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Abstract

We propose a novel method for representing and rea-
soning about an incomplete set of constraints about ba-
sic/disjunctive qualitative direction relations over sim-
ple/connected/disconnected regions, using Answer Set Pro-
gramming, and prove its correctness with respect to cardinal
direction calculus. We extend this method further with de-
fault qualitative direction constraints, and discuss its useful-
ness with some sample scenarios.

Introduction

Various tasks, like navigating to a destination or describing
the location of an object, involve dealing with spatial prop-
erties and relations of objects. For higher precision of so-
lutions, if data is available, quantitative approaches can be
employed to find metric solutions for these tasks. On the
other hand, for some applications (e.g., exploration of an
unknown environment), quantitative data may not always be
available due to incomplete knowledge about the environ-
ment; and, for some applications (e.g., that involve human-
robot interactions) sociable and understandable interactions
and acceptable explanations are often more desirable than
high precision (Kuipers 1983). For these applications, qual-
itative spatial relations seem more suitable. They can deal
with describing imprecise data about spatial relations in en-
vironments, and their verbal descriptions are sufficient and
understandable for describing a way to some destination or
the location of an entity.

Consider, for instance, an agent helping a parent to find
her missing child in a shopping mall that is not completely
known to the agent nor to the parents. If the agent receives
some sightings of the child (e.g., “to the south of Store A”),
it will be useful (i) if the agent can understand the relative
location of the child described qualitatively, and (ii) if the
agent can find out where the child might be, based on such
qualitative direction constraints, and (iii) describe qualita-
tively in which direction (e.g., “to north”) the parents might
go to find their child. In another scenario, a robot may not
have quantitative description of an environment (e.g., after a
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disaster, as in search and rescue), and should be able to un-
derstand a human if she provides information by directions,
reason about the qualitative constraints provided by the hu-
mans, and describe qualitatively the outcome of its reason-
ing.

We consider a particular sort of qualitative spatial rela-
tions, cardinal directions (e.g., west, south, northeast, south-
west, and their combinations), between spatial entities, as
in Cardinal Direction Calculus (CDC) (Skiadopoulos and
Koubarakis 2004; 2005). In CDC, qualitative directional re-
lations between spatial entities are described by means of
constraints, like “the missing child is to the south of Store
A”. In real world, the regions occupied by these entities may
have holes (e.g., Store A may have a small garden in the
middle) or may be disconnected (e.g., Store A may consist
of two parts across a small street). Moreover, the given set of
constraints may be incomplete (i.e., qualitative spatial rela-
tions between some spatial objects are not known) or some
constraints may involve disjunctions (e.g., missing child is
to the south of Store A or to the north of Store B). In such
cases, with uncertainty or incomplete knowledge, checking
the consistency of a given set of constraints is NP-complete
(Table 1).

Furthermore, we consider qualitative constraints that ne-
cessitate commonsense knowledge like defaults (e.g., food
truck is normally to the west of Store X). Such constraints
are not considered as part of CDC, so we introduce a new
sort of constraints, called default CDC constraints.

We propose a novel formal method to represent and
reason about cardinal directions with respect to this ex-
tended set of CDC constraints, using Answer Set Program-
ming (ASP) (Brewka, Eiter, and Truszczynski 2016). ASP
is a knowledge representation and reasoning framework that
can be used to declaratively solve NP-complete problems
(e.g., CDC consistency checking). Its expressive languages
(like ASP-Core-2 (Calimeri et al. 2013)) and solvers (like
CLINGO (Gebser et al. 2011)) support nonmonotonic con-
structs (e.g., to express default qualitative spatial relations),
aggregates (e.g., to identify infimum/supremum of projec-
tions of spatial regions), and disjunctions (e.g., to express
uncertainty of qualitative directional relations).

In particular, we model consistency checking as a set of
formulas in ASP, so that an ASP solver can be used with this
general formulation to decide for the consistency of a given
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set of domain-specific CDC constraints, which are also mod-
eled as ASP formulas. This method is applicable to all NP-
complete cases of consistency checking reported in Table 1.

We prove that our ASP formulation is correct with respect
to the definition of Skiadopoulos and Koubarakis: The given
set of CDC constraints is consistent if and only if the corre-
sponding ASP formulation is satisfiable.

We discuss the useful aspects of our ASP-based method
for reasoning over cardinal directions with some examples,
and provide experimental evaluations.

