
Visual Explanation by High-Level Abduction: On Answer-Set
Programming Driven Reasoning about Moving Objects

Jakob Suchan,1 Mehul Bhatt,1,2 Przemysław Wałęga,3 Carl Schultz4
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Abstract

We propose a hybrid architecture for systematically com-
puting robust visual explanation(s) encompassing hypothesis
formation, belief revision, and default reasoning with video
data. The architecture consists of two tightly integrated syner-
gistic components: (1) (functional) answer set programming
based abductive reasoning with SPACE-TIME TRACKLETS as na-
tive entities; and (2) a visual processing pipeline for detection
based object tracking and motion analysis.
We present the formal framework, its general implementa-
tion as a (declarative) method in answer set programming,
and an example application and evaluation based on two di-
verse video datasets: the MOTChallenge benchmark devel-
oped by the vision community, and a recently developed
Movie Dataset.

Introduction

A range of empirical research areas such as cognitive psy-
chology and visual perception articulate human visual sense-
making as an inherently abductive (reasoning) process (Mo-
riarty 1996;Magnani 2015) involving tight linkages between
low-level sub-symbolic processes on the one hand, and high-
level object and event-based segmentation and inference in-
volving concepts and relations on the other. In spite of the
state of the art in artificial intelligence and computer vi-
sion, and most recent advances in neural visual processing,
generalised explainable visual perception with conceptual
categories in the context of dynamic visuo-spatial imagery
remains an exceptionally challenging problem presenting
many research opportunities at the interface of Logic, Lan-
guage, and Computer Vision.

Explainable Visual Perception We define explainable vi-
sual perception from a human-centred, and commonsense
reasoning viewpoint. In this paper, it denotes the ability to
declaratively:
VXP1: hypothesise spatio-temporal belief (states) and
events; events may be both primitive or temporally-ordered
aggregates; from a more foundational viewpoint, what is al-
luded to here is a robust mechanism for counterfactual rea-
soning.
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VXP2: revise spatio-temporal beliefs, e.g., by non-
monotonically updating conflicting knowledge, to fix inher-
ently incompatible configurations in space-time defying ge-
ometric constraints and commonsense laws of naive physics,
e.g., pertaining to physical (un)realisability, spatio-temporal
continuity.
VXP3: make default assumptions, e.g., about spatio-
temporal property persistence concerning occupancy or po-
sition of objects; identity of tracked objects in space-time.
Explanatory reasoning in general is one of the hallmarks
of general human reasoning ability; robust explainable vi-
sual perception particularly stands out as a foundational
functional capability within the human visuo-spatial percep-
tion faculty. In this respect, the following considerations —
establishing the scope of this paper— are important wrt.
VXP1−3 :

• our notion of explainability is driven by the ability to
support commonsense, semantic question-answering over
dynamic visuo-spatial imagery within a declarative KR
setting;

• the features alluded to in VXP1−3 are not exhaustive; we
focus on those aspects that we deem most essential for the
particular case of movement tracking.

A Hybrid Architecture for Visual Explanation This pa-
per is driven by the development of a visual explanation
component within a large-scale computational vision & per-
ception system targeted at a range of cognitive interac-
tion technologies and autonomous systems where dynamic
visuo-spatial imagery is inherent.
The key contribution is a hybrid visual explanation

method based on the integration of high-level abductive rea-
soning within Answer Set Programming (ASP) ((Brewka,
Eiter, and Truszczyński 2011)) on the one hand, and low-
level visual processing for object tracking on the other. The
core focus of the paper is on the theory, implementation, and
applied evaluation of the visual explanation method. We par-
ticularly emphasise the closely-knit nature of two key sub-
components representing abductive explanation (Σabd) and
low-level motion tracking (Σtrk) modules respectively:
Σabd. ASP-based abductive reasoning with abstract visuo-
spatial concepts —such as OBJECTS, EVENTS, SPACE-TIME TRACK-

