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Abstract

Juba recently proposed a formulation of learning abductive
reasoning from examples, in which both the relative plausi-
bility of various explanations, as well as which explanations
are valid, are learned directly from data. The main shortcom-
ing of this formulation of the task is that it assumes access to
full-information (i.e., fully specified) examples; relatedly, it
offers no role for declarative background knowledge, as such
knowledge is rendered redundant in the abduction task by
complete information. In this work we extend the formula-
tion to utilize such partially specified examples, along with
declarative background knowledge about the missing data.
We show that it is possible to use implicitly learned rules to-
gether with the explicitly given declarative knowledge to sup-
port hypotheses in the course of abduction. We also show how
to use knowledge in the form of graphical causal models to re-
fine the proposed hypotheses. Finally, we observe that when
a small explanation exists, it is possible to obtain a much-
improved guarantee in the challenging exception-tolerant set-
ting. Such small, human-understandable explanations are of
particular interest for potential applications of the task.

Introduction

Abduction is the task of inferring a plausible hypothesis to
explain an observed or hypothetical condition. Although it is
most prominently observed in scientific inquiry as the step
of proposing a hypothesis to be investigated, it is also an
everyday mode of inference. Simple tasks such as under-
standing stories (Hobbs et al. 1990) and images (Cox and
Pietrzykowski 1986; Poole 1990) involve a process of ab-
duction to infer an interpretation of the larger events, con-
text, and motivations that are only partially depicted. Its sig-
nificance to AI was first recognized by Charniak and Mc-
Dermott (1985).

Abduction has been formalized in several different ways.
The oldest formulations simply tried to minimize syntactic
criteria such as the number of literals (e.g., in ATMS (Re-
iter and de Kleer 1987)) or more generally, a weighted
cost per literal (Hobbs et al. 1990). Another prominent ap-
proach is to assume that a prior distribution over potential
explanations is given (Bylander et al. 1991; Pearl 1988;
Poole 1993) and treat the problem essentially as one of
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MAP inference. McIlraith (1998) provides a critical review
of this work: both approaches have shortcomings. Namely,
the syntactic measures are tantamount to assuming that the
attributes in question represent either independent or mutu-
ally exclusive events. As for the Bayesian methods, abduc-
tion relies to an unusual degree on the quality of the prior
that is used. Note that unlike in standard, inductive infer-
ence, in abduction we are specifically interested in inference
tasks in which the observed data do not essentially deter-
mine the best hypothesis. Therefore, such approaches must
directly confront the problem of choosing a highly informa-
tive prior, which is hard.

In this work, we consider a learning to reason (Khardon
and Roth 1997) or PAC-learning (Valiant 1984; 2000) for-
mulation of the combined task of learning to abduce, in-
troduced by Juba (2016). In this formulation, one is given
a collection of examples drawn from the prior distribution
(i.e., example jointly sampled values of attributes) together
with a condition to explain, represented as a Boolean for-
mula c on the attributes. The task is then to propose a for-
mula h, which essentially must be a k-DNF (k = O(1)) for
computational reasons, satisfying the following two criteria:
1. Plausibility: the probability that h is satisfied on the prior

distribution must be at least some (given) minimum value
μ > 0

2. Entailment: the probability that the condition to explain,
c, is satisfied conditioned on the hypothesis h holding, is
at least 1− ε for some given error tolerance ε > 0.

By casting the task as operating directly on examples, Juba
avoids the problem of explicitly learning and representing
the prior distribution. The main shortcoming of this formula-
tion is that it assumes access to complete information, so any
attributes to be invoked in the explanation must be recorded
in all of the examples. This is a problem, for example, when
we wish to infer the intentions of characters in stories, which
are frequently either left ambiguous or are assumed to be
clear from the given context. It is also a problem if, for ex-
ample, we would like to use the abduced hypothesis to guide
further exploration that may include attributes that we previ-
ously were not measuring.

Our Results

In this work, we make the following contributions:
1. We extend Juba’s formulation of the abduction task to
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use partial examples and draw on declaratively specified
background knowledge.

2. We consider how to incorporate the knowledge encoded
in a tentative, partial causal model of a domain in the ab-
duction task.

3. We observe that by using a covering algorithm, it is possi-
ble to guarantee significantly better explanations when ex-
ceptions and counterexamples are inevitable, but a small
hypothesis (using relatively few terms) is adequate. En-
couragingly, this is precisely the case of most interest,
when the k-DNF is human-readable. Concretely, when
some r-term k-DNF explanation on n attributes has an
error rate of ε∗, we obtain an error rate of Õ(r(log log n+
log k)ε∗), in contrast to the bound obtained for the state-
of-the-art algorithm of Zhang et al. (2017), which gave an
error rate of Õ(

√
nkε∗) (but does not consider the effect

of the size of the hypothesis).
Our extension of the abduction task to a partial-

information formulation is analogous to Juba’s (2013) ex-
tension of Khardon and Roth’s (1997) deductive reasoning
task, based on Michael’s (2010) model of learning from par-
tial examples. We also provide a guarantee that any formula
that is (implicitly) observed true sufficiently often can be im-
plicitly used along with a base of explicit, declarative knowl-
edge to support a hypothesis entailing the conclusion. We
note that this does not follow immediately from Juba’s work
on learning deduction; we must address foundational issues
that arise due to the interplay between partial information
and the conditional probability formulation of the abduction
task.

Our incorporation of causal knowledge in the abduction
task is a significant refinement of Juba’s (2016) framework.
It was possible there to incorporate some causal knowledge
by restricting the set of terms that could be used in an ex-
planation; for example, to capture a time-series notion of
causality, one could require that the explanation only use
attributes with earlier time indices than appear in the con-
dition to be explained. Here, we consider how to use a par-
tial (i.e., more permissive) graphical causal model (i.e., in
Pearl’s (2009) framework) to identify hypotheses that are
(i) consistent with our knowledge of potential causes of the
condition and (ii) minimal in a desirable sense, that they con-
tain no literals that are d-separated by the rest from the con-
dition to be explained. We stress that our formulation is con-
sistent with the role of abduction in scientific discovery, in
which we do not yet have firm knowledge of the underlying
causal processes and are instead seeking plausible candidate
hypotheses for further, rigorous investigation of a potential,
more definite causal link.