Related Work
There are various qualitative approaches to studying direc-
tional spatial relations (Frank 1991; Ligozat 1998; Balbiani,
Condotta, and del Cerro 1999; Freksa 1992; Goyal and
Egenhofer 1997; Goyal 2000; Renz and Mitra 2004; Ski-
adopoulos and Koubarakis 2004; 2005; Navarrete, Morales,
and Sciavicco 2007; Liu et al. 2010; Liu and Li 2011;
Cohn, Renz, and Sridhar 2012; Lee, Renz, and Wolter 2013;
Liu 2013). Like many recent theoretical studies (Skiadopou-
los and Koubarakis 2005; Navarrete, Morales, and Sciav-
icco 2007; Liu et al. 2010; Liu and Li 2011; Liu 2013),
our work is based on CDC introduced by Skiadopoulos and
Koubarakis (Skiadopoulos and Koubarakis 2004) (which is
based on (Goyal and Egenhofer 1997; Goyal 2000)) for
representing cardinal direction relations between connected
plane regions. Our choice of CDC is mainly due to two rea-
sons: cardinal directions (e.g., north, east, west, south, north-
east, northwest, southeast, southwest, and their combina-
tions) are more convenient for verbal descriptions, and it is
expressive enough to consider spatial objects as themselves
rather than points or boxes. Indeed, in a point-based approxi-
mation, Spain is northeast of Portugal; in a box-based model
Portugal is contained in Spain; according to Skiadopoulos
and Koubarakis’ model, Spain lies partially at the northwest,
at the north, at the northeast, at the east and at the southeast
of Portugal.

Reasoning about cardinal directions has been studied,
sometimes augmenting them with other sorts of spatial prop-
erties and relations, like topological relations, distance and
size information (Cohn, Renz, and Sridhar 2012). Computa-
tional complexity analysis of the core problems (like consis-
tency checking) has been studied under different conditions,
as summarized in Table 1. For NP-complete problems, most
of the proposed approaches are monotonic and rely on meth-
ods like constraint satisfaction or model checking. However,
in some applications, for more acceptable explanations or
descriptions of qualitative spatial relations, commonsense
knowledge and nonmonotonic reasoning are needed. There-
fore, it is not surprising to see formulations of qualitative
spatial reasoning using ASP. Interval Algebra (Allen 1983)
and variants of Regional Connection Calculus (Randell, Cui,
and Cohn 1992) are formalized in ASP (Walega, Bhatt, and
Schultz 2015; Li 2012; Brenton, Faber, and Batsakis 2016).

CDC, as defined in (Frank 1991), is represented in ASP
in (Walega, Bhatt, and Schultz 2015). However, this ap-
proach views objects as points or boxes, and leads to anoma-
lies as discussed by Skiadopoulos and Koubarakis (Ski-
adopoulos and Koubarakis 2004) and as illustrated by the

example above. In this model, spatial objects are of certain
shape, like circle or square, which are identified by parame-
ters, like center or radius. Then, for consistency checking,
regions are generated by the choice of these parameters.
Also, directional relations between objects are expressed in
polynomial inequalities and algebraic constraints. Our ASP-
based method for qualitative reasoning over cardinal direc-
tions is more general: spatial objects do not have to be con-
sidered as points or boxes, they can have arbitrary shapes;
spatial objects can be disconnected; and spatial relations can
be disjunctive. Due to such a general setting, for consistency
checking, regions are generated directly from qualitative de-
scriptions, if the network is consistent.

Answer Set Programming

Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczynski 2016), based on answer set semantics (Gel-
fond and Lifschitz 1991), is a knowledge representation and
reasoning paradigm that provides a formal framework for
modeling intractable problems, like consistency checking in
CDC, by logical formulas, called rules, of the form

Head ← A1, . . . , Ak, not Ak+1, . . . , not Al

where l ≥ k ≥ 0, Head is an atom or ⊥, and each Ai is
an atom. A rule is called a constraint if Head is ⊥. A set of
rules is called a program.

ASP provides special constructs to express default as-
sumptions, nondeterministic choices, and aggregates. For in-
stance, thanks to default negation not , the following rule ex-
presses that normally the elevator works fine (works) unless
stated or observed otherwise that it does not work (¬works):

works ← not ¬works.

The following choice rule allows nondeterministically se-
lecting at least 1 and at most 3 numbers x for every set u:

1{select(u, x) : num(x)}3 ← set(u).

The following rule defines the smallest number, N , se-
lected so far using the aggregate min:

smallest(N) ← N =#min {x : select(u, x), set(u)}.

