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Abstract

Malicious vehicle agents broadcast fake information about
traffic events and thereby undermine the benefits of vehicle-
to-vehicle communication in vehicular ad-hoc networks
(VANETs). Trust management schemes addressing this is-
sue do not focus on effective/fast decision making in reacting
to traffic events. We propose a Partially Observable Markov
Decision Process (POMDP) based approach to balance the
trade-off between information gathering and exploiting ac-
tions resulting in faster responses. Our model copes with ma-
licious behavior by maintaining it as part of a small state
space, thus is scalable for large VANETs. We also propose
an algorithm to learn model parameters in a dynamic behav-
ior setting. Experimental results demonstrate that our model
can effectively balance the decision quality and response time
while still being robust to sophisticated malicious attacks.

Introduction

Nowadays people rely on map services such as Google Maps
for better driving experience. Map services are mostly cen-
tralized resulting in information update delay. Events af-
fecting traffic condition (e.g., car accidents, road construc-
tion) require fast information update to avoid traffic conges-
tion. Vehicular Ad-hoc Networks (VANETs) allow vehicle
(agents) to communicate directly with each other and sup-
port fast information exchange (Hartenstein and Laberteaux
2008). When a vehicle directly observes an event, it can
broadcast event alerts through vehicle-to-vehicle communi-
cation, based on which other vehicles can decide to respond.

Nevertheless, selfish/malicious vehicles (Lin, Kraus, and
Shavitt 2007; Raya and Hubaux 2007) exist which share
fake/untrustworthy information to mislead other drivers.
Trust management schemes (Raya et al. 2008; Chang and
Kuo 2009; Li et al. 2012; Wei et al. 2014; Li and Song 2016)
address this issue by computing the trustworthiness of vehi-
cles and thereby the trustworthiness of messages exchanged
about an event. Such information helps to create and up-
date a vehicle’s belief, i.e., probability distribution about
whether the traffic event occurred or not (more messages
about the event result in a higher belief). However, existing
trust schemes only focus on trust computation but do not ef-
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fectively reason about driving decisions1, e.g., whether to re-
route or stay on the same route. These schemes use a simple
heuristic way and decide to re-route, if the belief about the
occurrence of an event (called event belief, hereon) exceeds
a given threshold. Often, thresholds are set to a larger value
for better decision-making. This requires exchanging more
messages, resulting in higher resource consumption (com-
munication bandwidth, computation cost), as well as longer
information gathering period leading to delayed response,
which can add to the severity of the traffic event.

To achieve fast response and reduce resource consump-
tion without sacrificing decision quality, we propose a Par-
tially Observable Markov Decision Process (POMDP) based
approach. POMDP provides a natural framework for se-
quential decision making under uncertainty. Thus, it is an
ideal choice for VANETs to handle the uncertainty intro-
duced due to unreliable information from malicious vehi-
cles. Besides, POMDP effectively balances the trade-off be-
tween exploitation (deciding to re-route or not) and explo-
ration (collecting more information about the event) (Kael-
bling, Littman, and Cassandra 1998).

Our POMDP model maintains belief about the occur-
rence of a traffic event and assists a vehicle agent to decide
whether to re-route or not based on its current belief. It gath-
ers information about the event by querying neighboring ve-
hicles (which can be trustworthy/untrustworthy in providing
information) and updates the event belief accordingly. Based
on the belief, the POMDP model balances the expected ben-
efit of re-routing and the delay/cost of querying more infor-
mation, thereby maximizing the expected total utility for the
vehicle. The environmental parameters (observation, transi-
tion functions) for the POMDP model need to be learned.
In our scenario, learning is more complex as the observa-
tion function representing the behavior of neighboring ve-
hicles changes over time. This is because of sophisticated
malicious attackers who can change their behavior periodi-
cally. We have addressed the above challenges and made the
following contributions in this paper: 1) To the best of our
knowledge, this is the first time POMDP is applied for the
problem; 2) While the POMDP model can effectively bal-
ance the trade-off between decision quality and delay/cost,

1While there are many other driving decisions, we will use re-
routing to explain our approach in this paper.
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it can also handle the issue of fake information. Further, the
model is designed to have a small state space and thereby
scalable to a large number of vehicles; 3) We have also pro-
posed an algorithm based on Bayesian reinforcement learn-
ing for learning the observation function in a dynamic sce-
nario where malicious vehicles change their behavior fre-
quently; 4) We have conducted extensive experiments to
evaluate the performance of our model. Results demonstrate
that our solution can make better and fast decisions while
still being robust under frequent behavior change.

