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Abstract

This paper studies the problem of multilingual causal reason-
ing in resource-poor languages. Existing approaches, trans-
lating into the most probable resource-rich language such
as English, suffer in the presence of translation and lan-
guage gaps between different cultural area, which leads to
the loss of causality. To overcome these challenges, our goal
is thus to identify key techniques to construct a new causal-
ity network of cause-effect terms, targeted for the machine-
translated English, but without any language-specific knowl-
edge of resource-poor languages. In our evaluations with
three languages, Korean, Chinese, and French, our proposed
method consistently outperforms all baselines, achieving up-
to 69.0% reasoning accuracy, which is close to the state-of-
the-art accuracy 70.2% achieved on English.

Introduction

There is growing interest in the commonsense causal rea-
soning, to explain past observations or predict future events
by understanding their general causal dependency. Recent
efforts for such understanding are focused on measuring the
plausibility of one event statistically leading to another, and
are competing on Choice of Plausible Alternatives (COPA)
evaluation (Roemmele, Bejan, and Gordon 2011), which is
to select the more plausible alternative as a cause (or effect)
of the premise as:
Example 1 Premise: The girl met her favorite actor. What
happened as an effect?

Alternative 1: She went to see his new film.
Alternative 2: She asked him for his autograph.

For the purpose of this reasoning, the state-of-the-art, called
CausalNet (Luo et al. 2016), harvests causality scores of
cause-effect term pairs, e.g., (‘actor’,‘autograph’), by min-
ing their linguistic causal patterns, e.g., “If...actor ..., then...
autograph...”, from an extremely large corpus. As a result, it
achieved a remarkable accuracy (70.2%) from COPA. How-
ever, although this approach, building on a large corpus,
shows higher reasoning accuracy as the corpus size grows,
it is applicable only to resource-rich language (e.g., English)
and not to resource-poor language.

To overcome this challenge, we propose to train multilin-
gual causal reasoning, e.g., COPA task translated into non-
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English questions and answers, from English resources. We
show that, even under extreme scenarios with no language-
specific corpus, we can achieve comparable COPA accuracy
using only English resources.

So far, most successful approaches on existing multilin-
gual work such as question answering (Ture and Boschee
2016), sentiment classification (Zhou, Wan, and Xiao 2016),
relation extraction (Faruqui and Kumar 2015) adopt one-
best MT (1MT) which translates all contents into its most
probable English via Machine Translation (MT) systems.
Then, a certain multilingual task is performed on the trans-
lated English in the same manner with its monolingual task
on English. Intuitively, this baseline may be strong for our
work with the huge success of both English causal reason-
ing and Neural Machine Translation (NMT) (Johnson et
al. 2016) adopted in off-the-shelf translators (e.g., Google
Translate1, Microsoft Translator2, and Naver Papago3).

However, 1MT does not fully capture causality in a target
language, e.g., its causal reasoning accuracy on the machine-
translated English (ME) is up-to 64.2% below 70.2% on na-
tive English (NE). Our goal is thus to enable 1MT to achieve
comparable reasoning performance. For that, we observe the
following limitations in Example 1:

• [L1] Translation gap: Korean sentence [Alternative 1]4

is incorrectly translated into “She went to see a new re-
lease”. Due to this error, its plausibility is weakened as
the ME causality (‘actor’,‘release’) has a lower causality
score than the NE causality (‘actor’,‘film’).

• [L2] Language gap: Korean sentence [Alternative 2] is
correctly translated into “She asked him a signature” be-
cause ‘autograph’ and ‘signature’ map to the same word
in Korean expressing both. As a result, the critical causal-
ity (‘actor’,‘autograph’) is lost by ‘signature’ not fre-
quently used around ‘actor’ in NE.

