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Abstract

2D/3D image registration to align a 3D volume and 2D X-ray
images is a challenging problem due to its ill-posed nature
and various artifacts presented in 2D X-ray images. In this
paper, we propose a multi-agent system with an auto attention
mechanism for robust and efficient 2D/3D image registration.
Specifically, an individual agent is trained with dilated Fully
Convolutional Network (FCN) to perform registration in a
Markov Decision Process (MDP) by observing a local region,
and the final action is then taken based on the proposals from
multiple agents and weighted by their corresponding confi-
dence levels. The contributions of this paper are threefold.
First, we formulate 2D/3D registration as a MDP with obser-
vations, actions, and rewards properly defined with respect to
X-ray imaging systems. Second, to handle various artifacts
in 2D X-ray images, multiple local agents are employed effi-
ciently via FCN-based structures, and an auto attention mech-
anism is proposed to favor the proposals from regions with
more reliable visual cues. Third, a dilated FCN-based train-
ing mechanism is proposed to significantly reduce the Degree
of Freedom in the simulation of registration environment, and
drastically improve training efficiency by an order of magni-
tude compared to standard CNN-based training method. We
demonstrate that the proposed method achieves high robust-
ness on both spine cone beam Computed Tomography data
with a low signal-to-noise ratio and data from minimally in-
vasive spine surgery where severe image artifacts and occlu-
sions are presented due to metal screws and guide wires, out-
performing other state-of-the-art methods (single agent-based
and optimization-based) by a large margin.

Introduction

The goal of 2D/3D medical image registration is to find
the 6 Degree of Freedom (DoF) pose of a 3D volume (e.g.
Computed Tomography (CT), Mangnetic Resonance Imag-
ing (MRI) etc), to align its projections with given 2D X-
ray images. Reliable 2D/3D registration is a key enabler for
image-guided surgeries in modern operating rooms. It brings
measurement and plannings done on the pre-operative data
into the operating room, and fuse it with intra-operative live
2D X-ray images. It can be used to provide augmented re-
ality image guidance for the surgery, or provide navigation
for robotic surgery. Despite that 2D/3D registration has been
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actively researched for decades (Markelj et al. 2012), it re-
mains a very challenging and unsolved problem, especially
in the complex environment of hybrid operating rooms.

A Markov Decision Process (MDP) formulation for
3D/3D image registration was recently introduced and re-
sulted in a significant robustness improvement (Liao et al.
2017). The original formulation however has three major
limitations that make it ineffective for 2D/3D registration in
a clinical setup. First, it requires the rough location and size
of the target object to be registered as a prior, in order to ex-
tract a local region around the target as the agent’s observa-
tion. However, in 2D/3D registration, the location and size of
the target object can vary significantly in 2D X-ray images,
due to variations in C-arm geometry and imaging protocols
such as collimation factors. Second, there could be various
artifacts / interference coming from medical devices in 2D
X-ray images and simulation of all of them in the training
samples is not practical. Therefore an auto attention mech-
anism is needed in order to be able to inherently detect the
regions with more reliable visual cues to drive registration,
and this mechanism is not provided in (Liao et al. 2017).
Third, training data need to be sampled extensively from the
registration environment with a high DoF (i.e., environmen-
tal DoFs include location of agent’s observation and pose
of the 3D volume), which is associated with an high com-
putational cost. In fact, five million samples are needed as
reported in (Liao et al. 2017), even after using location prior
knowledge to reduce the DoF by 3. Since data sampling
grows exponentially with the DoF, without the location prior
knowledge, computational cost would be prohibitively high
for our 2D/3D registration problem.

In this paper, we propose a multi-agent system with an
auto attention mechanism to address the above three limita-
tions of agent-based registration, and apply it to a challeng-
ing 2D/3D registration application for minimally invasive
spine surgery. In particular, multiple agents are employed to
observe multiple regions of the image, and the system adap-
tively favors proposals from regions with more distinct vi-
sual cues for registration. We furthermore propose a policy
network architecture with separate encoding of the fixed and
moving images, and a dilated Fully Convolutional Network
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Figure 1: Example X-ray images (top row) and corresponding Digitally Reconstructed Radiographs (DRRs) (bottom row). The
first four X-ray images are clinical data from spine surgery, which contain various highly opaque metal objects and have very
different Field-of-Views (FoVs). The last three X-ray images are from CBCT data, which have a relatively low SNR due to a
very small dynamic range.