Cardinal Direction Calculus

Cardinal direction calculus (CDC) describes orientation of
spatial objects with respect to one another in terms of car-
dinal direction relations. We briefly describe some terminol-
ogy and notation relevant to the rest of the paper, in the spirit
of (Skiadopoulos and Koubarakis 2004; Liu et al. 2010).

In CDC, spatial objects are regions on a plane (i.e.,
nonempty regularly closed subsets of R2). A region is con-
nected if its interior is connected; note that connected re-
gions may have holes inside. A connected region is called
simple if it is topologically equivalent to a closed disk (i.e.,
no holes). A (possibly disconnected) region can be viewed as
a finite union of connected regions. We denote by Simp, Reg
and Reg*, the sets of simple, connected, and finite unions of
connected regions, respectively (Fig. 1(i)).

The minimum bounding box of a region b, denoted
mbr(b), is the smallest rectangle which contains b and has
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Table 1: Computational Complexity Analysis of Consistency Checking Problems in Cardinal Direction Calculus
Basic CDC Relations Disjunctive CDC Relations

Complete Incomplete

Simp P P NP-complete
(Liu et al. 2010, Thm 8) (Navarrete, Morales, and Sciavicco 2007, Thm 3) (Navarrete, Morales, and Sciavicco 2007, Thm 4)

Reg P NP-complete –
(Liu 2013, Thm 5.4) (Liu et al. 2010, Thm 5)

Reg* P NP-complete NP-complete
(Liu 2013, Thm 5.7) (Liu 2013, Thm 5.8) (Skiadopoulos and Koubarakis 2005, Thm 6)

(i) (ii)

(iii)

(iv)

Figure 1: (i) Regions: a, b, c1, c2 are in Reg, where c =
c1 ∪ c2 is in Reg*. (ii) A region and its bounding box. (iii)
Reference tiles. (iv) Sample relations (orientation of a with
respect to b): a S b, a NE:E b, a N : S b.

sides parallel to the axes (Fig. 1(ii)). The sides of the box
are essentially defined by the infimum (i.e., infx(b), infy(b))
and supremum (supx(b), supy(b)) of the projection of b on
x-axis and y-axis.

The orientation of a spatial object a (called the primary
object) with respect to another spatial object b (called the
reference object) is defined by means of cardinal direc-
tion relations. For that, we extend the sides of the mini-
mum bounding box mbr(b) of the reference object along
the axes, dividing the plane into nine regions (called tiles):
O(b), S(b), SW (b), W (b), NW (b), N(b), NE(b), E(b),
SE(b) (Fig. 1(iii)). Each tile specifies an orientation with
respect to b: onto b, south of b, southwest of b, etc. Then, by
identifying the tiles R1(b), ..., Rk(b) (1 ≤ k ≤ 9) occupied
by the primary object a, we denote the basic CDC relation
of a with respect to b by the expression R1:R2:...:Rk: ac-

cording to the second figure of Fig. 1(iv), a E : NE b. Note
that a R1:R2:...:Rk b iff a∩Ri(b) 	= ∅ for every 1 ≤ i ≤ k.
If k = 1 then this basic CDC relation is called a single-tile
relation; otherwise, it is called a multi-tile relation. A CDC
relation is a finite set {δ1, ..., δn} of basic CDC relations,
intuitively describing their exclusive disjunction.

A formula of the form u δ v, where u and v are variables
ranging over spatial objects in Reg* and δ is a CDC relation,
is called a CDC constraint. A CDC constraint network C is
a set of CDC constraints defined by a set V = {v1, ..., vn}
of variables ranging over a set D of spatial objects in Reg*,
and a set Q of CDC relations:

C = {vi δij vj | δij ∈ Q, vi, vj ∈ V }.
A CDC network C is complete if it specifies a unique CDC
constraint for every pair (vi, vj) of variables in V (i 	= j);
otherwise, it is called incomplete.

A pair (a, b) of spatial objects in Reg* satisfies a CDC
constraint u δ v if (a, b) ∈ δ. A solution for a CDC network
C with V = {v1, ..., vn} is a set of n-tuples (a1, a2, ..., an) ∈
Dn such that every CDC constraint vi δij vj in C is satisfied
by the corresponding pair (ai, aj) of spatial objects in D. A
CDC network that has a nonempty solution is consistent.

Deciding the consistency of a CDC network is one of the
main problems studied in literature about CDC. The com-
plexity analysis of this problem is summarized in Table 1.