LETS— as native objects within ASP
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Figure 1: Visual Explanation – A Hybrid Architecture Integrating Low-Level Visual Tracking and High-Level Abduction

Σtrk. Low-level visual processing pipeline for motion
tracking, consisting of detection-based object tracking and
optical-flow based (scene-level) movement tracking
The abductive component Σabd is suited for a wide-range of
dynamic visuo-spatial imagery; however, we only focus on
video in this paper. As an application, we focus on scene in-
terpretation from video with two datasets: a Movie Dataset
(Suchan and Bhatt 2016a) and theMOT16 Dataset, a bench-
mark dataset released as part of The Multiple Object Track-
ing Challenge (Milan et al. 2016).

Visual Explanation: A Hybrid Architecture

We present a general theory for explaining visuo-spatial ob-
servations by integrating low-level visual processing and
high-level abductive reasoning (Fig. 1). As such, we con-
sider visual abduction as reasoning from visual observa-
tions to explanations consisting high-level events grounded
in low-level motion tracks. The resulting set of hypotheses is
optimised based on the abduced events and the correspond-
ing object movement.

Ontology: Space, Time, Objects, Events

The framework for abducing visual explanations is based
on visuo-spatial domain objects representing the visual el-
ements in the scene. The domain objects are associated
with spatio-temporal objects describing motion tracks ob-
tained fromΣtrk, which form the basis for qualitative spatio-
temporal abstractions facilitating high-level reasoning about
visuo-spatial dynamics.
The Qualitative Spatio-Temporal Domain (QS) is char-
acterised by the basic spatial and temporal entities (E) that
can be used as abstract representations of domain-objects
and the relational spatio-temporal structure (R) that charac-
terises the qualitative spatio-temporal relationships amongst
the supported entities in (E). For this paper, we restrict the
basic spatial entities to:
– points are a pair of reals x, y,
– axis-alined rectangles are a point p and its width and
height w, h,

and the temporal entities to:
– time-points are a real t

Visuo-spatial domain objects O = {o1, o2, ..., on} are de-
scribed as spatio-temporal objects by a set of spatial entities,
i.e., points, and axis-aligned rectangles, in time. Towards
this, MT contains all object tracks obtained form Σtrk.
The track of a single object oi is represented by MT oi =
(εts , ..., εte ), where ts and te denote the start and end frame
of the track and εts to εte denotes a spatial primitive repre-
senting the object oi at the time points ts to te, e.g., the axis
aligned bounding box of the object.
For reasoning about visuo-spatial phenomena of object

tracks, spatio-temporal relationships (R) between the basic
entities in E may be characterised with respect to arbitrary
spatial and spatio-temporal domains such as mereotopology,
orientation, distance, size, motion. From the viewpoint of
the examples of this paper, it suffices to focus on the lan-
guage of the mereotopological system of the Region Con-
nection Calculus (RCC8) (Randell, Cui, and Cohn 1992)
consisting of the following jointly exhaustive and pair-wise
disjoint relations: disconnected (dc), externally connnected
(ec), partially overlapping (po), equal (eq), (non-) tangential
proper part ((n)tpp), and their inverse ((n)tppi).
Abducable events (Θ) and beliefs (Φ) are defined by their

(spatio-temporal) preconditions and observer effects, i.e., for
each event θ ∈ Θ we define which properties of the scene
have to be true for the event to be possible, and what the
(visible) effects of the event are. In the case of visual abduc-
tion, properties of the scene are determined by the visually
observed object tracks and represent qualitative relations be-
tween tracks, i.e., spatial relation r ∈ R holding between
basic spatial entities ε of a motion track. Complex events
are defined by combining multiple events and beliefs, e.g.,
an event of an object oi passing behind another object oj
can be defined based on the events of oi being occluded by
oj and oi and oj changing sides.