(FCN) based training strategy to train all observation regions
in each back propagation. This strategy significantly reduces
the DoFs of the registration environment, and as a result
training efficiency is improved by an order of magnitude
compared to standard CNN-based training method. The pro-
posed FCN structure also naturally supports our multi-agent
system in the application phase for efficient 2D/3D regis-
tration. We demonstrate that when there are severe image
artifacts and occlusions, e.g. due to metal screws and guide
wires, the proposed method significantly outperforms single
agent-based method and other state-of-the-art optimization-
based methods by reducing the gross failure rate (GRF) by
10 fold.

Related Work

Optimization-based 2D/3D Registration

The most widely adopted formulation for 2D/3D registra-
tion is to solve it as an optimization problem to mini-
mize a cost function that quantifies the quality of align-
ment between the images being registered (Markelj et al.
2012)(Gendrin et al. 2012)(Schmid and Chênes 2014)(Miao,
Liao, and Zheng 2011). The success of these approaches de-
pends on the global optimization of the cost function. Ex-
isting image-based cost functions are mostly based on low
level metrics, e.g., Mutual Information (MI) (Maes et al.
1997), Cross Correlation (CC) (Knaan and Joskowicz 2003),
Gradient Correlation (GC) (De Silva et al. 2016) and etc.
These metrics compare images directly at the pixel level
without understanding the higher level structures in the im-
age. As a result, on images with a low signal-to-noise ratio
(SNR) and/or severe image artifacts like examples shown
in Fig. 1, they often have numerous local minima, which
makes it extremely challenging to locate the global solu-
tion using mathematical optimization strategy, e.g. Powell’s
method, Nelder-Mead, BFGS, CMA-ES. Although there
are global optimization methods, e.g., simulated annealing
(Van Laarhoven and Aarts 1987) and genetic algorithm (Deb
et al. 2002), they require comprehensive sampling of the pa-
rameter space, which leads to a prohibitively high computa-

tional cost. Few attempts have been made to seek heuristic
semi-global optimization to seek a proper balance between
robustness and computational cost (Uneri et al. 2017)(Lau
and Chung 2006).

Learning-based Image Registration

Several attempts have been made recently to tackle 2D/3D
registration problems using learning-based approaches.
Hand crafted features and simple regression modules like
Multi-Layer Perceptron and linear regression were proposed
to regress 2D/3D registration parameters (Gouveia et al.
2015) (Chou et al. 2013). A CNN-based regression approach
was introduced in (Miao, Wang, and Liao 2016) to solve
2D/3D registration for 6 DoF device pose estimation from
X-ray images, and later on a domain adaptation scheme was
proposed (Zheng, Miao, and Liao 2017) to improve the per-
formance generalization of the CNN model on unseen real
data. In (Wohlhart and Lepetit 2015), a range image de-
scriptor was learned via CNN to differentiate 3D pose of
the object, and was used for 6 DoF pose estimation. While
the CNN-based methods improve robustness of 2D/3D reg-
istration, they are limited to registering only highly opaque
objects with a fixed shape described by a CAD model (e.g.,
rigid metal devices), because they aimed at explicitly mod-
eling the appearance-pose relationship. Therefore, it cannot
solve 2D/3D registration of anatomical structures with vary-
ing shapes across patients.