Related Work

Several works have been proposed to model the trustworthi-
ness of vehicles. Chang and Kuo (2009) design a Markov
Chain Trust Model in which the steady trust-state transi-
tion probability is regarded as vehicle’s trustworthiness. Wei
et al. (2014) and Li and Song (2016) use the Dempster-
Shafer Theory to combine own experience and the informa-
tion from neighbors. Any such trust scheme can be used to
derive vehicle’s trustworthiness for our POMDP model.

Some existing works utilize the trustworthiness of vehi-
cles and their messages to determine the occurrence of a
traffic event. Raya et al. (2008) propose a data-centric trust
scheme to compute the trustworthiness of each message re-
ceived based on sender’s trustworthiness, time and loca-
tion. The event belief is obtained by aggregating the mes-
sages using voting, Bayesian inference, or Dempster-Shafer
Theory. More messages reduce the uncertainty in event be-
lief while delaying the response. Li et al. (2012) propose
a reputation-based announcement scheme in which the ex-
changed message contains event information and sender’s
trustworthiness. If the trustworthiness is greater than a pre-
set threshold, vehicles will believe the event immediately. A
smaller threshold value enables faster response but increases
the probability of being misled. Our POMDP model, on the
other hand, avoids the complexity of fine tuning thresholds.

We also notice that in other domains, there are exist-
ing works integrating POMDP with trust management for
decision-making (Irissappane, Oliehoek, and Zhang 2014;
Irissappane et al. 2015; Irissappane, Oliehoek, and Zhang
2016). However, they model the trustworthiness of all en-
tities in the system as POMDP states, resulting in a large
state space and thereby not scalable for VANETs. Although
the work in (Irissappane, Oliehoek, and Zhang 2016) tries
to solve the scalability issue by splitting a large state space
into smaller identical subsets, this technique becomes more
complex in the case of VANETs as the subsets might not
be identical. In our model, we only consider the trustworthi-
ness of the sender who sends the current message, thereby
limiting the size of the state space. Further, in the above ap-
proaches the POMDP parameters are manually set, while we
learn the POMDP parameters in our model.

Background

Here we introduce the background on POMDP and describe
a general method to learn its unknown model parameters.

POMDP

Partially Observable Markov Decision Process (POMDP)
can be formulated as a tuple 〈S,A, T,R,Ω, O〉, in which S
is a set of states2; A is a set of actions which cause the tran-
sition of current state s to next state s′; T is the state tran-
sition function specifying the probability distribution over
the next states Pr(s′|s, a) ∀ s′ ∈ S, given the current ac-
tion a and current state s; R is the reward function which
returns the expected reward R(s, a); Ω is a set of observa-
tions obtained after taking an action; O is the observation
function specifying the probability distribution over obser-
vations Pr(o|s′, a) ∀ o ∈ Ω, given a and s′. POMDP main-
tains a belief state b which is a probability distribution over
states. If b(s) represents the probability that the world is in
state s, the updated belief state b′(s′) is calculated every time
any action a is taken and observation o is received,

b′(s′) = Pr(s′|o, a, b) = Pr(o|s′, a)
Pr(o|b, a)

∑
sPr(s′|s, a)b(s)

As Pr(o|b, a) is a normalization factor, the belief update is:

b′(s′) ∝ Pr(o|s′, a)
∑

sPr(s′|s, a)b(s) (1)

A POMDP policy is the mapping from belief state to ac-
tion. The objective of a POMDP model is to find the optimal
policy which can maximize the expected reward. The ex-
pected total reward obtained by executing a policy from a
belief state is specified by a value function, details of which
can be found in (Kaelbling, Littman, and Cassandra 1998).

Bayesian Reinforcement Learning for POMDP

While POMDP provides a principled framework for plan-
ning under uncertainty, the model parameters are of-
ten unknown and need to be learned during interaction
with environment. Bayesian reinforcement learning tech-
niques (Ghavamzadeh et al. 2015) have been studied in lit-
erature to learn these parameters in which Dirichlet distri-
bution is used to maintain a probability distribution over the
possible model parameters.