Abducing Visual Explanations

We implement the theory for visual explanations combin-
ing visual processing for object detection and tracking, and
estimating movements in the scene, with ASP based rea-
soning about events, objects, and spatial-dynamics (Fig. 1).
The main components of the overall tightly-integrated sys-
tem comprising of low-level motion tracking with high-level
explanation is as follows:
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I. Visuo-Spatial Observations (VO) – low-level visual
processing consisting of detection based tracking of object
and people movements.
II.Hypotheses (H) – abducing hypotheses including belief
states, events, and default assumptions given a set of visuo-
spatial observations (VO).
III. Hypotheses to Explanations — as encompassed in
VXP1−3— are generated by evaluating abduced hypothesis
(H) based on high-level optimisation of event sequences and
low-level cost minimisation of corresponding motion tracks.

I. Visuo-Spatial Observations (VO) Visual explana-
tions are based on observations obtained from visuo-spatial
imagery, e.g., video, RGB-D. For the examples in this pa-
per, we focus on detection and tracking of people and ob-
jects for estimating motion trajectories of semantic entities
in the scene. However, the presented approach is also ca-
pable of incorporating other kinds of motion, e.g., optical
flow based low-level movement analysis using long term ob-
servations (Ochs, Malik, and Brox 2014), or dense motion-
tracklets (Gaidon, Harchaoui, and Schmid 2014) for estimat-
ing pixel level motion, corresponding to camera movement,
or fine grained object motion, etc. This may be used to ab-
duce fine grained interactions and the interplay of different
movements, e.g. people movement in the presence of cam-
era movement, by combining motion trajectories of semantic
entities with pixel movements.
Movement of people and objects is estimated following the
tracking by detection paradigm, which is based on object
detections for each frame and association of the detections
across frames. Object detections can in principle be obtained
using any state of the art (deep learning based) detector
(e.g., faster RCNN (Ren et al. 2015), YOLO (Redmon et
al. 2016)), or deformable part models (DPM) (Felzenszwalb
et al. 2010). For the examples in this paper we are using
faster RCNN in the movie examples and DPM detections
for the MOT dataset (which come as part of the dataset). For
association of detections we apply the well established ap-
proach of combining min cost assignment and kalman filters
for finding optimal tracklets, where the cost for assigning a
detection to a track is calculated by the distance between the
prediction for a track and the detection.

• Prediction for each track Kalman filters are used to pre-
dict the next position of the track and the costs for each
detection is calculated based on the distance between the
prediction and the detection.

• Assignment detections are assigned to a track usingmin
cost assignment which calculates the best assignment of
detection to tracks based on the costs calculated in the pre-
diction step. If no assignment is possible for a detection a
new track is started.

The resulting object tracks MT form the basis for abduc-
ing explanations on movement events occurring in the input
data.

II. Hypotheses (H) Explanations for visual observa-
tions are abduced based on a sequence of visual observations

obtained from the video data. For abducing visual explana-
tions from VO, given,
– set VO consisting of visuo-spatial observations ob-
tained from Σtrk,

– domain independent theory of space and time (Σspace)
based on the spatio-temporal ontology (QS)

– observable events (Σevents)
– domain dependent background knowledge, describing
properties of the domain (Σdomain )

the task of visual abduction is to find a set of logically con-
sistent hypothesesH consisting of high-level events and be-
liefs grounded in low-level motion tracks, such that:

Σspace ∧ Σevents ∧ Σdomain ∧H |= VO

The computed hypotheses (H) are based on abducibles con-
stituting primitive events and beliefs: H ≡ HEvents ∧
HBelief ; these hypotheses in turn are directly usable for in-
ducing motion tracks:

MT VXP ←− Hevent ∧Hbelief ∧MT
The resulting motion tracks MT VXP represent the low-
level instantiation of the abduced high-level event sequence.