Finally, our observations regarding the behavior of cov-
ering when the hypothesis is small are related to, but
distinct from the observation that greedy covering algo-
rithms achieve vastly reduced sample complexity, by Haus-
sler (1988). By contrast, here, we observe that the “blow-up”
of the error rate of the hypothesis we find (relative to the
best-fit) is vastly reduced, as compared to the state-of-the-art
algorithm for this task, due to Zhang et al. (2017). Actually,
our result here is partially inspired by the use of a sophisti-

cated covering algorithm by Zhang et al.; indeed, we antici-
pate that their algorithm also achieves a similar error bound
for small k-DNFs, although they did not consider this. But,
we observe here that even a very simple set-covering algo-
rithm provides a good bound when the k-DNF is small. In-
deed, this bound only depends logarithmically (rather than
polynomially) on the number of attributes, and is thus much
better than the bound they claimed in such a case. Again, we
stress that encouragingly, these results hold for the cases of
the most practical interest, in which we are seeking a small,
human-readable formula.

Preliminaries

In this paper, we show how to perform abduction using par-
tially observed examples. First, we will describe the model
of partial observations we use, and then introduce implicit
learning, the main tool to use partial observations.

Partial Observability

We work in a standard machine learning model in which
the data consists of many examples, assigning values to a
variety of attributes. In this work, we will only consider
Boolean attributes. For example, if our data is about birds,
each bird may correspond to an example and then there can
be attributes such as: whether the bird has feathers or not,
whether it eats bugs or not, and other properties. We denote
the number of attributes by n and we denote the number of
examples by m.

Partial observability means that some attributes of exam-
ples may be unknown. We represent this by allowing the
value of each attribute to be 1 (true), 0 (false), or ∗ (un-
observed). For instance, an example ρ(i) could be [x1 =
1, x2 = ∗, · · · , xn = 0]. (We take the convention of
denoting the ith example by ρ(i) and the ith coordinate of
an example ρ by ρi.) In the real world, it is hard to require
each example to contain all of the attributes. Indeed, in data
analysis, we are often interested in inferring the values of
attributes that are not recorded as part of the data. Or, in
some examples, one subset of the attributes may have been
recorded, and another subset may have been recorded in an-
other example. Both motivate relaxing the requirement of
complete examples to partial examples.

We will work in a PAC-learning style framework in which
the (complete) examples are drawn i.i.d. from an unknown
distribution on “ground truth” examples. The partial exam-
ples are then produced from these complete examples by a
separate random process we refer to as a masking process;
for brevity, we refer to the distribution over partial examples
induced by these two processes as partial distributions. This
learning framework was introduced by Michael (2010), and
the model of partial observability is essentially a variant of
Rubin’s model (Rubin 1976).

Definition 1 (Masking Process (Michael 2010)) We say a
partial example ρ is consistent with a completely observed
example x if for every ith attribute, whenever ρi �= ∗,
ρi = xi, which means, whenever an attribute is observed,
its values in the complete example and the partial example
are the same.
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A masking process M is a random function M :
{0, 1}n → {0, 1, ∗}n that maps completely observed exam-
ples to consistent partial examples.

When we apply a masking process M to a distribution D,
we get a masked distribution we denote by M(D) that is
consistent with D. In our abduction task, our partial exam-
ples are drawn from such a masked distribution M(D).

Implicit Learning

The main tool to deal with partial observability is implicit
learning. In this section we will explain how to perform
implicit learning in service of abduction. Implicit learning
means learning without producing explicit representations.
Given a knowledge base (a set of formulas), and a query for-
mula, we want to know if the knowledge base can derive the
query formula. The main theorem of implicit learning says,
as long as the formulas in a knowledge base are sufficiently
observed in partial examples, we can determine whether the
knowledge base can derive the query without explicitly con-
structing or representing the knowledge base.

Definition 2 ((1− ε)-valid) Given a (“ground truth”) dis-
tribution D, we denote a formula φ to be (1 − ε)-valid if
Prx∈D[φ(x) = 1] ≥ 1− ε.

In other words, a formula is (1− ε)-valid if it is correct with
error up to ε. If we take a formula being true as an event of
the distribution D, (1 − ε)-valid also means this event has
probability larger than (1− ε).

Definition 3 (Restricted Formulas) For a formula φ and
partial example ρ, the restricted formula φ|ρ is defined re-
cursively from the base case where variables set to ∗ are
unaffected, and others are replaced by ρi (We will define it
for the de Morgan basis, {∨,∧,¬}, but it can be easily ex-
tended to other kinds of connectives.)
• If φ is ¬ψ, then if ψ|ρ ∈ {0, 1}, then φ|ρ is the negation

of ψ|ρ, and otherwise it is ¬(ψ|ρ).
• If φ is ψ ∨ ξ, then if either ψ|ρ or ξ|ρ is 1, φ|ρ is also 1; if

both are 0, then φ|ρ is 0; if just one, say WLOG ψ|ρ, is 0,
then φ|ρ is ξ|ρ; and otherwise, φ|ρ is (ψ|ρ) ∨ (ξ|ρ)

• If φ is ψ ∧ ξ, then φ|ρ is defined similarly to ψ ∨ ξ, ex-
cept of course that it is 0 if either are 0, 1 if both are 1,
equal to the non-1 formula if the other simplifies to 1, and
otherwise is equal to (ψ|ρ) ∧ (ξ|ρ).

