
Splitting an LPMLN Program

Bin Wang, Zhizheng Zhang,∗ Hongxiang Xu, Jun Shen
School of Computer Science and Engineering
Southeast University, Nanjing 211189, China

{kse.wang, seu zzz, xhx1693, junshen}@seu.edu.cn

Abstract

The technique called splitting sets has been proven useful
in simplifying the investigation of Answer Set Programming
(ASP). In this paper, we investigate the splitting set theorem
for LPMLN that is a new extension of ASP created by combin-
ing the ideas of ASP and Markov Logic Networks (MLN).
Firstly, we extend the notion of splitting sets to LPMLN pro-
grams and present the splitting set theorem for LPMLN. Then,
the use of the theorem for simplifying several LPMLN in-
ference tasks is illustrated. After that, we give two parallel
approaches for solving LPMLN programs via using the the-
orem. The preliminary experimental results show that these
approaches are alternative ways to promote an LPMLN solver.

Introduction

The notion of splitting sets introduced by Lifschitz and
Turner (1994) has been regarded as one of the most impor-
tant tools on both theoretical and practical aspects in Answer
Set Programming (ASP) (Gelfond and Lifschitz 1988). Intu-
itively, a splitting set of an ASP program is a set of literals,
by which the program can be divided into two parts, called
“bottom part” and “top part”. Then, the stable models of
the original ASP program can be computed by solving these
two parts. It has been shown in several works (Lifschitz and
Turner 1994; Ji et al. 2015) that the splitting set theorem
can be used to simplify ASP programs and the proofs of
some properties of ASP, and to develop more effective ASP
solvers. Meanwhile, it is also shown that the splitting set
theorem is a useful property for several extensions of ASP
such as CR-Prolog (Balduccini 2009), Epistemic Specifica-
tion (Watson 2000) etc.

LPMLN (Lee and Wang 2016) is a new extension of ASP
that incorporates the idea of Markov Logic Networks (MLN)
(Richardson and Domingos 2006) and can be viewed as
a weighted ASP program. In recent years, several results
on LPMLN have been presented. In the theoretical aspect,
the relationships between LPMLN and some other knowl-
edge representation languages have been investigated. For
example, Lee and Wang (2016) presented the translations
from MLN, P-log (Baral, Gelfond, and Rushton 2009),
ProbLog (De Raedt, Kimmig, and Toivonen 2007) and ASP

∗Corresponding author
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with weak constraints (Calimeri et al. 2012) to LPMLN re-
spectively. Lee and Yang (2017) also presented a trans-
lation from LPMLN to ASP with weak constraints. Balai
and Gelfond (2016) presented a translation from LPMLN

to P-log. These results demonstrate the expressivity of
LPMLN and open a way to implement an LPMLN solver. In
the practical aspect, several solvers of LPMLN have been
developed through using the above translations, such as
LPMLN2ASP, LPMLN2MLN (Lee, Talsania, and Wang
2017), and LPMLN-Models (Wang and Zhang 2017). In par-
ticular, LPMLN-Models is a parallel LPMLN solver. These
implementations also stimulate the study and use of LPMLN

conversely.
Usually, an LPMLN program is much harder to solve than

its unweighted ASP counterpart. Hence, to use LPMLN in
more practical scenarios, we need to investigate more use-
ful properties to simplify the inference tasks for an LPMLN

program, and develop more effective ways to promote an
LPMLN solver. Our goal in this paper is to investigate the
splitting set theorem for LPMLN programs and show the use-
fulness of the theorem in simplifying the inference tasks for
LPMLN and promoting an LPMLN solver.

In this paper, we propose the splitting set theorem for
LPMLN firstly, which shows that the tasks of computing sta-
ble models and their weight degrees of an LPMLN program
can be converted into the same kind of tasks of the corre-
sponding “top part” and “bottom part”. Secondly, we investi-
gate a special kind of LPMLN programs called independently
divisible LPMLN programs, and derive the splitting set the-
orem for such kind of programs. This special theorem di-
rectly implies that all basic LPMLN inference tasks discussed
in this paper can be simplified for an independently divisible
LPMLN program. Finally, we give two parallel approaches
for solving normal and independently divisible LPMLN pro-
grams respectively, which is a straightforward application
of the splitting set theorem. The preliminary experimental
results show that these approaches are alternative ways to
promote an LPMLN solver.