III. Hypotheses to Explanations Hypotheses for vi-
sual observations (VO) may be ranked based on the ab-
duced event sequences and cost minimisation of correspond-
ing motion trajectories, i.e., the costs for connecting mo-
tion tracks in the hypothesised movements, e.g. consider-
ing changes in velocity, size, and length of missing detec-
tions. As such, hypothesised explanations are ranked using
the built in optimisation functionality of ASP1. In particular,
we use minimisation by assigning preferences to the abdu-
cables events and beliefs and optimise towards minimising
the costs of events and beliefs in the answer. E.g., by min-
imising the duration of missing detections for a particular
object, or minimising assigning the property noise to a track
to explain its observation.

� High-level event sequences the cost for high-level
events is estimated by assigning a cost for each event. Addi-
tionally, for events having a duration there is also a cost as-
signed to the length of the event, e.g., to abduce that a track
is noise is more likely, when it is a very short track. These
costs are weighted based on the abduced event that caused
the missing detections, e.g., missing detections caused by an
occlusion are more likely to be longer (and therefore have a
lower cost), than missing detections caused by the detector.

1For optimisation we use ASP with the so-called weak con-
straints (Gebser et al. 2012), i.e., constraints whose violation has
a predefined cost. When solving an ASP program with weak con-
straints, a search for an answer set with a minimal cost of vio-
lated constraints is performed. Each such minimal-cost answer set
is called optimal. The mechanism involving weak constraints en-
ables us to set preferences among hypothesised explanations and
search for the ones that are most preferred (optimal). Importantly,
the approach enables us to exhaustively search for all optimal ex-
planations. As a result, we can subsequently use other (more fine-
graded) evaluation techniques to choose the most preferred expla-
nations.
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EVENTS Description

enters(Border,Trk,T) The object corresponding to trackTrk
enters the scene at time point T.

exits(Border,Trk,T) The object corresponding to trackTrk
exits the scene at time point T.

occludes(Trk1,Trk2,Trk3,T1,T2) The object corresponding to track
Trk1 and track Trk2 is occluded
by the object corresponding to track
Trk3 between time points T1 and T2.

missing_det(Trk1,Trk2,T1,T2) Missing detections for the object cor-
responding to the tracks Trk1 and
Trk2 between time points T1 and T2.

COMPLEX EVENTS Description

passing_behind(O1,O2,T1,T2) Object O1 is passing behind object
O2 between time points T1 and T2.

moving_together(O1,O2,T1,T2) Objects O1 and O2 are moving to-
gether between time points T1 and
T2.

BELIEFS Description

same_object(Trk1,Trk2) The tracks Trk1 and Trk2 belong to
the same object.

belongs_to(Trk1,Trk2) The object corresponding to track
Trk1 is a part of the object corre-
sponding to track Trk2.

noise(Trk) Track Trk is a faulty detection.

Table 1: Abducibles: Events and Beliefs for Explaining Ob-
served Object Tracks.

� Low-level motion characteristics the cost of the mo-
tion tracksMT is estimated based on the characteristics of
the abduced movement. Towards this we consider changes
in velocity, for each abduced event that connects two object
tracks. For the examples in this paper we use a constant ve-
locity model to minimize changes in velocity of an abduced
object track.

The best explanation is selected by minimising the costs of
the hypothesised answer set based on the motion and the
high-level event sequence. The final movement tracks for
the optimal explanationMT VXP are then generated by pre-
dicting the motion of the object for each hypothesised event
associating two tracks, using linear interpolation.

Visuo-Spatial Phenomena

The framework may be used for abducing explanations by
modelling visuo-spatial phenomena including but not lim-
ited to:
• Object Persistence objects can not appear and disap-
pear without a cause, e.g. getting occluded, leaving the
field of view of the camera, etc.

• Occlusion objects may disappear or re-appear as a re-
sult of occlusion between two non-opaque objects.

• Linkage objects linked to each other, such that move-
ment of one object influences movement of the other ob-
ject, e.g. a face belonging to a person.

• Sensor Noise observations that are based on faulty data,
e.g. missing information, miss-detections, etc.