Note that it is hard in general to say what the value of a for-
mula should be under partial information. For example, tau-
tologies always evaluate to 1 without any information, but it
is intractable to detect this in general. By contrast, the local
evaluation provided by a restriction is a linear-time operation
that generalizes standard formula evaluation and sometimes
evaluates the formula if enough information is provided.

Given an observation ρ, the value of φ|ρ and φ should be
the same. If φ has been observed true (or false) in ρ, then φ|ρ
is simultaneously true (or false). For example, if φ = x1∧x2,
and in partial example ρ, x1 is observed true, while x2 is
unobserved, then φ|ρ is just x2. On the other hand, if in ρ′,
x1 is unobserved, while x2 is observed false, then φ|ρ′ is just
false, since φ is false in ρ′.

Definition 4 (Witnessed Formulas) Given a partial exam-
ple ρ, we say a formula φ is witnessed if φ|ρ is 0 or 1.

For a basic example, let φ = x1 ∨ x2. In a partial example,
x1 = 1;x2 = ∗. Then φ is witnessed (true) even if x2 is not
observed. Notice that each formula can be either witnessed
true, witnessed false, or not witnessed.

Definition 5 (Proof System) Given a knowledge base KB
(a set of formulas), and a query formula φ, a proof is a finite
sequence of formulas ψ1, · · · , ψk, such that:
1. {ψ1, · · · , ψk} 
 φ.
2. ∀i ∈ [1, k], either ψi ∈ KB or {ψ1, · · · , ψi−1} 
 ψi.
Where “
” means “can prove” or “provable”.

Each step of the proof {ψ1, · · · , ψi−1} 
 ψi corre-
sponds to a relation Rj(ψ1, · · · , ψi−1, ψi). A proof system
is a set of such relations {Rj}∞j=0, i.e., such that whenever
Rj(ψ1, · · · , ψi−1, ψi) holds, {ψ1, · · · , ψi−1} 
 ψi.

Definition 6 (Restriction-closed Proof System) A proof
system is restriction-closed if, for any step of the proof
{ψ1, · · · , ψi−1} 
 ψi, and any partial example ρ,
{ψ1|ρ, · · · , ψi−1|ρ} 
 ψi|ρ. More generally, if there is a
proof of φ|ρ from KB|ρ, we say that φ is provable from KB
under ρ (and we may omit mention of KB when it is clear
from context).

The formal language may be confusing, but the definition is
indeed intuitive. Consider the following example: ψ1 = x1∧
x2, ψ2 = x3∧x4, φ = x1∧x2∧x3∧x4, {ψ1, ψ2} 
 φ. If in
ρ, x1, x3 are observed true and x2, x4 are unobserved, then
ψ1|ρ = x2, ψ2|ρ = x4, φ|ρ = x2 ∧ x4, We thus anticipate,
{ψ1|ρ, ψ2|ρ} 
 φ|ρ.

DecidePAC Algorithm Given knowledge base KB and
partial examples {ρ(1), · · · , ρ(m)} drawn from M(D), for
a query formula φ, DecidePAC can tell whether there is a
proof of φ if the knowledge we need is witnessed sufficiently
often: DecidePAC will Accept if there exists a proof of φ in
from KB and formulas ψ1, ψ2, · · · that are simultaneously
witnessed true with probability at least 1− ε+ γ on M(D);
or, if [KB ⇒ φ] is not (1−ε−γ)-valid, then DecidePAC will
reject formula φ. Otherwise, [KB ⇒ φ] is (1−ε−γ)-valid,
but no adequate proof exists, and DecidePAC may accept or
may reject. (There is no strict guarantee in this final case.)

Algorithm 1: DecidePAC
input : Formula φ, ε, δ, γ ∈ (0, 1), partial examples

ρ(1), · · · , ρ(m) from M(D) for m(δ, γ) as
given in Lemma 7, hypothesis formulas KB

begin
FAILED ← 0.
foreach partial example ρ(i) in the list do

if KB|ρ(i) �
 φ|ρ(i) then
Increment FAILED .
if FAILED > �ε ·m� then

return Reject

return Accept
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In the following, we will let |φ| denote the size of φ (in
symbols) and |KB| similarly denote the total size of the for-
mulas in KB.

Lemma 7 (Implicit Learning (Juba 2013)) Suppose that
whether or not there exists a proof of φ from KB can
be decided in time T (n, |φ|, |KB|) on input φ and KB
over n variables. Let D be a distribution over examples,
M be any masking process, and KB be any set of for-
mulas. Then DecidePAC, on input query φ, KB, confi-
dence parameter δ, accuracy parameter γ, and error tol-
erance ε, uses O(1/γ2 log 1/δ) examples, runs in time
O(T (n, |φ|, |KB|) 1

γ2 log
1
δ ), and given that either

• [KB ⇒ φ] is not (1− ε− γ)-valid w.r.t. D or
• there exists a proof of φ from {ψ1, · · · , ψk} ∪ KB s.t.

ψ1, · · · , ψk are simultaneously witnessed to evaluate to
true with probability 1− ε+ γ over M(D)

decides which case holds with probability 1− δ.

As noted by Juba (2013), DecidePAC may be applied to
essentially all standard fragments of proof systems for which
efficient proof search algorithms are known, e.g., width-
bounded or treelike resolution and degree-bounded poly-
nomial calculus. In particular, each of these fragments is a
restriction-closed proof system.
Remark Juba (2013) uses the additive Chernoff bound. If
we use the multiplicative Chernoff bound instead (Lemma 8,
below), we find that DecidePAC will be able to distinguish
whether [KB ⇒ φ] is not (1 − ε(1 + γ))-valid, or is prov-
able from an implicit knowledge base that is witnessed with
probability (1− ε(1− γ)), given 3

εγ2 ln
1
δ examples.