To bridge these gaps, we propose a framework, PSG, to
(1) understand ME with the above gaps, and model such dif-
ference in both (2) word alignment and (3) score propaga-
tion to transfer causality knowledge from NE to ME. These

1https://translate.google.com
2https://translator.microsoft.com
3https://papago.naver.com
4[EN] represents a foreign language sentence meaning “EN”.
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Figure 1: The sketch of PSG for multilingual commonsense causal reasoning

three requirements motivate three steps P-S-G respectively,
as Figure 1 shows the overview of our reasoning framework.
More specifically:

1. Pseudo-parallel corpus generation: First, we can sim-
ulate L1 and L2 on so-called pseudo-parallel corpus,
which consists of English and its corresponding machine
translation (to a target language, e.g., Korean, then to En-
glish again, e.g., Korean ME). One issue is whether the
ME involves the standard and frequent expressions in a
given target language. Our hypothesis is that NMT partly
achieves perfect liberal translation such that the translated
Korean includes native expressions in Korean, and is thus
effective for looking up the difference of term occurrence
and causality patterns between NE and ME.

2. Selective word alignment: From the NE-ME corpus, we
can align their similar word pairs, taking account of L1
and L2. For example, a NE term ‘meet’ can be trivially
aligned as it appears in the exact same form in the ME sen-
tence in Figure 1. Meanwhile, ‘autograph’ can be aligned
to ‘signature’ but with lower alignment confidence, which
indicates how reliably the NE term is aligned to a ME
term to identify L2. That is, based on this confidence met-
ric, we selectively extract high confidence of alignments,
e.g., ‘autograph’ to ‘signature’, while filtering incorrect
alignments from L1 such as ‘film’ to ‘release’.

3. Graph transformation: Finally, we can transform the
original NE CausalNet into a ME-friendly form, which
has causality scores reducing the loss of causality from
L1 and L2 between NE and ME. Specifically, we first
transform CausalNet into an intermediate graph struc-
ture, called causality-space graph, of aggregating selec-
tive alignment results to propagate causality scores, i.e.,
(‘actor’,‘autograph’) to (‘actor’,‘signature’). Then, after
such propagation on the structure, we finally transform
the causality-space graph into ME CausalNet, with up-
dated causality scores for ME, e.g., 0.4 to 0.7.

Our framework PSG combining the above steps achieves
the state-of-the-art accuracy of 69.0%, 66.2%, and 66.2%,
while the baseline 1MT achieves 64.2%, 63.4%, and 60.4%
accuracy, on the COPA evaluation for three multiple lan-
guages, Korean, Chinese, and French, respectively. Espe-
cially, the accuracy on Korean is close to 70.2% accuracy
on NE using the original CausalNet, which can be roughly
considered as the upper-bound performance of our problem.

Our main contributions are summarized as follows.

• To the best of our knowledge, this is the first work that
investigates multilingual commonsense causal reasoning
problem on any resource-poor language.

• We formalize machine-translated English with its intrin-
sic characteristics for which the use of 1MT can be im-
proved for our research problem.

• We propose a novel framework called PSG that generates
ME-friendly causality network of cause-effect terms with
no extra knowledge on resource-poor language.

• We validate that our proposed method PSG outperforms
all state-of-the-art baselines, consistently achieving the
highest accuracy on multiple languages.

Preliminaries

English Causality Network: CausalNet

CausalNet is a weighted and directed graph G(N, CN, WN)
with nodes (lemmatized English terms) N = {n1, n2, ...}
and edges (causal relations) CN. The edge weights are cap-
tured by the function WN : CN → [0, 1]. The weight wi,j

associated with an edge (ni, nj) represents the causality
score, denoted as CS(ni, nj), of a cause ni and an effect
nj . Causality scores depend on the number of occurrences
that two terms ni and nj are in linguistic patterns known
as causal cues (Chang and Choi 2004) identifying precise
cause/effect roles, e.g., “If...ni ..., then... nj ...” and “... nj ...,
because...ni ...”. That is, as more occurrences of (ni, nj) in
causal cues, its causality score is higher as:

WN : w(ni, nj) = CS(ni, nj) ∝ freq(ni, nj) (1)

where freq(ni, nj) is the frequency of observing the causal
pair (ni, nj) from an English corpus. We omit the details of
the list of causal cues and Eq. 1 in (Luo et al. 2016).

Despite building on a rather simple and shallow text anal-
ysis, by leveraging the scale and richness from a extremely
large (10TB) text corpus, CausalNet achieves the state-of-
the-arts accuracy on COPA tasks. The corpus contains 1.6B
web pages, which result in 64,436 nodes in CausalNet.