Learning-based approaches have also been explored for
2D/2D and 3D/3D image registration, where the goal is
to find the spatial transformation to align images of the
same dimension. Unsupervised learning using CNN was
proposed in (Wu, Qi, and Shen 2006) to extract features for
deformable registration. These features however were ex-
tracted separately from the image pairs and therefore may
not be optimal for registration purpose. Optical flow estima-
tion between 2D RGB images has been proposed using CNN
via supervised learning in (Weinzaepfel et al. 2013)(Doso-
vitskiy et al. 2015)(Ilg et al. 2016). A learnable module,
called spatial transformer network (STN), was introduced
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in (Jaderberg et al. 2015). The focus of STN was not an
accurate alignment of two images, but a rough transforma-
tion of a single input image to a canonical form. In a recent
work, rigid-body 3D/3D image registration is formulated as
a MDP and a policy network is trained to perform image reg-
istration (Liao et al. 2017). Motivated by this work, we de-
sign a 2D/3D registration system by utilizing multiple agents
coupled with an auto attention mechanism for high robust-
ness, and train the agent using dilated FCN-based strategy
for high efficiency.

Background

2D/3D Registration

Given a 3D CT volume J : R3 → R, a projection image can
be calculated following the X-ray imaging model (Bushberg
and Boone 2011):

HT (p) =

∫
J
(
T−1 ◦L(p, r)

)
dr, (1)

where I(p) is the intensity of the synthetic X-ray image at
point p, L(p, r) is the line connecting the X-ray source and
the point p, parameterized by r, and T : R3 → R

3 is the
geometric transformation of the 3D volume. Such projection
image is referred to as DRR, and can be computed using the
Ray-Casting algorithm (Kruger and Westermann 2003).

In 2D/3D registration problems, a 3D volume J(·), a 2D
X-ray image I(·) and the camera model of the X-ray im-
ages L(·) are given. The goal is to find the transformation T
that aligns the projection of the 3D volume HT (·) with the
X-ray image I(·). Due to the ambiguity in matching a 3D
volume with a single projected 2D image, multiple X-ray
images from different projection angles are often employed
in 2D/3D registration. In such cases, the goal is to find the
transformation T that aligns all DRR and X-ray image pairs,
denoted as Hi,T (·) and Ii, where i denotes the index of the
X-ray image.

Special Euclidean Group SE(3)

Special Euclidean group SE(3) is the set of 4 × 4 matri-
ces corresponding to translations and rotations. The tangent
space of SE(3) is described using the Lie algebra se(3),
which has six generators corresponding to the derivatives of
translation and rotation along/around each of the standard
axes. An element of se(3) is then represented by multiples
of the generators

δ = (u,v) ∈ R
6 (2)

δ× = u1G1 + u2G2 + u3G3+

v1G4 + v2G5 + v3G6 ∈ se(3), (3)
where (G1, G2, G3) are the translation generators, and
(G4, G5, G6) are the rotation generators. Matrix exponen-
tial and logarithm can be taken to convert elements between
SE(3) and se(3).

Proposed Method

Markov Decision Process

We cast the problem of finding T to align the DRR HT (·)
with a X-ray image I(·) as a MDP, which is defined by a

Figure 2: Policy network with encoder CNN and decoder
neural network (NN). An ROI centered on the projection of
the agent’s location is extracted from the X-ray image and
DRR. The extracted regions are encoded using CNN to ob-
tain feature vectors, which are concatenated and decoded by
a NN to obtain reward estimation.

5-tuple {T ,A, P·(·), R·(·), γ}, where T is the set of pos-
sible states (i.e., transformations in SE(3)), A is the set of
actions (i.e., modification of the transformation), PA(T ) is
the state obtained by taking action A in state T , RA(T ) is
the reward received by taking action A in state T , and γ is
the discount factor that controls the importance of future re-
wards. With the action space A and the reward scheme R·(·)
defined (details are provided in the next sections), the core
problem of MDP is to find a policy π(·) that specifies the
optimal action π(Tt) to be taken at state Tt to maximize the
long term reward:

inf∑
t=0

γtRAt(Tt), where we choose At = π(Tt). (4)