Lemma 8 (Multiplicative Chernoff Bound) Let
X1, · · · , Xm be independent random variables taking
values in [0, 1], such that E[ 1m

∑
i Xi] = p. Then for

γ ∈ [0, 1],

Pr

[
1

m

∑
i

Xi > (1 + γ)p

]
≤ e−mpγ2/3

and Pr

[
1

m

∑
i

Xi < (1− γ)p

]
≤ e−mpγ2/2

Abduction

Here we will formulate a partial information version of
the learning abduction task, and explain how to incorporate
causal models in this task.

Abduction under Partial Observability

Given a query or an event, abduction is the task of finding an
explanation for the query or event. An explanation is a com-
bination of some conditions that may have caused the query.
For example, when the query is “Engine does not run,” an
explanation can be “No gas, or key is not turned.”

We require the resulting explanation to satisfy two con-
ditions, “plausibility” and “entailment.” Entailment means
that when the conditions in the explanation are true, the
query should also often be true, or at least rarely false. Thus,

the explanation is a (potential) cause of the query. Plausi-
bility means the explanation is often true. In other words,
for many examples, these conditions are observed. This sup-
presses unlikely explanations such as “A comet hits the car,”
which is a valid entailment, but not plausible.

Juba (2016) defined a complete information form of this
task as follows. Given a query condition c, we wish to find a
hypothesis h that is plausible in the sense that Pr[h] ≥ μ for
some minimum μ, and h entails c in the sense that Pr[c|h] ≥
1 − ε. These definitions are inadequate when we only have
partial information and cannot directly evaluate h and c. We
propose the following extension of the abduction task:

Definition 9 (Partial Information Abduction) Abduction
is the following task: given any query formula c and inde-
pendent partial examples {ρ(1), · · · , ρ(m)} over a masked
distribution M(D), we want to find a k-DNF explanation
h, such that the explanation h satisfies:
1. Pr[∃t ∈ h : t provable under ρ] ≥ μ (Plausibility)

2. Pr

[ ¬c provable
under ρ

∣∣∣∣ ∃t ∈ h : t provable
under ρ

]
≤ ε (Weak

Entailment)

Here “provable” is again (c.f. the discussion following
Lemma 7) with respect to the proof system we are using,
which could be any restriction-closed fragment with an effi-
cient algorithm for proof search. For example, in practice it
could be tree-like or regular resolution.

Recall, a k-DNF explanation h with r terms is in the
following form: h = t1 ∨ t2 ∨ · · · ∨ tr where each term
ti = 	i1 ∧ 	i2 ∧ · · · ∧ 	ik . For convenience, we say ti ∈ h
and 	ij ∈ ti. We will assume k is a constant throughout.

We use k-DNFs primarily because prior work by
Juba (2016) established that it is essentially the most expres-
sive natural class of formulas for which this task is tractable;
in particular, finding conjunctive explanations is likely in-
tractable, even given complete information.

Example. Suppose you are lecturing for a large class, and
you are interested in finding an explanation for why some
students don’t attend. Students’ attendance is not directly
observed since your class has an enrollment of more than
300, and you do not take attendance. The partial examples
{ρ(1), · · · , ρ(m)} correspond to your knowledge of students
sampled uniformly at random from the class (with replace-
ment). The examples’ attributes x1, · · · , xn are Boolean,
propositional attributes such as x1 := “the student is a fresh-
man,” x2 := “the student turned in Homework 2,” x3 := “the
student likes me” and so on. ρ(j) = (0, 1, ∗, · · · ) then means
that student j is not a freshman, has turned in Homework 2,
and you do not (directly) observe whether the student likes
you or not. The number of such attributes, n could be large
(say, 103). A knowledge base KB may consist of rules such
as (If “the student likes you”, then “the student attends”)
and (If not “the student attends,” and not “the student is a
genius”, then “the student will fail the class,”) etc.

Let x4 be “the student attends.” Then our query formula is
just the literal c = ¬x4. A potential 2-DNF explanation for-
mula h could be ( “the student has dropped,” (x5)) or ( “the
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student does very well,” (x6) and not “the student is inter-
ested,” (¬x7)) or ( “this class meets at 8 A.M.” (x8) and “the
student sleeps in until 11 A.M.” (x9) ). Formally, this would
be the formula h = (x5)∨ (x6∧¬x7)∨ (x8∧x9), and (x5),
(x6 ∧ ¬x7), and (x8 ∧ x9) are the three terms of h. To be
a valid solution to our task, we require h to have the prop-
erties of plausibility and weak entailment. If you estimate
that only 100 out of the 300 students enrolled attend lecture,
you may want the hypothesis to be able to potentially ex-
plain at least why 150 out of the 200 students don’t show
up. This would correspond to setting μ = 50%. The condi-
tion Pr[∃t ∈ h : t provable under ρ] ≥ μ then means that at
least 50% of the student population can be inferred (proved)
to satisfy at least one of the three conditions (terms) of h.
So, h addresses at least half of the population. Meanwhile,
you want h to be a potential cause of c. If you are either told
that a student has dropped the class, or you can somehow
infer that a student sleeps in until 11 A.M., then you should
generally not see him or her in your class. Of course, ex-
ceptional circumstances may arise, as when a student shows
up to colllect a handout for another student or when a stu-
dent stays up until past 8 A.M. and decides to attend your
lecture for once to see what it is like. Such exceptional cir-
cumstances should comprise no more than an ε fraction of
the population, and thus h will satisfy weak entailment.

Discussion. There are three different concepts of being
true: 1. observed (or witnessed), 2. provable, and 3. true.
For example, let t = x1 ∧ ¬x2. In example ρ(1), it is ob-
served that x1 = 1, x2 = 0, so t is observed to be true in
ρ(1); in example ρ(2), x1 = 1 while x2 is unobserved, but
assume in KB we have a rule x1 ⇒ ¬x2, then ¬x2 is prov-
able, so t is provable; in example ρ(3), nothing is observed
and we know nothing, but in fact, t can be true. Notice that
being observed can imply being provable, and being prov-
able can imply truth. Each possible outcome of a formula is
an event. When we talk about its probability, properly it is
the event with respect to the joint distribution (M,D).

