∑i H(Ei∣S) decreases after each local swap. The existing
of the above local swaps implies there exists a new causal
structure G

′ whose ∑i H(Ei∣S) is smaller than that of G,
which is contradicted with the ∑i H(Ei∣S) reaches its mini-
mum on ⟨G,F ⟩. This finishes the proof. The details of the
local swaps are given as follows.

Without loss of generality, let T (G) be X1 ⪯ X2,⪯ ... ⪯
Xn. Assume the T (G) is not compatible with ground-truth,
we will use the following two steps local swap method to
transform T (G) to the correct order, as shown in Figure 2.
1) Scan from the end of T (G) until find the pair of variable
satisfies Xi ⪯ Xj and i > j, which means that Xj is falsely
placed before Xi. 2) Put Xj after Xi. This two-step local
swap is repeated until all the variables are correctly placed.

Next we will prove that ∑i H(Ei∣S) decreases when put
Xj after Xi. As shown in the figure 2, T (G) is divided into
the following five parts {XA}, {Xj}, {XB}, {Xi}, {XC}.
The gap of the score after one swap operation is given
in Equation 6. For the simplicity of the notation, we con-
sider H(XB∣XA) for every nodes in XB , the latter nodes
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are conditioned by the former nodes. The mutual infor-
mation is equal to zero when given the condition set is
a super set of the parent set. Then the most of the mu-
tual information equal to zero in equation 6. Moreover,
because the Xi is the largest index such that Xi ⪯ Xj

where i > j and the nodes of XB are recursively sorted,
each parents of {{Xj}, {XB}, {Xi}, {XC}} are all included
in its precedent nodes. The last inequality is based on
the Assumption 1, because H(Ei∣XA,B) − H(Ei∣XA,B,j)
is much less than both H(Ej∣XA) − H(Ej∣XA,B,i) and
H(EB∣XA,j) − H(EB∣XA).

(H(Ej∣XA,B,i) + H(EB∣XA) + H(Ei∣XA,B))
− (H(Ej∣XA) + H(EB∣XA,j) + H(Ei∣XA,j,B))

=H(Ej∣XA,B,i) − H(Ej∣XA) − I(Ej , XA)
+ H(EB∣XA) − H(EB∣XA,j)
+ H(Ei∣XA,B) − H(Ei∣XA,j,B)

<0

(6)

Theorem 2. When ∑i H(Ei∣S) reaches its minimum on
S = ⟨G,F ⟩, ⟨G,F ⟩ is the correct causal structure.

Proof. (Proof by Contradiction.) Based on lemma 2, T (G) is
compatible with the ground-truth when ∑i H(Ei∣S) reaches
its minimum on ⟨G,F ⟩. Without loss of generality, let
T (G) be X1 ⪯ X2,⪯ ... ⪯ Xn. Suppose there exists a⟨P ′

i, F
′
i⟩ where F is non-degenerate function and satisfies: 1)⟨P ′

i, F
′
i⟩ ≠ ⟨Pi, Fi⟩, 2) ∑i H(Ei∣S ′) < ∑i H(Ei∣S).

According to ⟨P ′
i, F

′
i⟩ ≠ ⟨Pi, Fi⟩ and structural equation

model assumptions, we have the first inequality, and the first
equality is based on the definition of Ei, and the second
equality is because that F (Pi) is determined function of
XPi

.

∑
i

H(Ei∣S ′) ≥∑
i

H(Ei∣XP ′
i
) =∑

i

H(Xi∣XP ′
i
) (7)

Based on the causal Markov assumption, we have

∑
i

H(Xi∣XP ′
i
) ≥∑

i

H(Xi∣XP1,P2,⋯,Pi−1
) =∑

i

H(Xi∣XPi
)

(8)

Based on structural equation model assumption, Xi =
F (XPi

) + Ei and Ei ⫫ XPi
, we have

∑
i

H(Xi∣XPi
) =∑

i

H(Ei∣S) (9)

Combining Inequality 7, Inequality 8 and Inequality 9, we
have ∑i H(Ei∣S ′) ≥ ∑i H(Ei∣S), which contradict with
the supposition ∑i H(Ei∣S ′) < ∑i H(Ei∣S). This finishes
the proof.