Action Space

To make the policy learnable, we define the action space
based on the X-ray projection geometry such that each ac-
tion is correlated with a specific appearance change of the
DRR that is largely independent of C-arm geometry. Specif-
ically, the transformation T is described in the image co-
ordinate system, which has its origin at the upper left cor-
ner of the image, its (x, y) axes along the image edges, and
its z axes perpendicular to the image (illustrated in Fig. 2).
We further define an agent coordinate system with the same
orientation as the image coordinate system and an origin
that can be selected individually (details on the selection of
the origin will be discussed later). The coordinate transform
from the image coordinate system to the agent coordinate
system is denoted as E. The transformation Tt is then de-
scribe in the agent coordinate system, written as E ◦ Tt, and
the action space is defined as small movements in the tangent
space of SE(3) at E◦Tt, parameterized by se(3). Specifically,
the action space contains 12 actions of positive and negative
movements along the 6 generators of se(3):

A = {−λ1G1, λ1G1, . . . ,−λ6G6, λ6G6}, (5)
where λi is the step size for the action along the generator
Gi. Application of an action A ∈ A is represented as

Tt+1 = E−1 ◦ exp(A) ◦ E ◦ Tt. (6)
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Since the actions need relatively small step size in order to
achieve high accuracy, we set λ1,2,3 to be 1 to get a step size
of 1 mm in translation, and λ4,5,6 to be π/180 = 0.0174 to
get a step size of 1 degree in rotation. Our definition of the
action space ensures that the translation actions causes 2D
shift and zooming of the DRR, and rotation actions causes
rotation of object in the DRR around the agent’s origin.
Therefore the image appearance change of the DRR for a
given action is largely independent of the underlying C-arm
geometry. Note there is no action for terminating the MDP.
Instead, we run the agent for a fixed number of steps (i.e., 50
in our experiments).

Reward System

In standard MPD, the optimization target is a long term re-
ward, i.e., an accumulation of discounted future reward, due
to the difficulty of forging a reward system that directly as-
sociate the immediate reward with the long term goal. For
2D/3D registration, however, we can define a distance-based
reward system such that the immediate reward is tied with
the improvement of the registration. The reward scheme is
defined as the reduction of distance to the ground truth trans-
formation in the agent coordinate system:

RA(T ) = D(E ◦ T,E ◦ Tg)−D(E ◦ T ′, E ◦ Tg), (7)

where T and T ′ are transformations before and after the
action, Tg is the ground truth transformation. The dis-
tance metric D(·, ·) is defined as the geodesic distance of
two transformations on SE(3) (Hartley, Aftab, and Trumpf
2011):

D(T1, T2) = ‖ log(T2 ◦ T−1
1 )‖F

=
(
2‖u‖22 + ‖v‖22

) 1
2 ,

(8)

where log(·) takes T2 ◦T−1
1 ∈ SE(3) into se(3), u and v are

rotation and translation coefficients of log(T2 ◦ T−1
1 ) as de-

scribed in Eqn. (2). Because the units for rotation and trans-
lation are radian and mm, the distance impact of rotation is
too small. Therefore, we scale the rotation coefficients v by
180/π to balance the impacts of rotation and translation.

Since the distance D(T, Tg) measures the distance to the
ground truth, a greedy policy that maximizes the immedi-
ate reward (i.e., minimizes the distance to the ground truth)
would lead to the correct registration.

π(T ) = argmax
A

RA(T ). (9)

It can also be seem as a special case of MPD with the dis-
count factor γ = 0.

Policy Learning via Dilated FCN

Since we seek a greedy policy that maximizes the immedi-
ate reward, we model the reward function as a deep neural
network, as shown in Fig. 2, which can be learned via super-
vised learning. The input of the network is an observation
of the current state, which consists of an observed region of
fixed size (i.e. 61 × 61 pixels with 1.5×1.5 mm pixel spac-
ing in our experiment) from both X-ray and DRR, referred

Table 1: Layer configurations for encoder/decoder CNNs
and their equivalent dilated FCNs. Parameters for convolu-
tional layers are written as m × n × f , where n ×m is the
convolution kernal size, f is the number of feature maps. sk
indicates that the layer has input stride k, and dk indicates
that the filter kernel is dilated k times. All convolutional lay-
ers have zero padding. SELU activation function is applied
after all layers except for the input and output layers. The
column ”output size” specifies the output sizes for CNN.