Event Semantics as Spatial Constraints For explaining
perceived visuo-spatial dynamics of objects in the scene, we
define the basic events listed in Table 1 to assure spatio-
temporal consistency, e.g. object persistence, or occlusion.
The focus is on explaining appearance and disappearance of
objects in the scene.2

� Entering and Leaving Objects can only enter or exit
the scene by leaving the screen at one of its borders. For
these events to happen the object has to be overlapping with
the border of the screen while appearing or disappearing.
enters:
topology(po,TRbox,left_border) :-

enters(from_left,TR,T), track(TR,TRbox,T).

topology(po,TRbox,right_border) :-

enters(from_right,TR,T), track(TR,TRbox,T).

exits:
topology(po,TRbox,left_border) :-

exits(to_left,TR,T), track(TR,TRbox,T).

topology(po,TRbox,right_border) :-

exits(to_right,TR,T), track(TR,TRbox,T).

� Missing Detections and Occlusion Appearance and
disappearance of tracks in the middle of the screen can be
either caused by a missing detection or by an occlusion from
some other object. The event that an object gets occluded by
some other object may be possible, when the object disap-
pears while overlapping with the other object.
occludes:
topology(po,TRbox1,TRbox2) :-

occludes(TR1,TR2a,TR2b,T1,T2),

track(TR1,TRbox1,T1), track(TR2a,TRbox2,T1).

topology(po,TRbox1,TRbox2) :-

occludes(TR1,TR2a,TR2b,T1,T2),

track(TR1,TRbox1,T2), track(TR2b,TRbox2,T2).

Generating Hypotheses on Events We generate hypothe-
ses explaining the observation of a track starting and ending
based on the defined events, such that the spatial constraints
defined above are satisfied.
starts:
1{

noise(TR);

enters(from_left,TR,T);

enters(from_right,TR,T);

missing_det(TR1,TR,T1,T) : ends(TR1,T1), T1<T;

occludes(TR1,TR2a,TR,T1,T): ends(TR2a,T1), T1<T,

type(TR1,Type), Type!=border, starts(TR1,T11),

ends(TR1,T12), T11<=T1, T<=T12

}1

:- starts(TR,T).

2The semantics of the underlying spatial and temporal rela-
tions with (QS) is founded on the geometric and spatial reasoning
capability provided by the ASPMT(QS) spatial reasoning system
(Wałęga, Bhatt, and Schultz 2015); the system, implemented within
ASPMT (Lee and Meng 2013), is directly available to be used as a
black-box within our visual explanation framework.
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Figure 2: People Movement – Scene from the movie The Grand Budapest Hotel (2014) by Wes Anderson

ends:
1{

noise(TR);

exits(to_left,TR,T);

exits(to_right,TR,T);

missing_det(TR,TR2,T,T2) : starts(TR2,T2), T<T2;

occludes(TR1,TR,TR2b,T,T1): starts(TR2b,T1), T<T1,

type(TR1,Type), Type!=border, starts(TR1,T11),

ends(TR1,T12), T11<=T, T1<=T12

}1

:- ends(TR,T).

Beliefs as (Spatial) Constraints Beliefs about objects in
the scene are stated as constraints in ASP.
� Part-Whole Relations E.g. the fact that every face be-
longs to exactly one person is stated as follows.
:- belongs_to(Face1,Person),

belongs_to(Face2,Person), Face1!=Face2.

Further we define that the face of a person has to stay to-
gether with the person it belongs to, using spatial constraints,
i.e. the face track is a non-tangential proper part of the per-
son track.
topology(ntpp,Fbox,Pbox) :-

belongs_to(Face, Person),

track(Person, Pbox,N), track(Face, Fbox,N).

Generating Hypotheses on Beliefs Hypotheses on faces
belonging to persons are generated by stating that for each
detected face, there has to be a corresponding person, such
that the spatial constraint is satisfied.
1{ belongs_to(Face, Person) : type(Person,person) }1

:- type(Face,face).