Plausibility. We have chosen to relax the condition that
h(x) = 1 in Juba’s complete information abduction task
to the condition that some term of h is provable under ρ.
This is of intermediate strength between h being observed
and h being provable. Provability captures whether or not
an agent “knows” t is true of a given partial example ρ.
Our choice is somewhat like Levesque’s notion of vivid
knowledge (Levesque 1986), that the individual literals of
some definite t should be known. The weaker condition that
merely h is provable is also interesting, but seems much
harder to work with; we leave it as a direction for future
work. We could also have relaxed this to cases where ¬h is
not provable, but observe that this includes the cases where
h is unknown in its favor. Note that this may “mix” many
cases where h was actually false into our estimate of the ef-
fect of h occurring, which is not desirable, and we anticipate
that it would harm the quality of the inferences we can draw.

Weak Entailment. We made the opposite decision for
c(x) = 1, relaxing it to the condition that ¬c is not prov-
able (weak entailment), rather than requiring c to be prov-
able (strong entailment). Notice that weak entailment and
strong entailment are equivalent under complete informa-
tion, since then “provability” collapses to evaluating to true,
and c = 1 if and only if ¬c = 0.

Note that the classical logical formulation of abduction
takes the stance that the given model completely captures
the behavior of the system. So, in the classical formulation,
whether or not a hypothesis entails the observation relative
to the KB is a complete characterization of whether or not
the hypothesis is a satisfactory explanation. Hence, the clas-
sical abduction task is, in this sense, closer to the complete
information setting: the world model gives enough informa-
tion to, in principle, decide whether or not each possible hy-
pothesis is a good explanation (in the propositional case).
By contrast, here we are seeking to learn the rules describ-
ing this world model. If the partial information we observe
on the training data is inadequate, then we do not have ac-
cess to this complete characterization, even given unlimited
computation time.

So, we could consider “credulous” or “skeptical” stan-
dards in the face of this lack of information. Given our in-
tended characterization of abduction as proposing “plausi-
ble” hypotheses given some tentative, partial knowledge of
the world, perhaps to guide some further investigation, we
are lead to prefer the “credulous” interpretation, that is, weak
entailment. More precisely, the main reason for our choice
of weak entailment is that we wish to not penalize a good
h if it is often impossible to check whether or not c holds.
At the same time, we would like to take ε to be very small,
so that we can aggressively rule out h’s for which c is fre-
quently known to fail to occur. But, if we are including the
outcome of c being unknown as a “failure” of h, then this
suggests that in the cases where c is indeed often unknown,
then ε must be large, even for a good h.

In any case, we stress that if we have enough information
to learn a complete implicit knowledge base (as assumed in
the logical formulation of the task), then provability with re-
spect to the knowledge base again captures the formula val-
ues. Hence, the criteria use in our formulation will coincide
with the properties used in the complete information task in
such a case. The distinction between weak and strong entail-
ment will have disappeared.

Pruning with Causal Models

Ideally, our explanation should be a potential cause of the
query, not just something that correlates with it. Causal mod-
els capture precisely such relationships and so can be used
to refine our explanations. If we know some causal relation
such as: c and x1 are conditionally independent given x2 and
x3, i.e. [c ⊥ x1|x2, x3]. Then we say x1 is redundant given
x2 and x3. When we choose terms, we don’t want a term
like t = x1∧x2∧x3 containing redundant attributes. So we
prune the terms where some of their attributes are indepen-
dent given the rest of the terms.
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Figure 1: A Causal Model Where x1 d-separates X and x2

Partial Causal Models A partial causal model is given
by a graph G(E, V ), where V = {xi}ni=1 is the set of all
attributes. When there is no directed edge from xi to xj , this
represents that we know xi has no (direct) causal effect on
xj (the converse is not necessarily true). Thus, the “default”
(uninformed) causal model is a complete, bi-directed graph,
meaning that any two nodes may have causal relation.

Definition 10 (d-separation (Pearl 2009)) We say x and y
are d-connected by z if and only if there exists some undi-
rected path between x and y such that for every collider c on
the path (i.e both of the edges to c on the path point to it),
either c or a descendent of c is z, and no non-collider on the
path is z. x and y are d-separated by z if and only if x and y
are not d-connected by z.

Notice that this definition is also valid for x, y and z as sets
of nodes. The following lemma establishes that separation
implies conditional independence.

Lemma 11 (Theorem 1.2.4 of (Pearl 2009)) If x and y are
d-separated by z, then [x ⊥ y|z] in every distribution com-
patible with the graph.

Continuing our example from earlier, suppose we are
given a causal model such as in Figure 1, with the query
c = X = “the student attends lecture,” and attributes x1 =
“the student has learned similar material before,” x2 = “the
student majors in math,” x3 = “the student will pass the
class,” and x4 = “the student is interested in the class.” In
the graph, there is only a directed edge from X to x3, which
means x3 is not a good explanation for X . These are intu-
itively correlated, but it is the student’s attendance (or lack
of it) that has a causal effect on their likelihood of passing,
and not the other way around. In the graph, x1 d-separates
X and x2. That is, whether or not the student majors in math
and whether or not he or she attends lecture are independent
given that we know whether the student has learned the ma-
terial before or not.

If t = x1 ∧ x2 and t′ = x2, then we should prefer t′ over
t. Because (i) whenever t is true, t′ is true, and (ii) they have
same causal effects on c. In such a case, where t is a sub-
term of t′ and the event “t” is also a subset of “t′” in the
probability space, we say t′ covers t. We stress that although
we also consider a term as the set of literals, we won’t use
“covering” to refer to this notion.

Corollary 12 If a set of attributes x is d-separated by a set
of attributes t′ from c, then for t := x ∧ t′:
(i) t ⇒ t′ and
(ii) Pr[c|t] = Pr[c|t′].