Preliminaries

LPMLN

An LPMLN program is a finite set of weighted rules w : r,
where w is either a real number or the symbol α denoting

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1997

the “infinite weight”, and r is an ASP rule of the form

l1 ∨ ... ∨ lk ← lk+1, ..., lm, not lm+1, ..., not ln. (1)

where ls are literals, ∨ is epistemic disjunction, and not
is default negation. For an ASP rule r of the form (1),
head(r) = {li|1 ≤ i ≤ k}, body+(r) = {li|k + 1 ≤
i ≤ m}, body−(r) = {li|m + 1 ≤ i ≤ n}, and
lit(r) = head(r) ∪ body+(r) ∪ body−(r). For an ASP pro-
gram Π, we have head(Π) =

⋃
r∈Π head(r), body+(Π) =⋃

r∈Π body+(r), body−(Π) =
⋃

r∈Π body−(r), and
lit(Π) = head(Π) ∪ body+(Π) ∪ body−(Π). An LPMLN

rule w : r is called soft if w is a real number, and hard if w
is α. We use M to denote the set of unweighted ASP coun-
terpart of an LPMLN program M , i.e. M = {r|w : r ∈ M}.
And an LPMLN program is called ground if its rules con-
tain no variables. For a ground LPMLN program M , we use
W (M) to denote the weight degree of M , i.e. W (M) =
exp

(∑
w:r∈M w

)
. Usually, a non-ground LPMLN program

is considered as a shorthand for the corresponding ground
program. So for simplicity, we restrict attention to ground
LPMLN programs only.

A ground LPMLN rule w : r is satisfied by a consistent set
X of ground literals, denoted by X |= w : r, if X |= r by
the notion of satisfiability in ASP. An LPMLN program M is
satisfied by X , denoted by X |= M , if X satisfies all rules
in M . We use MX to denote the LPMLN reduct of an LPMLN

program M w.r.t. X , i.e. MX = {w : r ∈ M | X |= w : r}.
X is a stable model of the program M if X is a stable model
of MX . And we use SM(M) to denote the set of all stable
models of an LPMLN program M . For a stable model X of
an LPMLN program M , the weight degree W (M,X) of X
w.r.t. M is defined as

W (M,X) = exp

(∑
w:r∈MX

w

)
(2)

and the probability degree Ps(M,X) of X w.r.t. M is de-
fined as

Ps(M,X) = lim
α→∞

W (M,X)

ΣX′∈SM(M)W (M,X ′)
(3)

For a proposition β, its probability degree Pp(M,β) w.r.t.
M is defined as

Pp(M,β) =
∑

X∈SM(M) and X|=β

Ps(M,X) (4)

For an LPMLN program M and a literal l, we say that the
tuple (l, Pp(M, l)) is a probabilistic consequence of M , de-
noted by M |= (l, Pp(M, l)), if Pp(M, l) �= 0.

Usually, there are four kinds of basic inference tasks (Lee,
Talsania, and Wang 2017). For an LPMLN program M ,
- MAP (Maximum A Posteriori) inference is to compute

the most probable stable models of M ;
- MAPL (Maximum A Posteriori for Literals) inference is

to check if some literals are in the most probable stable
models of M , which can be converted to MAP inference;

- MPS (Marginal Probability of Stable models) inference is
to compute probability degrees of all stable models of M ;

- MPL (Marginal Probability of Literals) inference is to
compute the probability degree of a literal w.r.t. M , which
is to add the probability degrees of the stable models of M
that contains the literal.

Splitting Sets for ASP

The notion of splitting sets for ASP is introduced by Lifs-
chitz and Turner (1994). A splitting set U for a ground ASP
program Π is a set of literals such that, for each rule r ∈ Π,
if head(r) ∩ U �= ∅ then lit(r) ⊆ U . The bottom part of Π
w.r.t. U is the set b(Π, U) = {r ∈ Π | head(r)∩U �= ∅}, and
the top part of Π w.r.t. U is the set t(Π, U) = Π− b(Π, U).
Let U , X be sets of literals, and Π an ASP program, we
use d(Π, U,X) to denote the set of rules r ∈ Π such that
body+(r)∩U �⊆ X or body−(r)∩U ∩X �= ∅, called delet-
ing set, and we use e(Π, U,X) to denote the set of rules
obtained from Π by deleting:

1. all rules in d(Π, U,X);
2. all formulas of the form l or not l in the bodies of the

remaining rules, where l ∈ U .
The process containing above two steps that compute the set
e(Π, U,X) is called the partial evaluation for ASP.

Let U be a splitting set of an ASP program Π, a solution
of Π w.r.t. U is a pair 〈X,Y 〉 of the sets of literals such that
- X is a stable model of b(Π, U);
- Y is a stable model of e(t(Π, U), U,X);
- X ∪ Y is consistent.
The splitting set theorem for ASP shows that, for an ASP
program Π and a splitting set U of Π, a set S is a stable
model of Π iff S = X ∪ Y for a solution 〈X,Y 〉 of Π w.r.t.
U .

Splitting Sets for LPMLN

In this section, we describe the notations and theorem related
to splitting sets for LPMLN. Without loss of generality, we
consider only grounded finite LPMLN programs in rest of the
paper.

The Definition of Splitting Sets for LPMLN

Definition 1 (Splitting Sets for LPMLN). For a ground
LPMLN program M , a set U of ground literals is called a
splitting set of M , if for each LPMLN rule w : r ∈ M ,
head(r) ∩ U �= ∅ implies lit(r) ⊆ U .