Layer
Name

Output
Size

Original
CNN

Equivalent
FCN

E
nc

od
er

input 61x61 - -
conv1 59x59 3x3x32 3x3x32,
conv2 57x57 3x3x32 3x3x32,
conv3 27x27 3x3x64,s2 3x3x64,d2
conv4 25x25 3x3x64 3x3x64,d2
conv5 11x11 3x3x128,s2 3x3x128,d4
conv6 9x9 3x3x128 3x3x128,d4
conv7 3x3 3x3x256,s2 3x3x256,d8
fc1 1x1 1024 3x3x1024,d8
fc2 1x1 1024 1x1x1024,d8
output 1x1 128 1x1x128,d8

D
ec

od
er input 1x1 - -

fc1 1x1 1024 3x3x1024,d8
fc2 1x1 1024 1x1x1024,d8
output 1x1 6 1x1x6,d8

to as Region of Interest (ROI). The ROI of an agent is cen-
tered on the projection of its origin, so that rotation actions
cause rotations with respect to the center of the ROI. Such
ROI center ensures that the same action always cause the
same visual change in the observation, leading to a consis-
tent mapping between the observation and rewards of dif-
ferent actions that can be modeled by a neural network. We
propose a network architecture that encodes X-ray and DRR
separately and decodes them jointly to obtain the estimated
reward, as shown in Fig. 2 and Table 1.

Such CNN can be trained by supervised learning on data
randomly sampled from the registration environment, simi-
lar to (Liao et al. 2017). In particular, given one pair of 2D
and 3D data, training data of the CNN can be generated with
8 DoFs, including 2 DoFs for (x, y) of the agent’s origin (z
is set to be the mid-point of the 3D volume) corresponding
to the location of the agent, and 6 DoFs for the transfor-
mation T corresponding to the pose of the 3D volume. The
ground truth rewards can be calculated following Eqn. (7).
To make the learned reward function generalizable to unseen
data, all 8 DoFs need to be sufficiently sampled during train-
ing, which has a prohibitively high computational cost. In
(Liao et al. 2017), five million samples are needed to cover
training data of 6 DoFs, and the sampling requirement grows
exponentially with the DoF.

We propose a dilated FCN-based training mechanism to
reduce the DoF of training data from 8 to 4. First, the en-
coder and decoder CNNs are converted to equivalent dilated
FCNs. The filter dilation technique introduced in (Long,
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Figure 3: Training of the reward network using dilated FCN. The encoder CNN and decoder NN are converted to equivalent
dilated FCNs. Densely overlapping ROIs are encoded to a dense feature vector map. The feature vector map of DRR is then
randomly shifted N (N=4 in our experiments) times to simulate translations of the 3D volume in the imaging plane. A ground
truth dense reward map is calculated from each 2D shift combined with the 3D transformation. Euclidean loss comparing the
estimated and ground truth rewards is used for training.

Shelhamer, and Darrell 2015) is used to make each pixel
in the FCN output exactly the same as that produced using
the corresponding CNN on its receptive field in the input
images. Layer to layer correspondence of CNN and dilated
FCN is shown in Table 1. Training using dilated FCN is il-
lustrated in Fig. 3. Since the encoder FCN encodes all ROIs
in the input image, it can replace sampling (x, y) of the
agent’s origin. The (x, y) translation part of T creates 2D
shift of the DRR, which can be replaced by shifting the en-
coded feature map of the DRR during training. Therefore, 4
DoFs of training data can be avoided by using FCN-based
training, reducing the number of total DoFs from 8 to 4.
Since the complexity of the environment grows exponen-
tially with its DoF, reducing the DoF by 4 can significantly
improve the training efficiency.

In the FCN-based training, the ground truth reward
map needs to be calculated during training, following
Eqn. (7) and Eqn. (8). Given a X-ray/DRR pair with known
Tg and T , the agent coordinate system {Ei} is calcu-
lated for all ROIs within the input image by tracing the
pixel back to the 3D volume. For each ROI, (ui,vi) of
log

(
Ei ◦ T ◦ (Ei ◦ Tg)

−1
)

is pre-calculated. The effect of
2D shift of the DRR feature map is essentially adding the
translation to T , which is equivalent to updating ui ←
ui +Δu, where Δu is the 2D shift represented in mm. The
distance before action is then calculated using (ui,vi) fol-
lowing Eqn. (8) for each ROI. Similarly, the distance after
action is calculated following the same steps by replacing T
with T ′ = E−1

i ◦ exp(A) ◦ Ei ◦ T . Note that the expensive
computation of matrix logarithms can be pre-calculated for
each X-ray/DRR pair, as it does not depend on the 2D shift.