Consistency Checking using ASP

Let C be a CDC constraint network defined by a set V
of variables ranging over the set D of all spatial objects
in Reg*, and a set Q of CDC relations. Let us denote by
I =(C, V,D,Q) the problem of checking the consistency
of this network. Note that checking the consistency of C is
defined in continuous space since D ⊆ 2R

2

. This problem
can be discretized in the spirit of (Liu et al. 2010) by view-
ing the plane as a sufficiently fine grid so that the regions
occupied by spatial objects can be specified by a set of grid
cells.

Discretized Consistency Checking

Let Λm represent a grid of size m×m. Every spatial object
a ∈ D then can be viewed as a nonempty set Λm(a) of grid
cells (i.e., possibly disconnected regions) in Λm. Let Dm

denote the set of all such Λm(a) for every a ∈ D. A pair
(a, b) of spatial objects in D satisfies a basic CDC constraint
u δ v in C if (Λm(a),Λm(b)) ∈ δ. In other words, if

(C1) Λm(a) ∩ ⋃{Λm(e) ∈ Dm|Λm(e) R b} 	= ∅ for
every single-tile relation R in δ, and
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(C2) Λm(a)∩⋃{Λm(e) ∈ Dm|Λm(e)R b}= ∅ for every
single-tile relation R that is not included in δ,

then a solution (a1, a2, ..., an) ∈ Dn for a CDC net-
work C with V = {v1, ..., vn} can be characterized by
a set of n-tuples (Λm(a1),Λm(a2), ...,Λm(an)) ∈ Dn

m.
Thus, if the grid is fine enough, the discretized version
Im =(C, V,Dm, Q) of the consistency checking problem
and I have the same answer. If m ≥ 2|V | − 1 then the grid
is fine enough:

Theorem 1. If m ≥ 2|V | − 1 then the consistency checking
problems I =(C, V,D,Q) and Im =(C, V,Dm, Q) have
the same answers.

Proof. Every solution of Im is trivially a solution of I (i.e.,
if Im is consistent so is I). Suppose that I is consistent. Take
any solution (a1, a2, ..., an) ∈ Dn of I . We first show that I
can be characterized by a digital solution. In CDC, regions
are closed but borders of spatial objects are not important
for CDC relations, so borders of each ai can be removed
to obtain an open region âi. According to Theorem 1.11
of (Wheeden 2015), each âi can be rewritten as a countable
union of non-overlapping closed squares si,j (j is a positive
integer) in R

2. These squares can be divided into smaller
squares and normalized if necessary. Now, for every spatial
object ai, consider a finite union āi of Ni squares si,j . Due
to Theorem 3.14 and 3.19 of (Wheeden 2015), âi, āi, and
âi \ āi are Lebesque measurable sets. Moreover, the mea-
sure |âi \ āi| = |âi| − |āi| approaches to 0, as Ni tends
to infinity. Since zero measure or infinitesimal regions do
not change CDC relations, (ā1, ā2, ..., ān) satisfy C as well.
This suggests that every region âi can be approximated by a
finite union of non-overlapping closed squares in R

2. Note
that such an instantiation preserves the CDC relations in C.

Let us denote by Ox the ordered list that consists of ele-
ments of {infx(a), supx(a)|a ∈ D}, and by Oy the ordered
list that consists of elements of {infy(a), supy(a)|a ∈ D}.
Now we prove that, there exists an instantiation of ai such
that every two consecutive items in Ox (resp. Oy) differ by
at most 1 cell. Suppose otherwise: without loss of generality,
there exists an instantiation of ai such that some consecutive
items ox(i) and ox(i + 1) in Ox differ by 2 cells or more.
Then the columns between ox(i) and ox(i+ 1) can be com-
bined into one column. This contraction can be repeated for
other consecutive items in Ox, and the order of elements in
Ox will not change and the CDC constraints will not be vi-
olated. Similarly, the rows can be combined with respect to
the ordering in Oy so that the consecutive items differ by at
most 1 cell. Then, since |Ox| = |Oy| = 2|V |, the solution
of I can be represented on a normalized grid of size m×m
where m = 2|V | − 1.

Liu et al. (2010) have the same result for complete net-
works in Reg*. Theorem 1 extends this result to possibly
incomplete networks. An alternative proof of Theorem 1 is
possible using Liu et al.’s definitions/results.

Theorem 1 allows us to formulate the consistency check-
ing of a CDC network in ASP.