Multilingual Commonsense Causal Reasoning

Commonsense causal reasoning problem is defined based
on COPA, which consists of one thousand multiple-choice
questions requiring causal reasoning to answer correctly. In
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Example 1, given an English sentence pair of premise N 1
and alternative N 2, existing English causal reasoning work
computes the plausibility P (N 1, N 2) aggregating causality
scores of all possible causal pairs between N 1 and N 2:

P (N 1, N 2) = 1
|N 1| + |N 2|

∑
ni∈N1

∑
nj ∈N2

CS(ni, nj) (2)

where N k is segmented into lemmatized word terms, and
the causality score CS(ni, nj) is extracted from CausalNet.

In our work, this causal reasoning problem is extended
into a multilingual setting, e.g., COPA in another target lan-
guage TL, for which the corpus availability is far more lim-
ited than in English. Naive solutions include (a) translating
CausalNet for TL and (b) translating COPA tasks in TL into
English and use English CausalNet. For (a), although there
are many graph translation techniques (Feng et al. 2016;
Sun, Hu, and Li 2017; Chen et al. 2017), we still need
to match terms in the sentence with the translated graph,
which requires language-specific tools, such as lemmatizer.
We empirically validate this baseline fails to gain high rea-
soning accuracy due to this problem. In contrast, (b), known
as 1MT, does not require such tools and thus has been
more widely adopted in related problem settings (Ture and
Boschee 2016). Specifically, given a non-English question,
we convert the multilingual problem into a monolingual task
by translating the question into ME by NMT5, to use Causal-
Net. 1MT achieves higher accuracy in our evaluation.

Characteristics of Machine-Translated English

Regarding 1MT, its success depends on the assumption that
machine translation preserves causality. Our research ques-
tion is thus, is this assumption valid? In Figure 2, to analyze
this, we translate 1,500 Korean and Chinese sentences of the
same meaning into English, respectively, by NMT, and la-
bel all translation results into three categories, wrong, direct,
and liberal translation.

24.33%

22.73%

29.80%

26.80%

45.87%

50.47%

0% 20% 40% 60% 80% 100%

CN

KR

Wrong translation Direct translation Liberal translation

Figure 2: Distribution of machine translation to English

As a result, we find that common characteristics of MEs
from any foreign language are mainly two types: The first
one is the translation gap (L1) resulted from average 23.53%
of wrong translation. Despite the recent improvement of
NMT (Johnson et al. 2016) on resource-poor languages, it is
reported that machine cannot win human yet in this dimen-
sion, which suggests the inherent occurrences of machine-
translation error. The second one is the language gap (L2)

5We employ Naver Papago for all translations in this paper.

observed when translating between two languages of differ-
ent culture (e.g., Asia and Europe). Especially, this gap is
multiplied with average 28.30% of direct translation with
infrequent expressions, e.g., Korean term [Morning call] is
translated into ‘Morning call’, while being reduced with its
liberal translation ‘Wake-up call’.

These gaps suggest using CausalNet trained from NE may
harm causality inference on ME due to different term occur-
rence patterns, as we later confirm empirically as well. As a
possible solution, such differences of term occurrences may
be alleviated by annotating synonym relation (Qu, Ren, and
Han 2017) between NE and ME words. However, we find
that not all synonyms are interchangeable to represent the
same causality context, for example ‘film’ and ‘picture’, and
they can often multiply translation gaps in case of incorrect
translation, for example, ‘release’ and ‘publication’. We em-
pirically validate considering these synonyms for reasoning
is not effective later. In contrast, we propose a more system-
atic way to annotate the bias introduced from L1 and L2, so
that we can factor in such relations in causality computation.

Our Approach

This section develops our systematic framework PSG de-
signed to generate a ME-friendly CausalNet suitable for ME
causal reasoning. For that, PSG aims to transfer causality
knowledge from NE to ME, following the three main steps,
P-S-G, in Algorithm 1. We consider only English text corpus
and CausalNet, which are publicly available, as input.