Experiments and Discussions

Experiment Settings

To investigate the effectiveness and of genericity of SELF, the
algorithms are tested on both linear non-Gaussian and non-
linear data, generated from synthetic and real world causal
structures. Specifically, the linear non-Gaussian data are
generated according to the following linear structural equa-
tions, xi = ∑j∈Pi

wjxj + ei with random coefficients w ∼
U(0.5, 1) ∪ U(−0.5,−1), and noise ei ∼ sub − Gaussian;
the nonlinear data are generated according to the following
nonlinear function, y = scale(a1b1x2 + a2b2x

3 + a3b3x
4 +

a4b4sin(x) + a5b5sin(x2)) + ei, with bi ∈ {0, 1} is a ran-
dom indicator, ai ∼ U(−3, 3) is the random weight of each
component, ei ∼ sub−Gaussian is the noise, and scale is a
normalized function. These data generation processes follow
the practice in state-of-the-art research works, e.g., (Shimizu
et al. 2006) and ANM (Hoyer et al. 2009).

In linear data, we compare SELF to three state-of-the-art
algorithms, include LiNGAM (Shimizu et al. 2006), DLi-
GANM(Shimizu et al. 2011), and HCBN (a hill-climbing
based Bayesian network search algorithm for linear data)
(Scutari 2009). We reuse the parameter settings in LiNGAM
and DLiNGAM based on the descriptions from their origi-
nal papers, and the implementation and parameter settings
of HCBN are based on bnlearn package in R. For SELF,
XGBoost-GBLinear (Chen and Guestrin 2016) is employed
as the linear regression method and kernel density estima-
tion (Parzen 1962) is used to estimate the probability density
function of the noise.

In nonlinear data, we only compare our work with MMPC-
ANM, because there is no other methods applicable to non-
linear data with multiple variables. The implementation of
MMPC-ANM is based on bnlearn package and Compare-
CausalNetworks package(Heinze-Deml and Meinshausen
2016). For SELF, XGBoost-GBTree (Chen and Guestrin
2016) is employed as the regression method. The estima-
tion of the probability density function of noise is identical
to the linear case.

In all the following experiments, recall, precision, and F1
are recorded for all the algorithms as the evaluation metrics.
All the reported results are based on at least 10 runs of the
respective algorithms. The implementation of SELF can be
found in CRAN 1.

Synthetic Structures

In this part, we design a series of controlled exper-
iments on the random causal structures with given
samples size, variable size, and average indegree. The
ranges of the above three parameters are as follows: the
number of variables={20, 30, 40, 50, 60}, the number of
samples={1000, 2000, 4000, 6000, 8000}, and the average
indegree={0.5, 1, 1.5, 2, 2.5}. The default setting of the pa-
rameters is marked in bold. Note that the above parameter
setting reflects the real world causal structures, for exam-
ple, the range of average indegree covers all the real world
structures given in Table 1.

1
https://cran.r-project.org/web/packages/SELF/index.html
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Figure 3: The universality of Assumption 1.