Basic CDC Consistency Checking using ASP

Let us first consider basic CDC costraints. Let
Im =(C, V,Dm, Q) be a discretized version of a con-
sistency checking problem (m=2|V | − 1), where C
contains nondisjunctive CDC constraints and may be
incomplete. Note that since D ⊆ Reg*, spatial objects
may be disconnected regions and have holes. We define the
corresponding ASP program ΠIm as follows.

We represent the given constraint network in ASP by a set
of facts. In particular, we describe a basic CDC constraint
u δ v by the following facts:

rel(u, v,R) ← (R ∈ δ). (1)

First, an assignment of a nonempty set Λm(u) of cells
(x, y) ∈ Λm to variables u∈V is generated by the choice
rules:

1{occu(x, y) : (x, y) ∈ Λm} ← (2)

where atoms occu(x, y) express that the grid cells (x, y)
are occupied by a spatial object in Dm denoted by the spa-
tial variable u. Note that these choice rules are augmented
by a cardinality constraint to ensure that the assignment is
nonempty.

Next, it is guaranteed that this assignment satisfies every
basic CDC constraint u δ v in C. For that, first we identify
the minimum bounding box mbr(v) of the spatial object de-
noted by v, by means of the infimums and supremums of
the projections of the object on x and y axes. The following
rules define the infimum and supremum on x-axis.

infx(v, x) ← x= min{x : occv(x, y), (x, y) ∈ Λm}
supx(v, x) ← x= max{x : occv(x, y), (x, y) ∈ Λm}.

Note that these definitions use aggregates min and max sup-
ported by ASP. Similar rules are added for y axis.

Then, for each single tile relation that δ contains (resp.
does not contain), we add constraints for ensuring (C1)
(resp. (C2)). For instance, if δ contains the single tile rela-
tion N (north) then the following constraint ensures condi-
tion (C1) for N : if u is north of v then there should be some
cells to the north of mbr(v) occupied by u.

← {occu(x, y) : x<x<x, y>y, (x, y)∈Λm}0,
rel(u, v,N), infx(v, x), supx(v, x), supy(v, y)

(3)

If δ does not contain N then the following constraint ensures
condition (C2) for N : if u is not north of v then there should
not be any cells to the north of mbr(v) occupied by u.

← 1{occu(x, y) : x<x<x, y>y, (x, y)∈Λm },
not rel(u, v,N), infx(v, x), supx(v, x), supy(v, y)

(4)
Similar rules are added for other single tile relations.

This ASP program is correct: we can decide for the con-
sistency of a basic CDC network using this ASP program.

Theorem 2. For a discretized version Im =(C, V,Dm, Q)
of a consistency checking problem, where C consists of basic
CDC constraints, Im has a solution iff the corresponding
ASP program ΠIm has an answer set.

1883



The proof of Theorem 2 follows from Lemmas 1 and 2 be-
low.

Let X be an answer set for ΠIm . For every variable
v ∈ V , let us denote by X(v) the assignment of grid cells
(x, y) to v obtained from occv(x, y) in X . These grid cells
essentially form Λm(v) in Dm.

Lemma 1. For a discretized version Im =(C, V,Dm, Q)
of a consistency checking problem with V = {v1, ..., vn},
where C consists of basic CDC constraints, let X be an
answer set for the ASP program ΠIm . Then the n-tuple
(X(v1), X(v2), ..., X(vn)) is a solution for Im.

Proof. Let Π′
Im

be the program obtained from ΠIm by drop-
ping the constraints like (3) and (4). We apply the splitting
set theorem (Erdogan and Lifschitz 2004) to Π′

Im
: an answer

set Y1 for the top part (1)∪(2) describes the CDC constraints
C and possible assignments Λm(u) of regions to variables
u ∈ V , whereas the answer set Y2 for the bottom part eval-
uated with respect to Y1 defines mbr(u) for these variables;
and Y1∪Y2 is an answer set for Π′

Im
. With Prop. 2 of (Erdo-

gan and Lifschitz 2004), by adding constraints like (3) and
(4) for each CDC relation in δ, the answer sets for Π′

Im
that

do not satisfy (C1) and (C2) are eliminated. Then the answer
sets X for ΠIm characterize assignments X(v) of regions to
every variable in v∈V that satisfy (C1) and (C2). Thus the n-
tuples (X(v1), X(v2), ..., X(vn)) are solutions for Im.

Let (Λm(v1),Λm(v2), ...,Λm(vn)) ∈ Dn
m be a solution

for Im =(C, V,Dm, Q). We denote by Occm(vi) the set of
atoms of the form occvi(x, y) where (x, y) is in Λm(vi).