Algorithm 1 Offline module in PSG
Require: corpus DNE : NE text corpus
Require: graph G: NE CausalNet
Ensure: graph G′: ME CausalNet
1: DME ← P-Step(DNE)
2: A ← S-Step(DNE , DME)
3: G′ ← G-Step(G,A)
4: return G′

P-Step: Pseudo-Parallel Corpus Generation

We first propose Pseudo-parallel corpus (PP-corpus), which
simulates and looks up L1 and L2 between NE and ME.
Formally, let DNE be a NE corpus, each of which is a NE
sentence N i, i.e., DNE = {N i|1 ≤ i ≤ |DNE |}. Then, we
generate a corpus DT L = {T i|N i ⇒t T i; 1 ≤ i} as PP-
corpus with DNE , where N i ⇒t T i represents the machine
translation from a NE sentence N i to a TL sentence T i.

This step would be redundant if machine translation to TL
does not convey the sense of the original English sentences
with natural expressions of TL, i.e., direct translation. How-
ever, as analyzed in Figure 2, NMT is capable of achiev-
ing about 50% of perfect liberal translation, from which we
can quantify L1 and L2 after the liberal translation to TL
is translated back to ME. For example, by liberal transla-
tion to TL, “We had lunch” ⇒t [We ate lunch] in Korean,
in which [eat] is far more natural than [have] with [lunch],
and “I asked for a wake-up call” ⇒t [I asked for a morning
call] in Korean, in which Korean people do not use a term
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[wake-up call]. Then, by direct translation to ME, “We had
lunch” ⇒t [We ate lunch] ⇒t “We ate lunch”. In this sense,
we generate a ME corpus DME to match with DNE as:

DME = {Mi|N i ⇒t T i; T i ⇒t Mi; 1 ≤ i} (3)

The subsequent S-step covers each corresponding sentence
pair between DNE and DME .

S-Step: Selective Word Alignment

As for the second step, we propose selective word align-
ment to identify different term occurrence patterns between
NE and ME. The advantage of using ME corpus is that we
can leverage state-of-the-art tools for English regardless of a
given target language, while its disadvantage is that we need
to filter out causality errors due to L1 and L2, specifically
by “alignment” reflecting translation confidence.

At word level, a straightforward method for alignment is
using word similarity metrics based on neural embedding
model such as Word2Vec (Mikolov et al. 2013). Formally,
given a NE sentence N = {n1, n2, ..., n|N |} and its ME sen-
tence M = {m1, m2, ..., m|M|} on PP-corpus, the align-
ment probability of a pair (ni, mj) can be computed as:

P r(mj |ni) = sim(ni, mj)∑
mk∈M sim(ni, mk)

(4)

where sim(ni, mj) is word similarity by Word2Vec model.
Based on Pr(mj |ni), we can intuitively align word pairs.

[ni ⇒a m∗
j ] = arg max

mj ∈M
P r(mj |ni) (5)

where [ni ⇒a m∗
j ] represents term ni is aligned to term

m∗
j . However, not always the maximum alignment proba-

bilities guarantee correct alignments. We thus measure the
alignment confidence of a given ni that represents how re-
liably ni can be aligned with M. Let Θ(ni, M) be the dis-
tribution of Pr(mj |ni) varying ME word mj ∈ M, i.e.,
Θ(ni, M) = {Pr(mj |ni) | j = 1, .., |M|}. As Θ(ni, M)
is more different from an uniform distribution, ni is likely
to be accurately replaced by its matched ME word having
the maximum alignment probability. Therefore, we define
the alignment confidence (denoted as AC) by using Shan-
non Wavelet Entropy (Rosso et al. 2001) (denoted as H(·)),
which measures the entropy of Θ(ni, M).

AC(ni) = 1 − H(Θ(ni, M))

= 1 +
∑

∀j

P r(mj |ni)logP r(mj |ni) (6)

As Θ(ni, M) is closer to uniform distribution making its
alignment decision difficult, AC(ni) decreases with increas-
ing H(Θ(ni, M)). For example, in Figure 3, ‘detention’
(AC = 0.28) is likely to be more clearly aligned with its
strong confidence than ‘received’ (AC = 0.21) and ‘his’
(AC = 0.18). Using this confidence measure, given a NE
sentence N and its ME sentence M, we accurately extract
word-level alignments (N × M) as follows:

(N × M) = {aij |1 ≤ i ≤ |N |; 1 ≤ j ≤ |M|; AC(ni) > θ} (7)

N : “The student received detention by his teacher”
M : “The student was punished by the teacher”
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Figure 3: Distribution example of alignment probabilities

where an alignment aij represents that ni is aligned to mj ,
and θ is a pre-defined threshold. We empirically analyze the
effect of varying this threshold later.