If Os′a represents the probability distribution over obser-
vations Ω given state s′ and action a, we assume the prior
to be a Dirichlet distribution Dirs

′a(φs′a
oi |i = 1, . . . , |Ω|),

where φs′a
oi is the Dirichlet parameter. The probability that

observation oi is obtained given state s′ and action a can be
computed as (Ross, Chaib-draa, and Pineau 2008):

Pr(oi|s′, a) =
φs′a
oi∑|Ω|

j=1 φ
s′a
oj

(2)

If �hs′a denotes the observation history, i.e., a set of ob-
servations when action a causes a transition to state s′,
then the posterior of Os′a is expressed as a Dirichlet dis-
tribution Dirs

′a(φs′a
oi + N(oi|�hs′a)|i = 1, . . . , |Ω|), where

N(oi|�hs′a) is the number of times observation oi appears in
�hs′a. The probability Pr(oi|s′, a) is then given by,

Pr(oi|s′, a) =
φs′a
oi +N(oi|�hs′a)∑|Ω|

j=1[φ
s′a
oj +N(oj |�hs′a)]

(3)

2We only consider discrete sets of states and observations.
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In general, we do not exactly know the state s′ after receiv-
ing an observation in POMDPs. However, it is to be noted
that in VANETs, state s′ can be determined (after a certain
time period) as ground truth can be obtained from external
sources such as a centralized map system.

System Model

Server is in charge of calculating trustworthiness and issu-
ing certificates for vehicles. The certificate supports identity
verification and information integrity checking (Kargl et al.
2008). It also contains the trustworthiness score3 of the ve-
hicle. The server periodically generates a new certificate for
each vehicle which expires after a given time period. Vehi-
cles can download new certificates when driving by the Road
Side Units (RSUs) (Sun et al. 2010). When exchanging mes-
sages, vehicles attach certificates to prove their identity and
trustworthiness. Note that certificates cannot prevent vehi-
cles from sharing false information.

The server maintains and updates vehicles’ trustworthi-
ness. Vehicles can upload received messages to the server
through RSUs. We assume the server is integrated with a
centralized map service which provides the ground truth
about an event, though with some delay. It then compares
each uploaded message with the ground truth to determine
the trustworthiness of the vehicle sending that message.

Vehicles exchange local event information with their neigh-
bors. Apart from broadcasting event alerts, vehicles (called
requestors) are allowed to query about uncertain events4

from neighbors to gather more information and thereby
make more informed decisions. Vehicles which broadcast
event alerts or reply to queries from neighbors are termed re-
porters. Each vehicle is also equipped with centralized map
service, whose information update can be delayed. However,
it can still provide the true world state, which will be useful
to learn the observation function as explained later.

Information sharing is achieved by broadcasting mes-
sages. The messages can be received by all the vehicles in-
side the communication range of senders. Messages can be
of three types, event alerts, queries or responses to queries.
Each message includes the event location and observed time.
Requestors query an event by including the event location
and time in the query message. The response messages fur-
ther contain reporters’ opinion about the event. Vehicles
close to the event location can directly observe the event and
respond to queries about the event. However, malicious ve-
hicles may send untruthful opinions and even broadcast fake
alerts about nonexistent events. Once a vehicle receives an
alert or response message, it adds the message to a unique
message queue if the event is in future route and will affect
its driving experience. Otherwise, it discards the message.

Proposed POMDP Model

We now present the proposed POMDP model and the algo-
rithm for learning the observation function in the model.

3Though trustworthiness is a continuous value, it is discretized
to fit our POMDP model and use standard POMDP solvers.

4The events have already occurred but are not directly visible.

Model Design

Our POMDP model aids vehicle agents in fast and efficient
decision-making during unforeseen traffic events. It makes
quality decisions in a timely manner using less number of
messages (queries, responses) with neighboring vehicles.
The model maintains a belief, i.e., probability distribution
about whether a traffic event has occurred. It updates this be-
lief by processing the messages about the event. The model
also assumes that the neighboring vehicles can exhibit dif-
ferent behaviors, i.e., truthful, malicious etc., in providing
event information. Based on the event belief, the model then
decides to re-route or stay on the current route.