Lemma 2. If a discretized version Im =(C, V,Dm, Q)
of a consistency checking problem with V = {v1, ..., vn}
and basic CDC constraints in C, has a solution
(Λm(v1),Λm(v2), ...,Λm(vn)) ∈ Dn

m, then the ASP pro-
gram ΠIm has an answer set that contains ∪n

i=1Occm(vi).

Proof. Every solution (Λm(v1),Λm(v2), ...,Λm(vn)) for
Im =(C, V,Dm, Q) describes possible assignments of grid
cells to variables vi ∈ V . Then ∪n

i=1Occm(vi) is included in
some answer set Y for the program Π′

Im
obtained from ΠIm

by dropping constraints like (3) and (4). Every Λm(vi) sat-
isfies conditions (C1) and (C2). Then, no Occm(vi) violates
constraints like (3) and (4). Then, by Prop. 2 of (Erdogan
and Lifschitz 2004), Y is an answer set for ΠIm as well.

From Theorems 1 and 2, the following corollary follows:

Corollary 1. For a consistency checking problem
I =(C, V,D,Q), where C consists of basic CDC con-
straints, I has a solution iff the corresponding ASP program
ΠI2|V |−1

has an answer set.

Solving Variations of Consistency Checking

Thanks to the expressive formalism of ASP (e.g., recur-
sive definitions, nondeterministic choice, defaults), we can
solve variations of consistency checking by ensuring that the
spatial objects are connected, by allowing disjunctive con-
straints, and/or by expressing default qualitative relations.

Connected Regions

Suppose that I =(C, V,D,Q) is a consistency checking
problem, where C contains nondisjunctive CDC constraints
and may be incomplete, but the spatial objects are connected
(i.e., D ⊆ Reg). We solve this problem by adding the fol-
lowing rules to the ASP program ΠIm .

First, we recursively define (4-)connectedness of grid
cells that are occupied by the same spatial object u:

connu(x1, y1, x2, y2) ← occu(x1, y1),
occu(x2, y2) (|x1−x2|+|y1−y2|=1)

connu(x1, y1, x3, y3) ← connu(x1, y1, x2, y2),
connu(x2, y2, x3, y3) ((x3, y3) ∈ Λm).

(5)

Note that connu expresses the reflexive transitive closure of
the adjacency relation of cells occupied by u.

Next, we guarantee that every two grid cells (x1, y1) and
(x2, y2) in Λm that are occupied by the same spatial object
u are connected indeed:

← notconnu(x1, y1, x2, y2),
occu(x1, y1), occu(x2, y2).

(6)

Theorem 3. For a discretized version Im =(C, V,Dm, Q)
of a consistency checking problem, where C consists of basic
CDC constraints and Dm ⊆ Reg, Im has a solution iff the
corresponding ASP program ΠIm combined with (5) ∪ (6)
for every variable u ∈ V has an answer set.

Proof. The proof follows from an application of the splitting
set theorem (Erdogan and Lifschitz 2004) with the atoms of
ΠIm , Theorem 2, Prop. 4 of (Erdem and Lifschitz 2003) for
extending the answer sets for ΠIm by connectedness defini-
tion, and Prop. 2 of (Erdogan and Lifschitz 2004) for ensur-
ing connectedness of cells occupied by the same object.

From Theorems 1 and 3, we can obtain a correctness re-
sult for I =(C, V,D,Q) as a corollary.

Disjunctive CDC Constraints

Suppose that I =(C, V,D,Q) is a consistency checking
problem, where C contains disjunctive CDC constraints and
may be incomplete, and D ⊆ Reg*. We solve this prob-
lem by the ASP program ΠIm where m=2|V | − 1 de-
scribed above, provided that the disjunctive CDC constraints
u {δ1, δ2, ..., δz} v are represented as follows:

1{delta(u, v, i) : 1 ≤ i ≤ z}1 ←
rel(u, v,R) ← delta(u, v, i) (R ∈ δi).

(7)

These rules essentially nondeterministically pick one of the
basic CDC constraints in {δ1, δ2, ..., δz}.
Theorem 4. For a discretized version Im =(C, V,Dm, Q)
of a consistency checking problem, where C consists of CDC
constraints and Dm ⊆ Reg*, Im has a solution iff the ASP
program Πd

Im
obtained from ΠIm by replacing (1) with (7)

for disjunctive CDC constraints has an answer set.

Proof. The proof follows from an application of the splitting
set theorem (Erdogan and Lifschitz 2004) with the splitting
set that consists of the atoms of the form delta(u, v, i), and
Theorem 2.