In other words, for any t′ obtained from t by removing one
of its redundant attribute, t′ covers t.
Proof of Corollary 12
i. Since t is a conjunction of literals, deleting literals of t

cannot make it switch from true to false on a given as-
signment. So, t = [x ∧ t′] ⇒ t′.

ii. By Lemma 11, if t′ d-separates x and c, then [c ⊥ x|t′].
That is, Pr[c|t′] = Pr[c|t′ ∧ x] = Pr[c|t].
We call terms that contain no redundant attributes parsi-

monious terms:
Definition 13 (Parsimony) We define a term t to be parsi-
monious (with respect to a causal model CM) if there does
not exist a set of attributes s ⊂ t, such that t \ s separates s
from all attributes of the query c in that CM.

We conclude that the collection of parsimonious terms can
fully cover the original set of terms:
Corollary 14 (Parsimonious Terms) ∀t, ∃t∗ s.t. t∗ is par-
simonious, t ⇒ t∗, and Pr[c|t∗] = Pr[c|t]

Implicit Abduction Algorithm

A k-DNF explanation is actually a disjunction of terms,
h = t1 ∨ t2 ∨ · · · ∨ tr. Each term represents a condition,
or a possibility. Our goal is to find a formula that covers
as many such conditions as possible while still being a po-
tential cause of the query c. The problem, cast this way, is
similar to the set cover problem, so we can use greedy algo-
rithms to choose terms. In this section, we will develop the
connection to the set cover problem, present our algorithm,
and prove our main theorem.

Set Cover

There is a natural correspondence between our k-DNF ab-
duction task and set cover: each example of abduction is an
element of the set cover problem, and each term is a set. We
say a term covers an example when the term is provable in
that example. The number of examples from the distribution
is equivalent to its frequency or empirical probability with
respect to the distribution M(D). If the resulting explana-
tion consists of terms that are provable in most of examples,
then we can conclude that our explanation is provable with
high probability, and so this explanation satisfies “plausibil-
ity.”

Definition 15 (Partial set cover problem) Given a uni-
verse U = {x1, · · · , xm} of m elements, and collection
S = {S1, · · · , SN} of subsets of U , the task is to find a
subcollection T of S, such that T covers a μ-fraction of U ,
i.e., |⋃Si∈T Si| ≥ μ|U |, and |T | is minimized.

The greedy algorithm just selects the set that can pick up
most new items. Let Sj denote the jth set that the algorithm
picks: Sj = argmaxS\S1,··· ,Sj−1

|Sj ∩ (U\ ∪j−1
i=1 Si)|.

Lemma 16 (Greedy Algorithm (Slavı́k 1997)) For m ex-
amples and letting H(i) denote the ith harmonic number, the
greedy algorithm returns a solution to the unweighted par-
tial set cover problem of cost H(μm) · OPT ∼ log(μm) ·
OPT where OPT is the minimum size of a family covering
μm elements.
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Furthermore, unless NP has quasipolynomial time algo-
rithms, no algorithm achieves a (1 − ε) log(m) approxima-
tion (Feige 1998), so the greedy algorithm achieves the op-
timal approximation ratio for set cover.

In our abduction task, we want to find an explanation sat-
isfying the plausibility condition, i.e. Pr[∃t ∈ h : 
 t|ρ] ≥
μ; empirically, this means that for μ-fraction of the par-
tial examples drawn from the distribution, some term of h
should be provable under that example. Thus, we will use
a slightly more restrictive notion of covering in our algo-
rithm: we will consider a term t to cover the example ρ
if t is provable in ρ. Therefore, if {t1, · · · , tr} cover a μ-
fraction of examples (in this sense), then at least empirically,
Pr[∃t ∈ h : 
 t|ρ] ≥ μ. We thus use set cover to perform
abduction: examples are the elements of our universe, and
terms are sets.

Applying the greedy algorithm, we find that if there ex-
ists an optimal explanation h∗ that covers a μ-fraction of m
examples with r terms, then the greedy algorithm will re-
turn an explanation h of size r log(μm), which also covers
a μ-fraction of the m examples.

Algorithm 2: Implicit Abduction
input : Knowledge base KB, Causal model CM ,

query c and parameters μ, ε, δ, γ ∈ [0, 1]
output: A k-DNF explanation h
begin

Initialize T to be the set of all terms of at most k
literals. Draw partial examples {ρ(1), · · · , ρ(m)}
from M(D) for
m = 6r

μγ2

(
log 3r

γ2 + log log 2|T |
δ

)
log 2|T |+4

δ

1. forall the t′ ∈ T of size ≤ k − 1 do
forall the x /∈ t′ s.t. t′ d-separates x from c in
CM do Delete t = x ∧ t′ from T .

2. forall the t ∈ T s.t. #{ρ :
t provable under ρ ∧ ¬c provable under ρ} > μεm
do Delete t from T .
3. Run greedy algorithm for set cover: use terms in
T to cover a μ-fraction of the examples. Get
{t1, · · · , tr}.
h ← t1 ∨ · · · ∨ tr
return h.

Implicit Abduction Algorithm

In the implicit abduction algorithm, we first enumerate
through all possible k literal terms.
1. The first step is to use our causal model to prune terms.

Using an algorithm due to Geiger et al. (1989), we test
whether or not a term contains a redundant literal. The
algorithm then simply deletes such terms, so that we can
choose an explanation from only parsimonious terms.

2. The second step is to check the rest of terms using the
same technique underlying DecidePAC: We count the
number of bad examples where ¬c and t are both prov-
able. If the bad examples are more than a με-fraction, then
we delete this term.

By the Chernoff bound, all terms that pass the test then
satisfy weak entailment: the error condition [
 t|ρ and 

¬c|ρ] has probability at most με(1 + γ).