It is obvious that the definition of the splitting sets for
LPMLN is quite similar to the definition of the splitting
sets for ASP. Analogously, we can define the bottom part
b(M,U) and top part t(M,U) of an LPMLN program M
w.r.t. one of its splitting sets U as

b(M,U) = {w : r ∈ M | head(r) ∩ U �= ∅} (5)
t(M,U) = M − b(M,U) (6)

Example 1. Consider the following program M1:

1 : a ← b, not c. (r1)
1 : b ← c, not a. (r2)
1 : c. (r3)

1998

a

bc

Figure 1: Dependency Graph of the Program in Example 1

Trivially, both ∅ and lit
(
M1

)
= {a, b, c} are splitting sets of

M1. Besides, the set U1 = {c} is also a splitting set of M1,
and we have b(M1, U1) = {r3} and t(M1, U1) = {r1, r2}.

Let us reconsider the top part and the bottom part of an
LPMLN program from the side of dependency graph. A de-
pendency graph of an LPMLN program M is a directed graph
whose vertices are literals in M , and there is an arc from p
to q if there is a rule w : r ∈ M such that p ∈ head(r) and
q ∈ body+(r)∪ body−(r). For example, the graph shown in
Figure 1 is the dependency graph of the program M1 in Ex-
ample 1. By the definition of splitting sets, if U is a splitting
set of the program M , then U ∩ head(t(M,U)) = ∅. On
one hand, it means there are no edges that are from literals
in U to literals in the head of the top part. On the other hand,
it means literals in the bottom part cannot be derived by any
rules in the top part.

Splitting Set Theorem for LPMLN

Now, we explore the use of the splitting sets in dividing the
tasks of computing the stable models and their weight de-
grees of an LPMLN program. First of all, we define some no-
tions for convenient description.
Definition 2 (Deleting Set). Let U , X be sets of ground
literals, and M a ground LPMLN program, the deleting set
d(M,U,X) of M w.r.t. U and X is

d(M,U,X) = {w : r ∈ M | body+(r) ∩ U �⊆ X or

body−(r) ∩ U ∩X �= ∅} (7)

Definition 3 (Partial Evaluation Reduct). For an LPMLN rule
w : r and a set U of literals, the partial evaluation reduct
pred(w : r, U) of the rule w.r.t. U is obtained by
- deleting all formulas of the form l and not l, where l ∈ U ;
- dropping the weight w.
Definition 4 (Grouping Set). For an LPMLN program M and
a set U of literals, the grouping set g(M,U) of M w.r.t. U
is a set of rule sets defined as follows.

g(M,U) ={M ′ ⊆ M | ∀w1 : r1, w2 : r2 ∈ M ′,

∀w3 : r3 ∈ M −M ′,
pred(w1 : r1, U) = pred(w2 : r2, U),

pred(w3 : r3, U) �= pred(w1 : r1, U)}
(8)

We can observe that, for each rule set M ′ ∈ g(M,U), all
rules in M ′ have the same partial evaluation reduct pred(w :
r, U) w.r.t. U , where w : r ∈ M ′.
Definition 5 (Representative Rule). Let M be an LPMLN

program, and U a set of literals. For each rule set M ′ ∈

g(M,U), the rule w′ : r′, denoted by rep(M ′, U), is the
representative rule w.r.t. M ′, where r′ is the partial evalua-
tion reduct of a rule in M ′ w.r.t. U , and w′ is obtained by

w′ =
∑

w:r∈M ′
w (9)

Based on the concepts of deleting set, grouping set and
representative rule, we define the partial evaluation for
LPMLN.
Definition 6 (Partial Evaluation for LPMLN). For an LPMLN

program M and two sets U , X of literals, the set e(M,U,X)
of rules obtained by the partial evaluation for LPMLN is

e(M,U,X) ={rep(M ′, U) |
M ′ ∈ g(M − d(M,U,X), U)} (10)

Now we define the solutions to an LPMLN program M
w.r.t. a splitting set of M .
Definition 7 (Solutions for LPMLN). For an LPMLN program
M and a splitting set U of M , a solution to M w.r.t. U is a
pair 〈X,Y 〉 of sets of literals such that
- X is a stable model of b(M,U);
- Y is a stable model of e(t(M,U), U,X);
- X ∪ Y is consistent.
Example 2. Consider the LPMLN program M1 in Example
1, the set U1 = {c} is a splitting set of M1. Firstly, by the
definition of the stable models of an LPMLN program, X =
{c} is a stable model of the bottom part b(M1, U1). Then,
we have the deleting set d(t(M1, U1), U1, X) = {r1}, the
grouping set g(t(M1, U1) − d(t(M1, U1), U1, X), U1) =
{{r2}}, and by the partial evaluation for LPMLN, we have
e(t(M1, U1), U1, X) = {b ← not a.}. Finally, Y = {b} is a
stable model of e(t(M1, U1), U1, X), and X ∪ Y is consis-
tent. Hence, the pair 〈X,Y 〉 is a solution to the program M1

w.r.t. the splitting set U1.
Theorem 1 (Splitting Set Theorem for LPMLN). Let U be a
splitting set for an LPMLN program M . A set S of literals is
a stable model of M iff S = X ∪ Y for a solution 〈X,Y 〉 to
M w.r.t. U . And the weight degree W (M,S) of S w.r.t. M
can be reformulated as

W (M,S) =W (b(M,U), X)×
W (e(t(M,U), U,X), Y)×
W (d(t(M,U), U,X))

(11)

Example 3. Continue Example 2, by Theorem 1,
we can derive that S = X ∪ Y = {c, b}
is a stable model of M , and the weight degree
W (b(M1, U1), X) = e1, W (e(t(M1, U1), U1, X), Y) =
e1, and W (d(t(M1, U1), U1, X)) = e1. By the Equation
(11), W (M1, S) = e1 × e1 × e1 = e3. It is easy to check
that the above computing results coincide with the related
definitions of LPMLN.