Multi-agent System

Since X-ray images during surgery and interventions can
have very different Field-of-View (FoV) and contain many
structures that do not match with the 3D image (e.g., medi-
cal devices), there can be many ROIs that do not contain reli-

Figure 4: Confidence map of densely overlapping ROIs
within the image. Color of each pixel indicates the confi-
dence value from the ROI centered on this pixel.

able visual cues for registration (as shown in Fig. 1). There-
fore we propose a multi-agent system to provide auto atten-
tion and adaptively choose most reliable ROIs during regis-
tration. Specifically, the FCN policy network is applied on
the X-ray and DRR to produce a dense reward map, which
contains estimated rewards for agents with all possible ROIs
from the input images, denoted as Ri(A), where i is the in-
dex of the agent and A ∈ A is the action. For every agent,
the maximum reward is calculated and the action associated
with it is selected:

R̂i = max
A∈A

Ri(A),

Ai = argmax
A∈A

Ri(A).
(10)

Since R̂i is the anticipated reward of its selected action Ai, it
represents the agent’s confidence on the action. Fig. 4 shows
a strong correlation between the confidence score R̂i and
the quality of the corresponding ROI: for image with a large
FoV, the confidence score is high on spine (i.e., good visual
cue for registration) and low on soft tissue; when severe oc-
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Figure 5: Left: Confidence distribution of agents producing
correct and wrong actions. Right: Relation between the per-
centage of correct action among selected action and the con-
fidence threshold used for selecting action.

clusion is presented due to medical devices, the occluded
area has low confidence scores.

We propose to use the confidence score R̂i to derive an at-
tention mechanism that only selects agents with R̂i above a
certain confidence threshold. To determine the threshold, the
behavior of the confidence score was analyzed on validation
data. Actions are categorized into correct and wrong, based
on their impact on the registration (i.e., increase or decrease
the distance to ground truth). Fig. 5 shows the distribution
of the confidence scores from agents producing correct and
wrong actions, and relation between the percentage of cor-
rection action among selected actions and the confidence
threshold used for selecting actions. Based on the analysis,
we selected a confidence threshold (i.e., 0.67 in our experi-
ment) such that the correct rate of selected actions is above
95%. To avoid the scenario that too few agents are selected
for a given test image, if less than 10% of the agents have
a confidence score above this threshold, the top 10% agents
will then be selected. After the agents are selected, denoted
as I, actions from the selected agents are further aggregated
by L2 chordal mean to obtain the final actions:

Â = argmin
A∈SE(3)

∑
i∈I

‖Ai −A‖2F . (11)

The L2 chordal mean can be solved globally in close form
as described in (Hartley, Aftab, and Trumpf 2011).

Experiment and Result

We applied the proposed method on a clinical application of
2D/3D registration during minimally invasive spine surgery,
which aims at registering spine in 3D cone beam CT (CBCT)
and two X-ray images acquired from different angles. This is
a challenging problem because surgical objects like screws
and guide wires can be presented separately in the 3D and
2D images, creating severe image artifacts and occlusion of
the target object (examples are shown in Fig. 1).

Training

During minimally invasive spine surgery, the initial pose off-
set between the CBCT and the X-ray images can be up to 20
mm in translation and 10 degrees in rotation. Therefore, we
train the agents to perform registration starting from within

Figure 6: Comparison of training speed using CNN-based
training and dilated FCN-based training.

this range. In particular, the X-ray/DRR pairs used for train-
ing have random rotation offset up to 10◦, and the DRR fea-
ture map is randomly shifted up to 20 mm during training.
The training data was generated from 77 CBCT data sets,
where each CBCT data set consists of one CBCT and ∼350
X-ray images used for reconstructing the CBCT. From each
CBCT data set, we extracted 350 X-ray/DRR pairs. Since
the number of CBCTs is limited, we also generated pairs of
synthetic X-ray image and DRR from 160 CTs as additional
training data, where 200 pairs where generated from each
CT. In total, our training data consist of 58,950 data, i.e.,
26,950 CBCT data and 32,000 synthetic data. Training was
performed on a Nvidia Titan Xp GPU using pyTorch.