Universality of Assumption 1: Firstly, we design a set of
controlled experiments to verify the universality of Assump-
tion 1, by comparing two gaps given in Assumption 1 on a set
of data with different signal-noise ratio. The signal-noise ra-
tio is controlled by the relative weight of noise. Fig. 3 shows
that adding a parent node is always better than adding a
non-parent node to a correct parent set, even when the signal-
to-noise ratios are below 1. This verifies the applicability of
the assumption.
Effects of Markov equivalence class: Fig. 4 shows the ef-
fect of Markov equivalence class on the different methods.
The algorithms are tested on random structures with vari-
ous number of Markov equivalence edges. Here, Markov
equivalence edges refer to the edges, whose direction can
not be determined by V-Structures. In the linear experiment
4(a), the performance of the three structural equation model
based methods (i.e., SELF, LiNGAM, and DLiNGAM) are
robust to the number of Markov equivalence edges, which
the F1 score of traditional likelihood based method (HCBN)
decreases rapidly. This is because the traditional likelihood
based method can not distinguish the Markov equivalence
class. As a structural equational likelihood framework, SELF
benefits from both the advantages of the structural equational
model and Bayesian score based method. Similar results are
observed in nonlinear experiments in Figure4(b).
Sensitivity to Structures: Figure 5 shows the results on the
linear data. Generally, SELF outperforms the other three
state-of-the-art methods on all the settings. In detail, Figure
5(a) shows the performance of the methods under different
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Figure 4: Results on the Different Markov Equivalents Edge.

number of samples, the results reflect that 1,000 samples
are enough for all the methods, and SELF outperforms the
other three methods across all the sample size configura-
tions. Figure 5(b) compares the methods under different num-
ber of variables, the improvement gap between SELF and
LiNGAM/DLiNGAM grows with the number of variables,
which validates the scalability of SELF to multiple variables.
Figure 5(c) compares the methods under different average in-
degree. An interesting observation is that SELF and HCBN
work well on the sparse causal structures, while LiNGAM
and DLiNGAM prefer denser structures. This turns out to be
an advantage of SELF, because real world causal structures
are known to be sparse (Pearl 2009).

Fig. 6 shows the results on the nonlinear data. Similar to
the results on linear data, SELF significantly outperforms
the baseline methods on all configurations. A different phe-
nomenon between the linear and nonlinear data is shown in
Figure 6(a). On the nonlinear data, SELF needs more samples
to obtain robust results, because of the nonlinear regression
employed in SELF. The increase of the gap between SELF
and MMPC-ANM with the sample size also reflects the abil-
ity of SELF on the exploration of higher order information
beneath the data.

Real world Structures

In this part, we explore the performance of the algorithms
on four frequently used real world structures (Scutari 2009).
The statistics of the structures are given in Table 2. The
other settings, i.e., the sample size, data generation function,
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Figure 5: Sensitivity Analysis on the Linear Data.
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Figure 6: Sensitivity Analysis on the Nonlinear Data.

Table 1: Statistics of the Real world Structures.
Structure nodes Edges Avg deg. Max deg.

Child 20 25 0.63 2
Alarm 37 46 1.25 4
Win95pts 76 112 1.48 7
Pathfinder 135 200 1.48 5

are identical to those in the experiments on the synthetic
structures.

The results on real world structures also verify the effec-
tiveness of SELF. As shown in Table 2 and Table 3, SELF
outperforms the baseline methods on both linear and nonlin-
ear data, over all the structures. In detail, the advantage of the
SELF is more significant over problem domains with larger
scale. It proves the excellent scalablity of SELF. Another
important conclusion on linear data is that the improvement
of the precision is much higher than that of recall. This re-
flects the capability of SELF to distinguish the correct causal
structure from the Markov equivalence class.

Conclusion

In this work, we present SELF, a structural equational likeli-
hood framework, together with a hill climbing based causal
structure discovery algorithm, and discussions on the sound-
ness of SELF in theory. Our experimental results validate the
effectiveness and genericity of the proposed framework and
algorithms. By employing the likelihood function globally
and estimating the structural equation model locally, SELF

provides a unified and theoretically robust methodology for
causal structure exploration. The success of SELF also veri-
fies that the global approaches and the local approaches are
complementary to each other. Future work includes extending
SELF to other causal mechanisms compatible with structural
equation models, and accelerating the hill climbing search by
parallel evaluation of the objective function.
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