Apparently, Theorem 1 contains two parts. One is about
weight degrees evaluation of the stable models. Another is
about stable models generation. In the rest of this subsec-
tion, we give the basic ideas of the proof of Theorem 1 (the

1999

complete proof of the theorem can be found in the extended
version of the paper1).
- For the first part, we give the intuitive meanings of the

above definitions such that the soundness of the weight
degree evaluation is clear.

- For the second part, we prove that there is a one-to-one
mapping between the splitting sets of an LPMLN program
and its ASP translation, which makes the soundness of
this part clear.
Here are the intuitive meanings of the above definitions.

Consider an LPMLN program as a set of weighted evidence
for decision making and a rule is a piece of weighted evi-
dence, then the strength of a piece of evidence is the sum of
all the weights of rules that have the same unweighted form.
The partial evaluation reduct of a rule w.r.t. a set U can be
viewed as a piece of reduced evidence by removing the fac-
tors in U . Under such an assumption, a group in a grouping
set w.r.t. U is a set of weighted evidence that are same if re-
duced by U . Furthermore, the representative rule of a group
is just a piece of reduced evidence obtained from the origi-
nal LPMLN program w.r.t. U , and its weight is the sum of the
strengths of a set of original evidence that can be reduced to
it by U . Hence, we can find that the evaluation of weight of
a representative rule is compatible with the computation of
the strength of a piece of evidence in LPMLN. Now, we use
Example 4 to illustrate it.
Example 4. Consider an LPMLN program M3 that is ob-
tained by adding following rule (r6) into the program M1 in
Example 1.

1 : b ← not a. (r6)

The set U = {c} is a splitting set of M3, the
set X = {c} is a stable model of b(M3, U),
the deleting set d(t(M3, U), U,X) = {r1}. Let M ′
be t(M3, U) − d(t(M3, U), U,X), the grouping set
g(M ′, U) = {{r2, r6}}, and the rule set obtained by the
partial evaluation for LPMLN is e(t(M3, U), U,X) = {2 :
b ← not a.}. It is clear that the weights of the same reduced
evidences are accumulated properly in partial evaluation for
LPMLN.

Now, let us see Equation (11), by which the computing of
weight degree of a stable model is divided into three parts.
Suppose S = X ∪Y is a stable model of an LPMLN program
M , and 〈X,Y 〉 is a solution to M . By the definition, the
weight degree of S depends on the rules in M satisfied by S,
which means, to compute the weight degree of S, we have
to consider rules in the bottom part, deleting set, and the
set obtained by partial evaluation. It is easy to check that
all rules in the corresponding deleting set can be satisfied
by the stable model S. Therefore, Equation (11) is provably
correct.

From above discussion, we can define the equivalent of an
LPMLN program.
Definition 8. An LPMLN program M is equivalent to an-
other program M ′, if

1http://cse.seu.edu.cn/PersonalPage/seu zzz/publications/
lpmln-splitting-sets.pdf

- SM(M) = SM(M ′), and
- for each stable model S ∈ SM(M), W (M,S) =
W (M ′, S).

Lemma 1. Let M1 and M2 be LPMLN programs. If M1 =
M2, and for each rule r ∈ M1,∑

w′:r′∈M1, and r′=r

w′ =
∑

w′:r′∈M2, and r′=r

w′ (12)

then the program M1 is equivalent to M2.
And we give an equivalent definition of the results ob-

tained by partial evaluation for LPMLN, which is useful for
the proof of stable models generation part.
Definition 9. For an LPMLN program M and two sets U ,
X of literals, the set e′(M,U,X) of rules is obtained from
e(M,U,X) by replacing every rule w : r ∈ e(M,U,X)
with an LPMLN program M ′ such that
- M ′ = {r} and w =

∑
w′:r∈M ′ w′;

- |M ′| = |M ′′|, where M ′′ ∈ g(M − d(M,U,X), U) and
w : r is the representative rule of M ′′.
For the second part, the basic idea of the proof is to trans-

late an LPMLN program into an ASP program and use the
splitting set theorem for ASP programs. Firstly, we give a
brief review of the translation from LPMLN to ASP.

For an LPMLN program M , its ASP translation τ(M) is
obtained by turning each rule wi : ri ∈ M , where ri is of
the form (1), and i is the index of the rule, into following
two ASP rules.

unsat(i) ← lk+1, ..., lm, not lm+1, ..., not ln,

not l1, ..., not lk.

l1 ∨ ... ∨ lk ← lk+1, ..., lm, not lm+1, ...,

not ln, not unsat(i).