3. The third step is to use the greedy algorithm to choose an
explanation. If the algorithm can find an explanation cov-
ering a μ-fraction of examples, then the Chernoff bound
guarantees that the explanation has probability at least μ.

Thus, if there exists a good explanation, we can find a parsi-
monious explanation satisfying entailment and plausibility.
Remark If μ∗ is the optimal probability that the terms
of a potential explanation h∗ can be provable, Juba (2016)
showed that a multiplicative approximation to μ∗ can be eas-
ily found by binary search. We assume that such an estimate
μ is given as input.

Let’s return to our example of proposing possible explana-
tions for why students don’t attend lecture. In the first step,
we prune out terms with redundant literals such as (“the stu-
dent turns in Homework1,” and “the student turns in any
homework”). In the second step, we check if this term could
(approximately) entail the query. Specifically, we count the
number of example students who can be inferred to satisfy
the term but can also be inferred to attend lecture. If there
are too many such counterexamples, we discard this term.
In the third step, we use a greedy algorithm to find a col-
lection of terms that can describe at least μ-fraction of the
total sample, so that our explanation could empirically ex-
plain the behavior of half of the class if μ = 0.5. Finally, we
return the explanation as an OR of these terms.

Theorem 17 (Implicit Abduction) Given a query c, a
causal model CM, partial examples ρ(1), · · · , ρ(m) from a
masked distribution M(D), and a restriction-closed proof
system with knowledge base KB, for constant k:

If there exists a parsimonious r-term k-DNF
h∗ = t∗1 ∨ · · · ∨ t∗r satisfying:
1. With probability at least (1 + γ)μ over ρ from M(D),
∃t∗i ∈ h∗, such that t∗i is provable from KB under ρ
(Plausibility).

2. Under ρ drawn from M(D), if some term t∗ of h∗ is prov-
able, then ¬c is only provable with probability at most
(1− γ)ε. (Weak Entailment)
Then, we can find a parsimonious k-DNF h in polynomial

time, such that with probability 1− δ,
1. Pr[∃t ∈ h provable under ρ] ≥ (1− γ)μ (Plausibility)

2. Pr

[ ¬c provable
under ρ

∣∣∣∣ ∃t ∈ h provable
under ρ

]
<

Õ(r(log log n + log k + log log 1
δ + log 1

γ )(1 + γ)ε))

(Weak Entailment).

Proof of the Main Theorem

Soundness. We first show that if the implicit abduction al-
gorithm returns an explanation h, then h satisfies parsimony
and weak entailment. Plausibility will follow from the as-
sumption that a good explanation exists, so we postpone its
discussion to our discussion of completeness, below. We first
observe that in the algorithm, we delete all terms with redun-
dant literals, so all outputs are automatically parsimonious.

1894



Each term of the explanation is checked by Implicit
Learning, so all terms have low error rates: for δ′ =

δ

2(2n
≤k)+4

,

Claim 18 For our choice of m ≥ 12
μγ2 log

1
δ′ we can guar-

antee that with probability 1− δ/2+2δ′, for all terms t that
pass the second test, Pr[(
 t|ρ) ∧ (
 (¬c)|ρ)] < με(1 + γ)

Proof of Claim 18 In the Implicit Learning Algorithm,
we enumerate through all possible k-DNF terms over n at-
tributes, so there are at most

(
2n
≤k

)
possible terms. In the

algorithm, for every term t that passes the second test [(

t|ρ) ∧ (
 (¬c)|ρ)] happens in less than a με-fraction of the
examples. By the multiplicative Chernoff bound, when we
take enough examples, we will be able to guarantee that
Pr[#{ρ : (
 t|ρ)∧(
 (¬c)|ρ)} < (1−γ/2)(1+γ)με] < δ′,
i.e., any term with at most με bad examples has error at most
(1 + γ)με with high probability. For each term, the Cher-
noff bound requires 12

μγ2 log(
1
δ′ ) examples to be correct with

probability 1 − δ′. We have chosen δ′ so that after a union
bound over the terms we get δ/2 − 2δ′ =

(
2n
≤k

)
δ′. Thus,

m ≥ 12
μγ2 log

1
δ′ examples suffice.

Completeness. We just proved that every output satisfies
parsimony and weak entailment with probability 1− δ/2 +
2δ′. Now, we want to show that if there is an optimal, parsi-
monious r-term k-DNF explanation h∗ satisfying
1. (Plausibility) for a (1 + γ)μ-fraction of examples, some

term t ∈ h∗ is provable, and
2. (Weak Entailment) if some t ∈ h∗ is provable, then with

high probability ¬c is not provable
then we are able to find a good solution that satisfies parsi-
mony, plausibility, and weak entailment.

First, pruning with the causal model doesn’t compromise
completeness. Since the optimal explanation h∗ is parsimo-
nious, each of its term contains no redundant literals, so
these terms can all pass the causal model pruning. Next, we
show the second and third steps also guarantee complete-
ness.

Claim 19 If there exists a solution h∗ = t∗1 ∨ t∗2 ∨ · · · ∨ t∗r
such that [¬c is provable when some t∗i is provable] has
probability at most (1 − γ)με, then all these terms t∗ can
pass the second test with probability 1− δ′.

Proof of Claim 19 We are given that Pr[ [(
 t∗1|ρ) ∧ (

(¬c)|ρ)]∨ · · · ∨ [(
 t∗r |ρ)∧ (
 (¬c)|ρ)] ] < (1− γ)με. By a
Chernoff bound, for our choice of m, [(
 t∗|ρ)∧ (
 (¬c)|ρ)]
happens for any t∗ in h∗ in less than με-fraction of examples
with probability, 1− δ′ so all these terms t∗ pass the second
test.

Next, we show the number of terms r′ is controlled, since
r′ depends upon the solution of the set cover problem.