However, the word-level alignment is insufficient, for ex-
ample, [‘detention’⇒a‘punish’] has different causal mean-
ing between around ‘teacher’ or around ‘police’. That is,
the alignments between single words may be too ambigu-
ous to represent accurate causality context. Therefore, be-
yond word-level, we more selectively align words by dis-
ambiguating their causality context. Let P be a set of pairs
of NE sentences N 1 (⇒t M1) and N 2 (⇒t M2) on PP-
corpus with cause and effect roles, respectively, in causal
relation, e.g., “If N 1, then N 2” (Luo et al. 2016). Then, we
define the word-pair level alignments A using P as:

A = { [(ni, nj) ⇒a (mk, mq)]

| aik ∈ (N 1 × M1); ajq ∈ (N 2 × M2); (N 1, N 2) ∈ P}
(8)

where A permits duplicate alignments for the next G-step.

G-Step: Graph Transformation

As for the third step, to reduce the gap of different causality
context between NE and ME, we propose graph transforma-
tion, which converts NE CausalNet into ME CausalNet. For
that, this step propagates causality scores from NE to ME by
aggregating the alignment results in a graphical way.

The first stage of graph transformation is that we construct
the graph structure that takes advantages for the causality
propagation. We refer to this as causality-space graph. For-
mally, given a NE CausalNet G(N, CN, WN) and a set A

of causality alignments, inspired by graph space transfor-
mation (Evans and Lambiotte 2009), we can construct its
causality-space graph G(C, E , W) such that:

• A node cni,nj ∈ C of G represents the edge c(ni,nj) be-
tween the causal pair (ni, nj) of CausalNet G;

• A node ci is adjacent to a node cj (including ci) in G if
and only if ci is aligned to cj at least once in A; and

• The weight W : ω̄(ci, cj) on the edge(ci, cj) ∈ E is as-
signed by the number of alignments [ci ⇒a cj ] in A.
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Algorithm 2 Transformation to causality-space graph
Require: graph G(N, CN, WN): NE CausalNet
Require: set A: Word-pair alignments
Ensure: graph G(C, E , W): Causality-space graph
1: /* create the nodes of G */
2: for each (ni, nj) ∈ CN do
3: C ← C ∪ c(ni,nj )
4: end for
5: /* create the edges of G */
6: for each ci ∈ C do
7: for each cj ∈ C do
8: if [ci ⇒a cj ] ∈ A then
9: E ← E ∪ (ci, cj)

10: end if
11: end for
12: end for
13: /* assign a weight to each edge of G */
14: for each (ci, cj) ∈ E do

15: W : ω̄(ci, cj) ← #[ci⇒acj ]∑
ck∈N(cj )

#[ck⇒acj ]
// Eq. 9

16: end for
17: return G(C, E , W)

Algorithm 3 Transformation to ME CausalNet
Require: graph G(N, CN, WN): NE CausalNet
Require: graph G(C, E , W): Causality-space graph
Ensure: graph G′(M, CM, WM): ME CausalNet
1: /* create the nodes and edges of G′ */
2: initialize G′(M ← N, CM ← CN, WM ← WN)
3: for each [ci ⇒a cj ] ∈ A do
4: (mk, mq) ← cj

5: M ← M ∪ {mk, mq}
6: CM ← CM ∪ (mk, mq)
7: end for
8: /* propagate causality scores through G */
9: initialize ∀ci ∈ C : CS(0)(ci) ← WN : w(ci)

10: while W
(z+1)
M

	= W
(z)
M

do
11: for each ci ∈ C do
12: CS(z+1)(ci) ←

∑
cj ∈N(ci) ω̄(cj , ci) · CS(z)(cj)

13: end for
14: end while
15: /* assign a weight to each edge of G′ */
16: for each ci ∈ C do
17: WM : w(ci) ← CS(∗)(ci) // Eq. 11 and 12
18: end for
19: return G′(M, CM, WM)