Costs of Hypotheses using Optimization Costs for ab-
duced visual explanations are minimized using ASP based
optimization, e.g., the cost for missing detections are based
on their length.
#minimize {(T2_start-T1_end)*ALPHA, TR1, TR2 :

missing_det(TR1,TR2,T1_end,T2_start),

weight(missing_det, ALPHA)}.

Further, the characteristics of the underlying motion is taken
into account, assuming constant velocity, by taking differ-
ences in velocity between the two tracks and the interpolated
segment in between.

#minimize {((X_vel_prev-2*X_vel_during+X_vel_next)**2+

(Y_vel_prev-2*Y_vel_during+Y_vel_next)**2)*ALPHA,

TR1, TR2 :

missing_det(TR1,TR2,T1,T2),

track(TR1, Box_T1, T1), box(Box_T1, X_e, Y_e, _, _),
[... long ...]

X_vel_during = (X_e - X_s) / (T2-T1),

Y_vel_during = (Y_e - Y_s) / (T2-T1),

[... long ...]

weight(missing_det_vel, ALPHA)}.

Application and Evaluation:

Scene Interpretation with Moving Objects

We demonstrate the proposed theory of visual abduction by
applying it in the context of scene interpretation focussing
on generating visual explanations on perceived motion. In
particular, the emphasis is on spatio-temporal consistency of
abduced explanations with respect to the underlying motion
tracks.

Movie Dataset (Suchan and Bhatt 2016a; 2016b). We use
the video part of the Movie Dataset consisting of 16 se-
lect scenes from 12 films, with each scene ranging between
0 : 38 minute to max. of 9 : 44 minutes in duration. Most
of the scenes involve multiple moving objects, and moving
camera(s). Object detection with the movie dataset is per-
formed using faster RCNN (Ren et al. 2015) with the pre-
trained VGG16 model for detection of people and objects in
the scene.

Visual Explanation of Object Movement As an exam-
ple consider the scene from the movie The Grand Budapest
Hotel (2014) by Wes Anderson (Figure 2). Here we abduce
the movement of the two main characters walking down the
hallway of the hotel. The set of visual observations consist of
11 tracks for the detected people in the scene. The abduced
events explain occuring missing detections, occlusion and
re-appearance, as well as entering, and leaving the scene.

exits(to_right,trk10,1511) enters(from_left,trk9,1500)

occludes(trk4,trk2,trk6,1490,1495)

occludes(trk1,trk0,trk7,1490,1496)

...

noise(trk4) noise(trk8) ending(trk11,1512)
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Figure 3: Occlusion, while passing behind – Scene from
“The Bad Sleep Well” by Akira Kurosawa (1960)
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Figure 4: Detection Errors – Scene from the MOT2016
dataset

Similarly we can abduce complex events based on move-
ment events and belifes, e.g., based on the following se-
quence of movement events from the movie “The Bad Sleep
Well” (1960) by Akira Kurosawa (depicted in Figure 3), we
can abduce the occurrence of the complex event passing be-
hind between two objects in the scene.
...

missing_det(trk1,trk3,556,561) noise(trk2)

occlusion(trk3,trk4,trk0,561,629)

missing_det(trk4,trk5,629,634)

...

...

passing_behind(obj1,obj2,561,629)

...