From Theorems 1 and 4, we can obtain a correctness re-
sult for I =(C, V,D,Q) as a corollary.
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Inferring Cardinal Directions

For a consistency checking problem I =(C, V,D,Q),
where C consists of basic CDC constraints and D ⊆ Reg*,
if the given CDC network C is incomplete, it may be use-
ful to infer cardinal directions between two spatial objects u
and v whose CDC relation is not known at all (i.e., there is
no CDC constraint u δ v in C).

The following choice rules infer a basic CDC relation
from Q, when added to the relevant ASP program for
discretized version of the consistency checking problem
Im =(C, V,Dm, Q):

1{rel(u, v,R) : R ∈ Q}1 ← .

Default CDC Constraints

In the variations of consistency checking of CDC con-
straints, it is assumed that the CDC constraints are mono-
tonic. In various applications, due to dynamic domains with
human presence, qualitative spatial relations may have ex-
ceptions. For instance, the food truck may change its loca-
tion from time to time, but it may have a default location,
say to the south of the toy store.

Such examples suggest extending a CDC network with a
set Cd of default qualitative directional constraints that we
denote as follows

default u δ v

and necessitate a formalism to express these new form of
CDC constraints.

This is possible thanks to nonmonotonic construct not and
aggregates supported by ASP. For instance, the following
rules express default u δ v when δ is a basic CDC relation:

rel(u, v,R) ← not 1{rel(u, v,R′) : R′ ∈ Qs} (R ∈ δ)

where Qs denotes the set of all single-tile relations.
The following rules express default u δ v when δ =

{δ1, δ2, ..., δz} is a disjunctive CDC relation:

1{delta(u, v, i) : 1 ≤ i ≤ z}1 ←
rel(u, v,R) ← delta(u, v, i),

not 1{rel(u, v,R′) : R′ ∈ Qs} (R ∈ δi).

Examples

Consider an assisting agent in a shopping mall, who has in-
complete knowledge about relative locations of stores.

Scenario 1: Meeting Suppose that a girl wants to meet
her father in the shopping mall, but she has not been to
this mall before. She knows that her father is waiting some-
where southwest of the cafeteria and northwest of the bou-
tique. The girl asks an assisting agent for help, who is to
the north of the coffee store. With the constraints conveyed
by the girl, the agent knows the following: CoffeeShop
S:SE:SW Girl , CoffeeShop O:S Cafeteria , Cafeteria
O:N :E:NE BookStore , BookStore W :NW CoffeeShop ,
Boutique W :SW BookStore , Father SW Cafeteria , Father
NW Boutique . These CDC constraints can be depicted as
in Figure 2.

Figure 2: Meeting scenario: Basic CDC constraints.

Figure 3: Meeting scenario: Layout.

Using the ASP program for consistency check, the agent
can check the consistency of this CDC network and identi-
fies possible relative directions of stores as depicted in Fig-
ure 3. Furthermore, as described in the previous section, by
extending the ASP program with the rules

1{rel(Father,Girl , R) : R ∈ Qs}1 ←
where Qs denotes the single-tile relations, the agent infers
a new directional relation between the girl and her father:
Father SW Girl . Then, the agent guides the girl towards the
direction of her father to the southwest.

Scenario 2: Missing Child Suppose that two parents are
looking for their missing child in a shopping mall and re-
quest help from an agent in the food court. Suppose also
that the parents do not know the exact locations of stores.

Suppose that the agent receives sightings of the child at
the west or northwest of the pool, and meanwhile knows
that children typically like playgrounds. Then the CDC net-
work that the agent knows contains the disjunctive CDC
constraint (e.g., Child {W,NW} Pool ), the default CDC
constraint (i.e., default Child O PlayGround ), and basic
constraints Parents O FoodCourt , Bank O:S FoodCourt ,
Bank W :NW Pool , PlayGround S:SE Bank , PlayGround
S:SW PetStore , Pool N :NE:SE PetStore as depicted in
Figure 4.

Using the ASP program for consistency check, extended
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Table 2: A comparison of the original ASP formulation (CDC-ASP-1) with the alternative ASP formulation incremental as-
signment (CDC-ASP-2): CPU times in seconds.