For example, as shown in Figure 1, the edge (‘actor’, ‘au-
tograph’) in NE CausalNet corresponds to the node (‘ac-
tor’, ‘autograph’) in causality-space graph. The weight of
the edge between c(ni,nj) and c(nk,nq) is calculated by statis-
tics of alignments A as:

ω̄(c(ni,nj ), c(nk,nq)) =
#[(ni, nj) ⇒a (nk, nq)]∑

c(n′
i

,n′
j

)∈C
#[(n′

i
, n′

j
) ⇒a (nk, nq)]

(9)

where #[ci ⇒a cj ] is the number of alignments [ci ⇒a cj ]
in A. For efficiency, C can be replaced by N(c(nk,nq)) rep-
resenting the neighbors adjacent to c(nk,nq). In Eq. 9, we
also take account of the self alignments that have ni = nk

and nj = nq, i.e., NE and ME have the same causality pat-
tern. Algorithm 2 describes the details of constructing the
causality-space graph G, but we omit detailed explanations.

The second stage of graph transformation consists of
propagating causality scores through G and reconstructing
a ME-friendly CausalNet G′(M, CM, WM). Algorithm 3 de-
scribes its detailed procedure. First, ME CausalNet G′ is
initialized by G to share the same node and edge sets and
their weight function (line 2). Then, we update the nodes M
and edges CM with additional terms in ME (line 3-7). For
score propagation, we adopt an iterative score propagation
method (Qin et al. 2005) for simplicity (line 9-14):

CS(z+1)(ci) =
∑

cj ∈N(ci)

ω̄(cj , ci) · CS(z)(cj) (10)

where
∑

cj∈N(ci) ω̄(cj , ci) = 1 in every z-th iteration. This
procedure is repeated until the scores are converged or pre-
defined maximum iterations (line 10).

For implementation, we use the much smaller text corpus
DNE for alignment, compared to the 10TB text corpus for
NE CausalNet construction. Considering this case, we adopt
a simple smoothing method of linear interpolation between
the original score CS(0) and the converged score CS(∗):

CS
(∗)(ci) ≈{

(1 − λ)CS
(0)(ci) + λ CS

(∗)(ci) if N(ci) �= {ci}
CS

(0)(ci) otherwise (no alignment)

(11)

where λ ∈ [0, 1] is used to adjust to tradeoff between
CS(0) and CS(∗). We empirically analyze the effect of
varying this systematic parameter later. If the new causal-
ity scores are determined, the weight w(mi, mj) associated
with an edge (mi, mj) is assigned with the causality score
CS(∗)(mi, mj) of ME (line 16-18):

WM : w(mi, mj) = CS(∗)(mi, mj) (12)

Once G-step constructs ME CausalNet G′ for a target for-
eign language on the offline module, as shown in Figure 1,
we can perform the reasoning task (i.e., plausibility compu-
tation) on the online module by cooperating with 1MT.

Experimental Evaluation

Experiment Setup

Datasets To validate the effectiveness and robustness of
our proposed method, we select three target languages, Ko-
rean, Chinese, and French, to cover diverse cultural and lin-
guistic characteristics. We manually translate COPA dataset,
i.e., 1,000 commonsense causal reasoning questions, into
each language, dividing into development and test question
set of 500 each.

As additional development datasets for PSG, we lever-
age CausalNet6 and about 1M English web pages for word
alignment. One implementation issue is that the reasoning
coverage of PSG depends on the alignment datasize. To re-
solve this scale constraint, we first identify ME terms trans-
lated from our COPA data by NMT, then intensively search
for the articles that include NE terms translated into the ME
terms of interest.

6NE CausalNet: https://cs-zyluo.github.io/CausalNet
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Table 1: Accuracy and its benchmarking ratio (%)
Method Korean Chinese French
TransCP .568 (80.9%) .572 (81.5%) .560 (79.8%)
TransCN .574 (81.8%) .580 (82.6%) .568 (80.9%)
TransQA .642 (91.5%) .634 (90.3%) .604 (86.0%)
TransQA+ .546 (77.9%) .570 (81.2%) .580 (82.6%)
PSG .690 (98.3%) .662 (94.3%) .662 (94.3%)

Evaluation measure As a main evaluation metric, we use
the accuracy adopted in much reasoning work as:

Accuracy = #correctly answered questions
#answered questions

(13)

Considering our work depends on the achievement on En-
glish, we also design another evaluation measure, Bench-
marking ratio, to quantify relative improvements of multi-
lingual reasoning, which we define as:

Benchmarking ratio = Accuracy
AccuracyEN

(14)

where AccuracyEN is the English reasoning accuracy.