Hypotheses on People and their Faces As an example
for abducing properties of objects, we use face detections
and abduce which face belongs to which person, using the
part-whole relations defined in Section Visuo-Spatial Phe-
nomena. The spatial constraint that a face track has to be in-
side a person track, is used to improve abduced object tracks.
belongs_to(trk2,trk1) belongs_to(trk4,trk3)

MOT16 Benchmark Video Dataset We use the MOT16
(Milan et al. 2016) dataset consisting of highly accurate
and consistent annotation protocols. MOT16 is a benchmark
dataset released as part of The Multiple Object Tracking
Challenge (MOTChallenge). It consists of 14 complex video
sequences in highly unconstrained environments filmed with
both static and moving cameras. We use the detections (pro-
vided by the dataset) based on deformable part models

(DPM): these are noisy and include numerous miss detec-
tions, i.e. false positives and false negatives. We focus on
abducing people motion and on generating concise explana-
tions for the perceived movements, i.e. under consideration
of occlusion and appearance / disappearance of characters
as per the abducible events in Table 1. As a result of the
noisy detections and the complexity of the movements in the
dataset the obtained motion tracks include a high amount of
errors, e.g. identity switches, missing detections, etc. (Figure
4). For the sample scene we abduced the following events:
...

missing_det(trk19,trk23,45,49) exits(to_right,trk25,47)

exits(to_right,trk6,46) occludes(trk1,trk23,trk28,50,54)

...

Evaluating Visual Explanations

We evaluate the generated visual explanations based on their
ability to generate low-level object tracks. Towards this we
compare the accuracy and precision of the movement tracks
the hypothesised event sequences are grounded in.

Multi-Object Tracking For evaluating the precision
and accuracy of the abduced object tracks we follow the
ClearMOT evaluation schema for evaluating multi-object
tracking performance as described in (Bernardin and Stiefel-
hagen 2008).

• MOTA describes the accuracy of the tracking, taking
into account the number of missed objects / false neg-
atives (FN), the number of false positives (FP), and the
number of miss-matches (MM).

• MOTP describes the precision of the tracking based on
the distance of the hypothesised track to the ground truth
of the object it is associated to.

These metrics are used to assess how well the generated vi-
sual explanations describe the low-level motion in the scene.

Results & Discussion

We present results of the presented approach for abduc-
ing visual explanations (VXP ) on improving multi-object
tracking performance using selected scenes from the Movie
Dataset and the MOT 2016 Dataset. Overall the results
show that using our proposed method can increase accuracy
(MOTA) of the tracking. However, the precision (MOTP) of
the tracking is dropping a little, which is a result of the in-
terpolation, which is not as precise as the detections.
Movie Dataset The scenes in the Movie Dataset con-
tain relatively controlled scenes with few targets. Results on
these scenes show that the presented approach can abduce
correct event sequences and is capable of correcting many of
the errors normally occurring in multi-object tracking tasks,
e.g., fragmented object tracks, id-switches, etc. I.e., the ob-
ject tracks obtained from the high-level event sequences im-
prove the accuracy (MOTA) of the tracking (see Table 2).
MOT Dataset The results for the visual tracking on the
Venice-2 file from the MOT2016 dataset (see Table 2) show,
that our approach is capable of dealing with complex data
in challenging settings. For comparability we use the DPM
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Sequence Tracking MOTA MOTP FP M MM non-r. MM r. MM TP TR

The Bad Sleep Well without VXP 58.5 % 80.8 % 1 86 5 0 5 0.875 1.0
(107 frames, 2 targets) with VXP 100.0 % 69.1 % 0 0 0 0 0 1.0 1.0

The Drive without VXP 59.8 % 76.7 % 0 345 18 0 18 1.0 1.0
(627 frames, 2 targets) with VXP 79.7 % 76.6 % 0 182 1 0 1 1.0 1.0

MOT2016 - Venice-2 without VXP 6.4 % 69.9 % 47 27137 153 4 150 0.987 0.241
(600 frames, 74 targets) with VXP 8.1 % 65.2 % 216 26535 86 27 77 0.946 0.486