Claim 20 If there exists a solution h∗ = t∗1 ∨ t∗2 ∨ · · · ∨ t∗r
that satisfies
• Pr[∃t ∈ h∗ : 
 t|ρ] ≥ (1 + γ)μ
• Pr[ 
 (¬c)|ρ | ∃t ∈ h∗ : 
 t|ρ ] < (1− γ)ε

then Implicit Abduction finds an h using at most r′ =
r log(μm) terms such that #{ρ : ∃t ∈ h,
 t|ρ} > μm.
Furthermore, by a union bound on the error of each term,
Pr[(∃t ∈ h : 
 t|ρ)∧ (
 (¬c)|ρ)] < με(1 + γ). We thus find
that with probability at least 1 − δ h satisfies plausibility
with (1− γ)μ and weak entailment.
Proof of Claim 20 Following Claims 18 and 19, with
probability at least 1− δ/2 + δ′, all terms t∗ in h∗ can pass
the first and second tests, so they are available for set cover.
Moreover, by another Chernoff bound, since at least one of
the terms of h∗ is provable with probability (1+γ)μ in each
example, with probability 1 − δ′ at least one of the terms is
provable in at least a μ-fraction of the m examples. Thus,
there is a set of r terms (the terms of t∗) that pass these tests
and indeed cover a μm examples. By Lemma 16, if Opt (h∗)
covers μm examples using r sets, then our greedy algorithm
can find a cover using r′ = r log(μm) sets that also covers
μm examples.

Recall that h = t1∨· · ·∨ tr′ . For each term, by Claim 18,
Pr[(
 t|ρ) ∧ (
 (¬c)|ρ)] < με(1 + γ), so if take an union
bound over the terms of h, the error, Pr[∃t ∈ h(
 t|ρ) ∧ (

(¬c)|ρ)], is at most r′με(1 + γ) in total. If we plug in r′ =
r log(μm), the resulting error is O(r log(μm)(1 + γ)με).

To see that the returned h satisfies plausibility, we con-
sider a Chernoff bound for the fraction of examples in which
each possible r′-term k-DNF has a provable term with δ̂ =

δ/2|T |r′ . So when we take a union bound on all k-DNF ex-
planations, any r′-term explanation found will actually have
plausibility (1− γ)μ with probability 1− δ/2. Therefore, it
suffices to have

m ≥ 3

μγ2
log

2|T |r′
δ

or m ≥ 3r log(μm)

μγ2
log

2|T |
δ

.

Here we apply the inequality
Lemma 21 For a ≥ 1, if x ≥ 2a log a, then x ≥ a log x.

By plugging in x = μm and a = 3r
γ2 log

2|T |
δ , we get

m ≥ 6r
γ2μ log( 2|T |

δ ) log(a) examples suffice. Here, log a is

dominated by other terms, so we get m = Õ( r
γ2μ log nk

δ ).
Since we condition on some t ∈ h provable and Pr[∃t ∈

h provable under ρ] > (1− γ)μ,
Pr[ 
 (¬c)|ρ | ∃t ∈ h : 
 t|ρ ]

= Pr[(∃t ∈ h 
 t|ρ) ∧ (
 (¬c)|ρ)]/Pr[∃t ∈ h : 
 t|ρ]
< O(r log(μm)(1 + γ)με/μ)

= O(r log(μm)(1 + γ)ε)

and thus, we indeed find an h satisfying weak entailment
with the claimed error rate with probability 1− δ.

Finally, when we plug in m = Õ( r′
μγ2 log

3(2n)k

δ ),

O(r log(μm)(1 + γ)ε) = Õ(r log(
μr

μγ2
log

nk

δ
)(1 + γ)ε)

= Õ(r(log log n+ log k + log log
1

δ
+ log

1

γ
)(1 + γ)ε)

We conclude that Pr[ 
 (¬c)|ρ | ∃t ∈ h : 
 t|ρ ] <

Õ(r(log log n + log k + log log 1
δ + log 1

γ )(1 + γ)ε)) with
probability 1− δ.
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Running Time. We note that the algorithm of Geiger et
al. runs in time proportional to the number of edges of the
causal model, which is O(n2), and identifies all of the at-
tributes that are d-separated from c by t′. We run this algo-
rithm for all of the O(nk−1) terms t′ of at most k − 1 lit-
erals. Thus, overall the pruning step runs in time O(nk+1).
The second test is run for each of the surviving terms of size
at most k, of which there may be ∼ nk. For each such term,
DecidePAC runs in time O(T (n, |ϕ|, |KB|) 1

γ2 log
1
δ ); as we

are given that we have chosen our proof system so that this
is a polynomial, the overall running time is also polynomial,
as needed.

Extensions and Directions for Future Work

We note that our algorithm can be parallelized. Although the
greedy algorithm at the heart of our algorithm is sequential,
the computation of the greedy choice can certainly be par-
allelized well, and in the case of most interest, the size of
the cover is small (so there are few rounds). Alternatively,
we note that Bateni et al. (2016) considered parallel approx-
imation algorithms for the partial set cover problem running
in four MapReduce rounds and achieving an approximation
ratio of (1 + ε) log 1/(1 − μ). This could be used to obtain
a good parallel algorithm overall.

There are two main problems left untouched by this work.
The first is that we still do not know how our error rate
should depend on either the sparsity or the number of sets. It
could be that the improvement due to exploiting sparsity of
the unknown k-DNF is not inherent. But, without some kind
of inapproximability bounds, we cannot resolve this.

The second concerns the formulation of the task. We re-
quired that for the ideal explanation, some individual term of
h∗ should be provable. A more relaxed condition that could
be reasonable would be to only require that h∗ is provable
in its entirety. The challenge is now to identify such a hy-
pothesis h when we cannot even rely on knowledge of its
terms. Certainly the kind of greedy covering technique we
used here does not work, but it is again consistent with the
state of our understanding that such an algorithm could exist.
This would be of interest, as it would allow the algorithms
to discover hypotheses in cases where the kind of algorithms
we have proposed here will fail on account of having insuf-
ficient information.
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