Baselines We compare PSG with the following four base-
line methods, but using no NLP tool on any target language:
• TransCP (Luo et al. 2016): This method leverages PP-

corpus to reconstruct CausalNet for ME in the same man-
ner of NE CausalNet, then performs the causal reasoning
on the machine-translated questions by 1MT.

• TransCN (Chen et al. 2017): This method translates NE
CausalNet from English to a target foreign language, pro-
jecting the causality scores by identifying corresponding
causality pairs with graph alignment techniques.

• TransQA (Ture and Boschee 2016): This method is
a standard 1MT approach to perform the causal reason-
ing on the machine-translated questions, then leverage the
original NE CausalNet to extract causality scores.

• TransQA+ (Qu, Ren, and Han 2017): This method ex-
tends TransQA with a synonym extractor to update the
plausibility by replacing a score of each causal pair with
the average score of its top-3 synonymous causal pairs.

Evaluation Results and Discussion

We investigate the empirical findings for the following re-
search questions:
RQ1: Does our framework outperform the baselines?
RQ2: How does our framework capture ME causality?
RQ3: What causes the error? How to recover them?

Baseline comparison (RQ1) Table 1 shows that our pro-
posed method PSG consistently outperforms all the above
baselines in the three languages. Especially, in Korean, the
benchmarking ratio is 98.3%, which means that the reason-
ing accuracy of foreign language is almost close to that of
English. Regarding these improvements, we describe our
strength over each of the baselines.

First, while TransCP suffers from not much large corpus
generating a low-coverage ME CausalNet, PSG generates

high-quality ME CausalNet transformed from the original
CausalNet. Also, unlike PSG, TransCN leverages Causal-
Net of a target language, namely TL CausalNet, which has
difficulty in matching corresponding terms between ques-
tions and the TL CausalNet due to absence of lemmatiza-
tion. Using these low-quality CausalNets of TransCP and
TransCN does not lead to high reasoning accuracy.

Compared to TransCP and TransCN, TransQA achieves
higher accuracy by using NE CausalNet, which suggests that
adopting 1MT with NE CausalNet is a better starting point
as stated in our problem definition. However, because Tran-
sQA does not consider the challenges L1 and L2, there is
a significant performance gap between TransQA and PSG,
which indicates the impact of reducing the penalty from L1
and L2. To overcome the challenges, TransQA+ addition-
ally considers synonyms of ME words. Nevertheless, it fails
to improve TransQA because causality scores of synonyms
often disqualify the plausibility for accurate reasoning with
term ambiguity. For example, given a ME alternative “She
jumped off the plane”, ‘plane’ is extended with not only a
synonym ‘aircraft’ of the same causality context but also an-
other synonym ‘flat’ of different noise context.

Component study (RQ2) To see how PSG achieves such
improvements, this section investigates the effectiveness of
components, P-S-G, overcoming the limitations on ME. Due
to lack of space, we cover only Korean and Chinese.

For P-step, we analyze the effect of corpus size on word
alignment in Figure 4, where we randomly sample a part of
our web corpus and thus perform PSG per different size of
corpus. One can observe a positive correlation between the
size of the data and the ability to reason about commonsense
causality: R-squared is 0.91 and 0.92 for Korean and Chi-
nese, respectively. This correlation indicates our PP-corpus
is effective to simulate and look up L1 and L2 to improve
the reasoning performance. Also, the monotonic increase of
accuracy suggests that more alignment data may contribute
to increase the accuracy even higher.