Table 2: Evaluation of Tracking Performance: false positives (FP), misses (M), miss-matches (MM), non-recoverable miss-
matches (non-r. MM), recoverable miss-matches (r. MM), track precision (TP), track recall (TR)

based detections provided with the dataset for our evalua-
tion. These detections suffer from a large number of false
positives and negatives. Due to this our underling tracking
method is only capable of tracking a small part of the over-
all targets in the data, resulting in a low MOTA score. Even
so our results demonstrate that high-level abduction can be
used to improve tracking performance, i.e., improvedMOTA
by 1.7%, and number of miss-matches reduced by 43.8%.
Based on the promising results presented in this paper, us-
ing basic tracking by detection, we suppose that ASP-based
visual explanations can also be used to improve multi-object
tracking using more elaborate tracking approaches, e.g.,
based on continuous energy minimization (Milan, Schindler,
and Roth 2016) or minimum cost multi-cuts (Tang et al.
2017).
For the examples presented in this paper, optimal answer-
sets are computed rather fast, e.g., for the scene depicted
in Figure 2, 457 optimal models are abduced in 0.973s, of
which the first model is found after 0.04s and the last one
after 0.93s.3 For longer scenes or in online situations, vi-
sual explanations would naturally have to be computed in-
crementally, as the number of abduced hypothesis grows ex-
ponentially with the number of tracks.

Related Work

Answer Set Programming (ASP) has become a widely used
tool for abductive reasoning and non-monotonic reasoning
in general. The work presented in this paper aims at bridg-
ing the gap between high-level formalisms for logical ab-
duction and low level visual processing, by tightly integrat-
ing qualitative abstractions of space and time with the un-
derlying numerical representations of spatial change. The
significance of abducing high-level explanations in a range
of contexts has been well established in AI and KR, e.g. in
planning and process recognition (Kautz and Allen 1986;
Kautz 1991), vision and abduction (Shanahan 2005), prob-
abilistic abduction (Blythe et al. 2011) etc. Within KR, rea-
soning about spatio-temporal dynamics on the basis of an
integrated theory of space, time, objects, and position (Gal-
ton 2000) or defined continuous change using 4-dimensional
regions in space-time has also received significant theoreti-
cal interest (Muller 1998; Hazarika and Cohn 2002). Dubba
et al. (2015) uses abductive reasoning for improving learn-
ing of events in an inductive-abductive loop, using inductive

3We computed hypotheses using a Intel Core i5-4210M
2.60GHz CPU with 12 GB RAM running Ubuntu 16.04

logic programming (ILP). The role of visual commonsense
in general, and answer set programming in particular, has
been used in conjunction with computer vision to formalise
general rules for image interpretation in the recent works of
Aditya et al. (2015). From the viewpoint of computer vision
research there has been an interest to synergise with cogni-
tively motivated methods (Aloimonos and Fermüller 2015);
in particular the research on semantic interpretation of visual
imagery is relevant to this paper, e.g., for combining infor-
mation from video analysis with textual information for un-
derstanding events and answering queries about video data
(Tu et al. 2014), and perceptual grounding and inference (Yu
et al. 2015).

Summary and Outlook

The paper presents a robust, declarative, and generally us-
able hybrid architecture for computing visual explanations
with video data. With a focus on abductive reasoning in
the context of motion tracking, the architecture has been
formalised, fully implemented, evaluated with two diverse
datasets: firstly, the benchmark MOTChallenge (evaluation
focus), and secondly aMovie Dataset (demonstration focus).
The overall agenda of the work in this paper is driven by

a tighter integration of methods in KR and Computer Vi-
sion on the one hand, and the twin concepts of “deep se-
mantics” & “explainability” on the other. VXP is rooted
in state of the art methods in knowledge representation and
reasoning (i.e., answer set programming), and computer vi-
sion (detection based object tracking, optical flows, RCNN).
The overall system is designed to be a part of a larger per-
ception module within autonomous systems, and cognitive
interaction systems. The scope of VXP may be further ex-
panded, e.g., for visuo-spatial learning (with inductive logic
programming), ontological reasoning (with description log-
ics), are achievable depending on the scope and complexity
of the low-level visual signal processing pipeline, and cho-
sen high-level commonsense knowledge representation and
reasoning method(s) at hand.
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