(13)

It has been shown in (Lee, Talsania, and Wang 2017) that
there is a 1-1 correspondence φ between SM(M) and the
set of stable models of τ(M).

The proof of the second part of Theorem 1 is outlined as
following Lemma 2 - 4.
Lemma 2. For an LPMLN program M and a splitting set U
of M , there exists a splitting set U ′ of the translation τ(M)
such that
- U ′ = U ∪ {unsat(i) | wi : ri ∈ b(M,U)},
- τ(b(M,U)) = b(τ(M), U ′), and
- for a stable model X ∈ SM(b(M,U)),
τ(e′(t(M,U), U,X)) = e(t(τ(M), U ′), U ′, φ(X)).

Lemma 3. Let U be a splitting set for an LPMLN program
M . A set S of literals is a stable model of M iff S = X ∪Y
for a solution 〈φ(X), φ(Y)〉 to the translation τ(M) w.r.t.
U ′, where U ′ is defined as in Lemma 2.
Lemma 4. Let U be a splitting set for an LPMLN pro-
gram M . A pair 〈X,Y 〉 is a solution to M w.r.t. U iff
〈φ(X), φ(Y)〉 is a solution to the translation τ(M) w.r.t. U ′,
where U ′ is defined as in Lemma 2.

It is interesting that the stable models generation part of
splitting set theorem for LPMLN is quite similar to the ones
for ASP. By above proof, we can find that such similarity is
not a coincidence.

2000

Splitting Sequence Theorem for LPMLN

Similar to ASP, we can derive following splitting sequence
theorem straightforwardly.

Definition 10 (Splitting Sequence for LPMLN). Let
U0, . . . , Un be a finite sequence of sets of literals, for an
LPMLN program M , the sequence is called a splitting se-
quence of M , if it satisfies

- for any 0 ≤ k ≤ n, Uk is a splitting set of M ; and
- for any 0 ≤ k < n, Uk ⊂ Uk+1.

Definition 11. Let U0, . . . , Un be a splitting sequence of
an LPMLN program M , a solution to M w.r.t. the splitting
sequence is a sequence X0, . . . , Xn+1 of sets of literals such
that

- X0 is a stable model of b(M,U0);
- for any 0 < k ≤ n, Xk is a stable model of the program
Mk, where Mk is obtained by

Mk = e(b(M,Uk)− b(M,Uk−1), Uk−1,
⋃

0≤i<k−1

Xi)

(14)
- Xn+1 is a stable model of the program
e(t(M,Un), Un,

⋃
0≤i≤n Xi);

-
⋃

0≤k≤n+1 Xk is consistent.

Theorem 2 (Splitting Sequence Theorem for LPMLN). Let
U0, . . . , Un be a finite splitting sequence of an LPMLN pro-
gram M . A set S of literals is a stable model of M iff

- a finite sequence X0, . . . , Xn+1 of set of literals is a solu-
tion to M w.r.t. the splitting sequence; and

- S =
⋃

0≤k≤n+1 Xk.

And the weight degree W (M,S) can be reformulated as

W (M,S) = W (b(M,U0), X0)×
W (e(t(M,Un), Un,

⋃
0≤k≤n

Xk), Xn+1)×

W (d(t(M,Un), Un,
⋃

0≤k≤n

Xk))×

Π
1≤k≤n

W (Mk, Xk)× Π
1≤k≤n

W (M ′
k)

(15)

where Mk is defined as Equation (14), and M ′
k is defined as

follows (for any 1 ≤ k ≤ n).

M ′
k = d(b(M,Uk)− b(M,Uk−1), Uk−1,

⋃
0≤i<k−1

Xi)

(16)

Independently Divisible LPMLN Programs

In this section, we investigate independently divisible
LPMLN programs and derive the corresponding splitting set
theorem. Now, we give an example to show the case dis-
cussed in this section.

Example 5. Consider the LPMLN program M that is from
Example 1 in (Lee and Wang 2016).

α : bird(X) ← residentBird(X).

α : bird(X) ← migratoryBird(X).

α : ← migratoryBird(X), residentBird(X).

2 : residentBird(joe).

1 : migratoryBird(joe).

2 : residentBird(amy).

1 : migratoryBird(amy).

We use gr(M) to denote the grounded version of M , and
Ma and Mj to denote the maximal subset of gr(M) only
related to the object amy and joe respectively. It can be ob-
served that gr(M) = Ma∪Mj and lit(Ma)∩ lit(Mj) = ∅.
Here, we show some interesting properties of such kind of
programs, which will be useful to improve the efficiency of
the LPMLN inference tasks.