For SG-steps, Figure 5 shows the average reasoning accu-
racy of Korean and Chinese when varying threshold θ and
weight parameter λ. Pearson correlation coefficient (PCC)
between Korean and Chinese results varying the parameters
is 0.702. In this heatmap, we can make the following three
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observations: (i) Regarding θ, the narrow range around 0.5 to
0.6 is optimal. However, the accuracy of PSG, by effectively
selecting word alignments, remains rather insensitive to this
value. (ii) Regarding λ, its optimal values are focused on
the range around 0.5 to 0.8, which indicates that the updated
causality scores by propagation are more effective for ME
than the original scores. (iii) Supervised learning of these
parameters is reliable as such trends are commonly found in
two languages with high positive PCC.

Lastly, for G-step, Figure 6 shows that the accuracy of
PSG is improved by performing iterations of causality prop-
agation in Eq 11. This means that the causality-space graph
is suitable to propagate causality knowledge. As a result,
PSG is converged to the accuracy of Table 1 within the
small number of iterations, i.e., around 9-th iteration. The
worse improvement of Chinese through iterations is resulted
from less accurate translation to ME (indicated by accuracy
of TransQA in Table 1), which complicates the next step of
word alignment. We omit the evaluation of runtime, as G-
step is performed offline.

Error analysis (RQ3) We investigate the cases where the
inference was inaccurate in PSG, and find that negative ex-
pressions, i.e., ‘not A’, are more generated by MT, which
causes the loss of causality as CausalNet does not consider
the sentence context in Eq 2.
Example 2 Premise: The table wobbled. What is its cause?

Alternative 1: The floor was uneven.
Alternative 2: The floor was slippery.

In Example 2, Korean and Chinese sentences, [The floor
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Figure 6: Convergence of PSG

was uneven], are translated into a ME sentence “The floor
was not flat” with lower causality, e.g., CS(‘uneven’,‘wobble’)

CS(‘flat’,‘wobble’) =
3533. However, this problem can be resolved by replac-
ing ‘not A’ by ‘B’ that is the antonym of ‘A’, by existing
antonym detector (Ono, Miwa, and Sasaki 2015). This solu-
tion improves the reasoning accuracy by 0.010, 0.014, and
0.004 in Korean, Chinese, and French, respectively.

Related Work

Our work can also be viewed as a domain adaptation, e.g.,
English domain to non-English domain. For example, sen-
timent classifier trained for movie domain, can adapt to
classify for book domain, by identifying common or pivot
features of two domains (Andreevskaia and Bergler 2008;
Bollegala, Weir, and Carroll 2011; He, Lin, and Alani 2011;
Pan and Yang 2010; Li et al. 2013; 2012; Xia and Zong
2011; Yoshida et al. 2011; Wu, Tan, and Cheng 2009; Liu
2012). However, these methods do not accumulate domain-
specific knowledge, as we do. Though (Chen, Ma, and Liu
2015) similarly aims for accumulating the difference of two
domains, in terms of language models, or distributions, such
difference is more complicated in our target problem of
adapting between graphs.

When dealing with multilingual collections, most prior
approaches (Ture and Boschee 2016; Faruqui and Kumar
2015; Mihalcea, Banea, and Wiebe 2007; Banea et al. 2008)
translate all text into English beforehand, then treat the task
as monolingual retrieval (previously referred to as 1MT).
Such prior work does not focus on the translation compo-
nent, which is a black box. More closely related work is
transferring POS tagging in two graphs (Das and Petrov
2011; Kim and Lee 2012). Commonality is label propa-
gation for such transfer, but we distinguish by combining
machine translation and label propagation. Specifically, we
generate the projection space of label propagation on “back-
translated English” (i.e., ME from PP-corpus), which is
adopted in recent paraphrasing work (Mallinson, Sennrich,
and Lapata 2017; Wieting, Mallinson, and Gimpel 2017)
with the success of NMT. Additionally, we also have another
challenge of recomputing the score for the target language
(or ME) structure.

Conclusion

We studied the commonsense causal reasoning problem for
any resource-poor language. Our proposed approach signif-
icantly improves reasoning accuracy in multiple languages,
Korean, Chinese, and French, by reducing the causality loss
with respect to translation and language gaps. We demon-
strate, for the first time, that the cross-lingual knowledge
transfer between NE and ME can be an effective technique
in growing the causal reasoning ability on resource-poor lan-
guages without any target language corpus.
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