We compared training using CNN and the proposed di-
lated FCN. In the training of CNN, random ROIs are ex-
tracted from the X-ray and DRR as the CNN input, and
ground truth rewards are calculated and used as supervision.
Curves for the training loss and correct action rate using
CNN-based and dilated FCN-based training are shown in
Fig. 6. FCN-based training finished in 17 hours, with a test-
ing loss of ∼0.13 and a testing correct action rate of ∼90%.
In comparison, CNN-based training after 17 hours reached a
test loss of ∼0.22 and a testing correct action rate of ∼80%,
which is close to the performance of FCN-based method af-
ter 2 hours of training.

Testing

To evaluate the contribution of the multi-agent strategy, we
tested the agent-based method in two modes: 1) using a sin-
gle agent with an ROI at the center of the image, referred to
as agt-s, and 2) using the proposed multi-agent strategy, re-
ferred to as agt-m. To apply the proposed method on 2D/3D
registration with two X-ray images, in every step, one action
is obtained from each X-ray image, and the obtained actions
are applied sequentially. We also tested a combination of
agt-m and an optimization-based method, referred to as agt-
m-opt, where optimization of GC using BOBYQA optimizer
was applied starting from the result of agt-m. We compared
the agent-based method with state-of-the-art optimization-
based methods. Multiple similarity measures were evalu-
ated in (De Silva et al. 2016) using CMA-ES optimizer for
spine 2D/3D registration, and GC and GO were reported
to achieve the best performance. Therefore, we evaluated
CMA-ES optimization of GO and GC using the same param-
eters reported in (De Silva et al. 2016), referred to as ES-GO
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and ES-GC, respectively. Registration error is measured by
Target Registration Error (TRE), which is calculated as the
Root Mean Square Error of the locations of seven anatomi-
cal landmarks located on spine vertebrae.

CBCT Data Testing was first performed on 116 CBCT
data sets via three-fold cross validation (77 used for training
and 39 used for testing). The typical size of the CBCT data is
512× 512× 389 with a pixel spacing of 0.486 mm. On each
data set, 10 pairs of X-ray images that are >60◦ apart (com-
mon practice for spine surgery) were randomly selected,
and 2D/3D registration was performed on each pair, start-
ing from a perturbation of the ground truth transformation
within 20 mm translation and 10◦ rotation, leading to 1,160
test cases. Note that X-ray images in CBCT data have a rel-
atively low SNR with a faint spine as shown in Fig. 1.

Experiment results are summarized in Table 2. The two
optimization-based methods, ES-GO and ES-GC, resulted
in relatively high gross failure rate (account for TRE>10
mm, which is about 1/2 of a vertebrae and considered to be
grossly off by our clinical collaborating partners). This is
mainly due to the low image quality (e.g., low SNR, im-
age artifacts in CBCT and etc.), which leads to a highly
non-convex optimization problem using low level similarity
measures like GC and GC. In comparison, agt-m achieved a
much lower gross failure rate, demonstrating the robustness
advantage of the agent-based method. Comparison of agt-s
and agt-m shows that the multi-agent strategy can noticeably
improve robustness by aggregating information from most
confident agents. The comparison of median TRE shows that
while the agent-based method provides low failure rate, its
accuracy is lower than that of optimization-based methods.
This is primarily due to the discrete actions of 1 mm and
1 degree, and location information loss during stride in the
CNN. By applying opt-local to refine the result of agt-m,
apt-m-opt achieved both low failure rate and high accuracy.