Firstly, we introduce a new notation. For a set X of lit-
erals, the complement of X , denoted by ¬X , is defined as
¬X = {the complement of l | l ∈ X}. Now we can give the
definition for independently divisible LPMLN programs.
Definition 12 (Independently Divisible LPMLN programs).
An LPMLN program M is called independently divisible,
if there is a proper subset M1 of M such that lit(M1) ∩
lit(M2) = ∅ and ¬head(M1) ∩ head(M2) = ∅, where
M2 = M − M1. In addition, above programs M1 and M2

are called independent programs w.r.t. M .
For two independent programs M1 and M2 w.r.t. M =

M1 ∪ M2, lit(M1) and lit(M2) are two splitting sets for
M , and the corresponding computation results are shown in
Table 1, where U , bottom, top, deleting, and peval refer
to the splitting set U of M , the bottom part b(M,U), the
top part t(M,U), the deleting set d(t(M,U), U,X), and the
partial evaluation result e(t(M,U), U,X) for a stable model
X of the bottom part respectively.

Table 1: Computation Results
U bottom top deleting peval

lit(M1) M1 M2 ∅ M2

lit(M2) M2 M1 ∅ M1

Now we give the definition of solutions and the splitting
set theorem for independently divisible LPMLN programs.
Definition 13 (Independent Solutions for LPMLN). Let M1

and M2 be independent LPMLN programs w.r.t. the program
M = M1 ∪M2. If U = lit(M1) is a splitting set of M , an
independent solution to M w.r.t. U is a pair 〈X,Y 〉 of sets
of literals such that
- X is a stable model of M1;
- Y is a stable model of M2;

For an independently divisible LPMLN program M , if
〈X,Y 〉 is a normal solution to M , then 〈Y,X〉 is not a so-
lution to M usually. But Proposition 1 tells us that the inde-
pendent solutions are different.

2001

Proposition 1. For an independently divisible LPMLN pro-
gram M , if 〈X,Y 〉 is an independent solution to M , then
〈Y,X〉 is also an independent solution to M .
Theorem 3 (Splitting Set Theorem for Independently Di-
visible LPMLN Programs). Let M1 and M2 be independent
LPMLN programs w.r.t. the program M = M1 ∪ M2. A set
S of literals is a stable model of M iff S = X ∪ Y for an
independent solution 〈X,Y 〉 to M , where X ∈ SM(M1)
and Y ∈ SM(M2). And the weight degree W (M,S) can
be reformulated as

W (M,S) = W (M1, X)×W (M2, Y) (17)

Theorem 3 tells us that if the bottom part M1 and the top
part M2 of an LPMLN program M are independent programs
w.r.t. M , then the stable models of M can be computed
through solving the programs M1 and M2 independently,
and for a stable model S ∈ SM(M), the weight degree
W (M,S) only depends on the rules in M1 and M2.

For an independently divisible LPMLN program M , all in-
ference tasks discussed in the preliminaries of the paper can
be simplified, which is shown in following four corollaries.
Corollary 1. Let M1 and M2 be independent LPMLN pro-
grams w.r.t. the program M = M1∪M2. A set S ∈ SM(M)
is the most probable stable model of M iff S = X∪Y for an
independent solution 〈X,Y 〉 to M , where X ∈ SM(M1),
Y ∈ SM(M2), and both X and Y are the most probable
stable models of M1 and M2 respectively.
Corollary 2. Let M1 and M2 be independent LPMLN pro-
grams w.r.t. the program M = M1 ∪M2. A literal l is in the
most probable stable model of M iff l is in the most probable
stable model of M1, where l ∈ lit(M1).
Corollary 3. Let M1 and M2 be independent LPMLN pro-
grams w.r.t. the program M = M1 ∪M2. A set S = X ∪ Y
is a stable model of M , where X ∈ SM(M1) and Y ∈
SM(M2), the probability degree Ps(M,S) can be reformu-
lated as

Ps(M,S) = Ps(M1, X)× Ps(M2, Y) (18)

Corollary 4. Let M1 and M2 be independent LPMLN pro-
grams w.r.t. the program M = M1 ∪ M2. For a literal
l ∈ lit(M1), we have the marginal probability Pp(M, l) =
Pp(M1, l).
Example 6. Consider the program M in Example
5. It is easy to check that gr(M) is an inde-
pendently divisible LPMLN program, the program Ma

and Mj are independent programs w.r.t. M . The set
X = {residentBird(joe), bird(joe)} and Y =
{residentBird(amy), bird(amy)} are the most probable
stable model of Mj and Ma respectively. By Corollary 1, the
set S = X ∪Y is the most probable stable model of gr(M).
By Corollary 2, we can check if the literal bird(amy) is
in the most probable stable model of gr(M) by solving
only the program Ma instead of the whole program gr(M).
By Corollary 3, the probability degree Ps(gr(M), S) =
Ps(Mj , X) × Ps(Ma, Y) = 0.67 × 0.67 ≈ 0.45. And
by Corollary 4, the probability degree Pp(M, bird(joe)) =
Pp(Mj , bird(joe)) = 0.91.

From the example, we can observe that all four kinds of
inference tasks for an independently divisible LPMLN pro-
gram M can be reduced to the same kinds of tasks of in-
dependent programs w.r.t. M . These independent programs
are easier to solve than M , and they can also be solved con-
currently. Therefore, we can use these properties to simplify
the inferences for independently divisible LPMLN programs.