Connected Possibly Disconnected
Consistent Inconsistent Consistent Inconsistent

n CDC-ASP-1 CDC-ASP-2 CDC-ASP-1 CDC-ASP-2 CDC-ASP-1 CDC-ASP-2 CDC-ASP-1 CDC-ASP-2
4 1.98 1.31 2.70 0.97 1.56 0.72 1.61 0.73
6 69.93 13.20 278.70 19.30 65.30 11.25 90.91 11.64
8 >1000 740.63 >1000 404.77 >1000 155.15 >1000 179.73

Figure 4: Missing child scenario: CDC constraints.

Figure 5: Missing child scenario: Layout.

with disjunctive constraints
1{rel(Child , Pool ,W ), rel(Child , Pool , NW )}1 ←

and default constraints
rel(Child , PlayGround , O) ←

not 1{rel(Child , PlayGround , R) : R ∈ Qs}
where Qs denotes the single-tile relations, the agent can
check the consistency of this network and identify possible
relative directions of spatial objects as depicted in Figure 3.
Furthermore, by extending the ASP program with the rules

1{rel(Child , Parents, R) : R ∈ Qs}1 ←
the agent can infer a new directional relation between the
parents and the child: Child S Parents . Then, the agent
guides the parents towards the direction of their child to the
south.

Further Improvements and Evaluations

Our ASP formulation of CDC consistency checking gener-
ates an assignment of cells to spatial objects at once, by the
choice rule (2). In an alternative approach, this assignment
can be done incrementally with respect to the given CDC
constraints. For instance, if we are given a CDC constraint
like u N v in ASP:

rel(u, v,North) ←
then cells to the north of the supy(v) can be used to generate
an assignment to the spatial object u:

1{occu(x, y) : (x, y) ∈ Λm, y > y2, x ≤ x2, x ≥ x1} ←
rel(u, v,North), supy(v, y2), supx(v, x2), infx(v, x1).

We have evaluated both formulations over 12 scenarios
where directional relations are described by basic CDC rela-
tions with incomplete networks specified over n = 4, 6, 8
connected/disconnected spatial objects. Six of these in-
stances are consistent, and the others are not. The experi-
ments are performed on a Linux server with Intel E5-2665
CPU with 2.4GHz and 64GB memory, using the ASP solver
CLINGO 4.5.4.

According to these results (shown in Table 2), the alterna-
tive approach with incremental assignment of cells performs
better in terms of computation time, increasing the scala-
bility of our approach. Adding connectedness constraints
increases the computation times for both ASP approaches.
Further improvements of the ASP formulation, as well as
experimental evaluations of our approach with instances that
involve default CDC constraints and disjunctive CDC con-
straints, are part of our ongoing work.

Although we target NP-complete problems of Table 1
with our ASP-based approach, we have also experimented
with complete CDC networks (i.e., problems in P), and ob-
served that Liu et al. (2010)’s polytime algorithm performs
better for consistency checking of complete CDC networks.

Discussions and Conclusion

Considering cardinal direction calculus (CDC) of Ski-
adopoulos and Koubarakis, we have introduced a prov-
ably correct and generic method for representing constraints
about basic/disjunctive qualitative cardinal direction rela-
tions over connected/disconnected regions on a plane, us-
ing answer set programming (ASP), so that existing state-
of-the-art ASP solvers can be used to check the consistency
of these constraints and infer new qualitative direction rela-
tions when the constraints are incomplete. No existing CDC
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reasoner can handle uncertainty (represented by disjunctive
constraints) or incomplete knowledge.

Note that, in most of the cases, consistency checking of
CDC constraints is NP-complete (Table 1), and our method
provides solutions for all of them. In that sense, it is more
general than the proposed solutions in the literature (includ-
ing the ASP-based methods).

Furthermore, we have extended CDC with a new sort
of constraints, default qualitative direction constraints, that
allow us to utilize commonsense knowledge (e.g., chil-
dren normally like playgrounds) and assumptions (e.g., food
truck is normally seen to the south of Store X) about di-
rectional relations between spatial objects. These constraints
can be formalized in ASP, thanks to nonmonotonic negation
and aggregates.

We have illustrated possible uses and usefulness of our
methods by sample scenarios in a dynamic environment that
involve incomplete knowledge, disjunctive CDC relations,
and default CDC constraints. These methods can be applied
to various applications, like patrolling/exploration of an un-
known environment, without having to change the ASP for-
mulation for consistency checking. Possibility of reasoning
over CDC constraints in such environments is important,
e.g., for human-robot interactions as well, so that a robot can
understand qualitative descriptions of directional relations
provided by humans, can reason about these possible un-
certain/incomplete qualitative knowledge, and provide guid-
ance to humans by means of qualitative descriptions.
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