Clinical Data To evaluate the proposed method in a real
clinical setup, we blindly selected one trained model from
the three-hold cross validation on CBCT data, and tested it
on 28 clinical data sets collected from minimally invasive
spine surgery. Each data set contains a CBCT acquired be-
fore the surgery and two X-ray images acquired during the
surgery. Ground truth registration was manually annotated
by experts. On each data set, 20 perturbations of the ground
truth transformation were randomly generated as starting po-
sitions for 2D/3D registration, leading to 560 test cases.

Experiment results on clinical data are summarized in Ta-
ble 2. Higher TREs are reported for all methods on clinical
data than that on the CBCT data, primarily due to three rea-
sons: 1) The ground truth registration for clinical data was
manually annotated, which could bear 1∼2 mm error; 2) The
complexity of clinical data is much higher than the CBCT
data (i.e., artifacts and occlusion caused by surgical devices,
varying imaging FoVs and etc.); 3) For agent-based meth-
ods, the agent was trained without using any real clinical
data from spine surgery. We observed that due to the in-
creased complexity, the heuristically selected ROI used in
agt-s (i.e., center of the image) become even less reliable. As
a result, the robustness of agt-s degrades significantly com-

Table 2: Experiment results on bi-plane 2D/3D registration
on 1,160 test cases from 116 CBCT data sets, and 560 test
cases from 28 clinical data sets. Gross failure rate (GFR) ac-
counts for test cases with TRE>10 mm. Median, 75th per-
centile and 95th percentile TREs are reported.

Method GFR Median
(mm)

Percentile (mm) Run
Time75% 95%

C
B

C
T

D
at

a

Start 93.4% 19.4 23.2 27.8 -

ES-GC 32.2% 1.67 22.1 44.1 18.7 s
ES-GO 34.3% 1.81 21.0 38.6 33.9 s

agt-s 17.2% 5.30 8.13 23.3 0.5 s
agt-m 4.1% 3.59 5.30 8.98 2.1 s
agt-m-opt 2.1% 1.19 1.76 4.38 2.6 s

C
lin

ic
al

D
at

a

Start 95.4% 20.4 23.1 26.8 -

ES-GC 49.3% 8.79 26.5 55.6 20.4 s
ES-GO 42.1% 3.18 29.0 84.6 35.8 s

agt-s 45.7% 8.42 14.2 26.4 0.6 s
agt-m 6.8% 4.97 7.36 10.3 2.1 s
agt-m-opt 6.1% 1.99 2.76 10.8 2.7 s

paring to that on the CBCT data. The multi-agent system,
agt-m, in contrast achieved a much higher robustness than
agt-s, even though the individual agent was trained without
using any clinical data from spine surgery, demonstrating
the effectiveness of the multi-agent strategy in dealing with
complex scenarios.

Conclusion and Future Works

In this paper, we formulated 2D/3D registration as a MDP,
and proposed an multi-agent system to solve this challeng-
ing problem. A multi-agent action aggregation scheme is
proposed to drive the registration with inherent attention fo-
cus. In addition, a dilated FCN-based training scheme is pro-
posed to reduce the number of DoFs that need to be sampled
in training from 8 to 4, which speeds up the training effi-
ciency by an order of magnitude. On our experiments on
both CBCT data and clinical data, the proposed method is
shown to be able to achieve significantly higher robustness
than the state-of-the-art 2D/3D registration methods.

In our future works, we will explore the advantages pro-
vided by the proposed dilated FCN-based network structure
for other general computer vision problems such as opti-
cal flow estimation and metric learning. Specifically, unlike
FCN-based optical flow (e.g., FlowNet (Dosovitskiy et al.
2015)), where the pooling and uppooling layers inherently
make the output insensitive to small motion, our network
structure ensures that local image descriptor strictly follows
the input ROI (i.e., 1 pixel shift of the ROI causes exactly
1 pixel shift of the descriptor), and therefore can poten-
tially provide high accuracy for motion estimation. In addi-
tion, this property could be utilized for metric learning using
triplet networks, i.e. embeding ROIs to feature vectors with
Euclidean distances correlated with the physical distances
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of the ROIs. The dilated FCN based training scheme could
in general be highly efficient by allowing training multiple
displacements in each back propagation. These are currently
under investigation.
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