In addition, Corollary 4 also implies that if we extend an
LPMLN program M by a program M ′ such that M and M ′
are independent programs w.r.t. M ∪ M ′, then the proba-
bilistic consequences of M are still the probabilistic conse-
quences of M ∪ M ′, and there are not any new probabilis-
tic consequences whose atoms occur in M . As discussed in
(Lifschitz and Turner 1994), this property is called conser-
vative extension property of LPMLN programs.

Parallel Algorithms for Solving LPMLN

An LPMLN program M is much harder to solve than its un-
weighted ASP counterpart M , because the solver has to test
all possible subsets of the program M , which is the core of
several ASP-based LPMLN solvers. One of the advantages of
such kind of solvers are the accurate inference results. There
also exists other kinds of LPMLN sovlers. Lee et al. (Lee, Tal-
sania, and Wang 2017) developed an effective LPMLN solver
LPMLN2MLN that translates an LPMLN program into an
MLN program and uses the MLN solvers as the backend.
Due to effectiveness and scalability of the MLN solvers,
LPMLN2MLN performs well. While only tight LPMLN pro-
grams can be handled by LPMLN2MLN, and the results
computed by the MLN solvers are not accurate. In addition,
some advanced ASP constructors such as aggregates are not
supported by the MLN solvers. Hence, we need more ap-
proaches to improve the ASP-based LPMLN solver, and the
parallelized solving methods are optional ones.

Wang and Zhang (2017) have presented a parallelized
solving framework for LPMLN, which focuses on the pro-
cess of testing subprograms. By the method, the solver can
partition an LPMLN program into several subprograms that
are different subsets of the original program essentially, and
these subprograms can be solved concurrently. In this paper,
we present a new parallelized solving method for LPMLN,
which is based on the splitting set theorem for LPMLN.

Let M be an LPMLN program, U a splitting set of M such
that both of the top part and the bottom part of M are not
empty. We use b to abbreviate the bottom part of M w.r.t.
U , and SM(b) is the set of stable models of the program b.
To solve the top part, we need to compute the partial eval-
uation results, abbreviated by e(X), for each stable model
X ∈ SM(b). And by the splitting set theorem for LPMLN,
for each X ∈ SM(b) and e(X), if the set Y of literals is
a stable model of SM(e(X)) then S = X ∪ Y is a stable
model of M , and the weight degree of S can be derived from
the weight degrees of X , Y and d(t(M,U), U,X). From the
process, we can observe that, for each different stable model
X ∈ SM(b), the computation of e(X) and corresponding
stable models and weight degree are independent. An algo-
rithm framework based on this idea is shown in Algorithm
1, which is a straightforward application of the splitting set
theorem.

2002

Algorithm 1: A Parallel LPMLN Solver: lpmln-sst

Input: M : an LPMLN program
Output: SM : stable models and their weight degrees

of M
1 begin
2 SM = ∅;

// compute a splitting set
3 U =ComputeSplittingSet(M) ;

// compute bottom and top part
4 b =ComputeBottomPart(M,U);
5 t = M − b;

// call existing LPMLN solver
6 SMb = LPMLNSolver(b);
7 for Xi ∈ SMb do // concurrently do

...
// partial evaluation

8 e(Xi) =PartialEval(t, U,Xi);
9 SMe =LPMLNSolver(e(Xi));

10 for Yj ∈ SMe do
11 Sij = Xi ∪ Yj ;
12 W (M,Sij) is obtained by Equation (11);
13 SM = SM ∪ {(Sij ,W (M,Sij))} ;

14 return SM ;

For an independently divisible LPMLN program M , we
can divide the program M into several pairwise disjoint in-
dependent programs that can be solved individually. This
property implies a new parallel algorithm for independently
divisible programs, which is shown in Algorithm 2.

Now we report the running time statistics for the two al-
gorithms above and another parallel LPMLN solver LPMLN-
Models on the program M in Example 5. The LPMLN

solver used in the implementations of Algorithm 1 and 2
was LPMLN-Models in non-parallel mode. And at most 16
threads were used in these implementations. These experi-
ments were carried out on a Dell PowerEdge R920 server
with an Intel Xeon E7-4820@2.00GHz with 32 cores and 24
GB RAM running the Ubuntu 16.04 operating system. We
use b-n to denote the program with n birds, hence, the pro-
gram M is b-2. Table 2 contains the running times for several
programs solved by using LPMLN-Models in non-parallel
mode (L-M-1), LPMLN-Models with 16 threads (L-M-16),
the implementations of Algorithm 1 and 2 respectively.

Although this is a preliminary test, it can be seen from the
table that the splitting sets technique is an alternative way
to promote the LPMLN solver, especially to handle indepen-
dently divisible LPMLN programs.

Conclusion and Future Work

We summarize the contribution of this paper here. Firstly,
we present the splitting set theorem for LPMLN, which shows
the tasks of computing stable models and their weight de-
grees can be turned into the same kind of tasks of the cor-
responding bottom and top parts. Secondly, we investigate
a special kind of LPMLN programs, called independently di-

Algorithm 2: A Parallel LPMLN Solver: lpmln-idp

Input: M : an independently divisible LPMLN

program
Output: SM : stable models and their weight degrees

of M
1 begin
2 SM = ∅;

// divide M into a set IM of
programs

3 IM =Divide(M) ;
4 for Mi ∈ IM do // concurrently do

...
// call existing LPMLN solver

5 SMi =LPMLNSolver(Mi);
6 For each S ∈ SM , S =

⋃
1≤i≤n Xi, where

Xi ∈ SMi and n = |IM |;
7 W (M,S) = Π1≤i≤n W (Mi, Xi);
8 return SM ;

Table 2: Running Times of Several Ways
Program L-M-1 L-M-16 Algo. 1 Algo. 2
b-10 0.62 0.94 0.36 0.06
b-11 1.51 1.08 1.12 0.06
b-12 4.75 3.15 3.34 0.15
b-13 17.88 11.15 10.79 0.44
b-14 78.64 37.88 34.51 1.24

visible LPMLN program, and show that four kinds of basic
LPMLN inference tasks can be simplified under this case. Fi-
nally, we give two parallel approaches for solving LPMLN

programs. The preliminary experimental results show that
these approaches are alternative ways to promote an LPMLN

solver. Besides, the proof of the first part of the splitting
set theorem for LPMLN shows that the translation from an
LPMLN program to an ASP program is a very effective way
to explore properties of LPMLN programs.

For the future, we plan to investigate more properties by
using the splitting set theorem for LPMLN and the translation.
And we also plan to develop a parallel LPMLN solver that
combines the parallel approaches presented in this paper and
Wang and Zhang’s paper (2017). In addition, we plan to test
these approaches further by modeling with LPMLN in more
real-world applications.

Acknowledgments

We are grateful to the anonymous referees for their
useful comments. The work was supported by the Na-
tional Key Research and Development Plan of China
(Grant No.2017YFB1002801), the National High Technol-
ogy Research and Development Program of China (Grant
No.2015AA015406), and the National Science Foundation
of China (Grant No.60803061).

2003

References

Balai, E., and Gelfond, M. 2016. On the Relationship be-
tween P-log and LPMLN. In Kambhampati, S., ed., Proceed-
ings of the 25th International Joint Conference on Artificial
Intelligence, 915–921.
Balduccini, M. 2009. Splitting a CR-Prolog Program. In
Erdem, E.; Lin, F.; and Schaub, T., eds., Proceedings of the
10th International Conference on Logic Programming and
Nonmonotonic Reasoning, 17–29. Springer-Verlag.
Baral, C.; Gelfond, M.; and Rushton, N. 2009. Probabilistic
reasoning with answer sets. Theory and Practice of Logic
Programming 9(1):57–144.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski, R.;
Krennwallner, T.; Leone, N.; Ricca, F.; and Schaub, T. 2012.
ASP-Core-2 Input language format. ASP Standardization
Working Group.
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. ProbLog:
A probabilistic prolog and its application in link discovery.
In Veloso, M. M., ed., Proceedings of the 20th International
Joint Conference on Artificial Intelligence, 2468–2473.
Gelfond, M., and Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. In Kowalski, R. A., and
Bowen, K. A., eds., Proceedings of the Fifth International
Conference and Symposium on Logic Programming, 1070–
1080. MIT Press.
Ji, J.; Wang, H.; Huo, Z.; and Yuan, Z. 2015. Splitting
a Logic Program Revisited. In Bonet, B., and Koenig, S.,
eds., Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, 1511–1517. AAAI Press.
Lee, J., and Wang, Y. 2016. Weighted Rules under the Sta-
ble Model Semantics. In Baral, C.; Delgrande, J. P.; and
Wolter, F., eds., Proceedings of the Fifteenth International
Conference on Principles of Knowledge Representation and
Reasoning:, 145–154. AAAI Press.
Lee, J., and Yang, Z. 2017. LPMLN, Weak Constraints, and P-
log. In Singh, S. P., and Markovitch, S., eds., Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence,
1170–1177. AAAI Press.
Lee, J.; Talsania, S.; and Wang, Y. 2017. Computing LPMLN

using ASP and MLN solvers. Theory and Practice of Logic
Programming 17(5-6):942–960.
Lifschitz, V., and Turner, H. 1994. Splitting a Logic Pro-
gram. In Hentenryck, P. V., ed., Proceedings of the Eleventh
International Conference on Logic Programming, 23–37.
MIT Press.
Richardson, M., and Domingos, P. M. 2006. Markov Logic
Networks. Machine learning 62(1-2):107–136.
Wang, B., and Zhang, Z. 2017. A Parallel LPMLN Solver:
Primary Report. In Bogaerts, B., and Harrison, A., eds., Pro-
ceedings of the 10th Workshop on Answer Set Programming
and Other Computing Paradigms, 1–14. Espoo, Finland:
CEUR-WS.
Watson, R. 2000. A Splitting Set Theorem for Epistemic
Specifications. CoRR cs.AI/0003.

2004