We consider only a single event per POMDP execution as
it is impossible to decide the number of unforeseen events in
advance. For handling multiple events, we can simply initial-
ize a POMDP for each of them. The POMDP components
are described in detail below.

State The POMDP state s = 〈r, l, f〉 is composed
of variables representing the occurrence of a traffic
event r ∈ {yes, no}, the trustworthiness l ∈ L :
{high,medium, low} of the neighboring vehicle (called
sender) which sent the current message and the freshness
f ∈ F : {fresh, old} of the sender’s trustworthiness value.
Malicious vehicles might use old certificates as their behav-
ior often results in lower trustworthiness value in their new
certificates, which is why freshness is included as a part of
the state space. We only model the trustworthiness of the
sender who sent the current message and perform belief up-
dates based on each message. This avoids the complexity
that arises due to large state space which often results in
scalability issues for POMDP.

Action Our model knows the following actions: 1) query
(Q) for collecting event information from neighbors. Query
action represents checking the unique message queue for
the traffic event. If messages are present, they are retrieved
in First-in-First-out order and serve as observations for our
POMDP model. If the queue is empty, a query message is
broadcast to neighbors; 2) reroute (RE) for changing the
current route in order to avoid the traffic event; 3) ignore
(IG) for ignoring the event and staying on the current route.

State Transition Function The function is formulated as
Pr(s′ = 〈r′, l′, f ′〉|s = 〈r, l, f〉, a). For query action,
r = r′ while l′ and f ′ are unknown before receiving any ob-
servation (by retrieving a message from the message queue).
Since the message queue could be empty and the observation
may not be available immediately, we consider l′ and f ′ to
be uniformly distributed in their space. Thus, the transition
function for query action is given by:

Pr(s′|s,Q) =
δr,r′

|L||F| (4)

δr,r′ is the Kronecker delta which is 1 if r′ = r, and 0 oth-
erwise. The denominator |L||F| represents the uniform dis-
tribution over the trustworthiness and freshness levels.

When reroute or ignore action is performed, the
decision-making process for this event is complete and we
can simply set their transition function as a uniform distri-
bution, Pr(s′|s,RE/IG) = 1

2|L||F| .
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Reward Function Since query message results in re-
source consumption and delays response to event, it incurs
cost R(r,Q). On making a correct decision (i.e., reroute,
when traffic event exists and ignore otherwise), rewards
R(r = yes,RE) and R(r = no, IG) are given, respec-
tively. For a wrong decision (i.e., ignore, when traffic event
exists and reroute otherwise), there are penalties R(r =
no,RE) and R(r = yes, IG).We assume that rewards have
a positive value and penalties have a negative value and there
is more impact when a traffic event occurs (r = yes), thus,

R(r = yes,RE) = −R(r = yes, IG)

R(r = no, IG) = −R(r = no,RE)

|R(r,Q)| < R(r = no, IG) < R(r = yes,RE)

Observation The received alerts and response messages
are the observations in our model. As each message con-
tains the sender’s opinion about the traffic event, the trust-
worthiness of sender and the time stamp indicating when
the trustworthiness is updated (which determines the fresh-
ness level of trustworthiness), the observation is denoted as
a tuple o = 〈or, ol, of 〉 where or ∈ {yes, no} is the sender’s
opinion about the traffic event, ol ∈ L is the sender’s trust-
worthiness and of ∈ F is the freshness of trustworthiness.

Observation Function In our model, we assume full ob-
servability on the trustworthiness of sender and its freshness
as they are values contained in the certificate. Only the oc-
currence of the traffic event, i.e., r is partially observable.
We formulate our observation function to reflect this. For
the query action Q,

Pr(〈or, ol, of 〉|〈r′, l′, f ′〉, Q) (5)

= δol,l′ · δof ,f ′ · Pr(or|〈r′, ol, of 〉)
where the Kronecker delta δol,l′ = 1, if ol = l′ and
δof ,f ′ = 1 if of = f ′. Their value is 0, otherwise.
Pr(or|〈r′, ol, of 〉) represents the probability that the sender
responds with the opinion or given the ground truth about
the event r′ and (ol, of ). It is to be noted that neighboring ve-
hicles with the same trustworthiness and freshness levels can
have different Pr(or|〈r′, ol, of 〉) values. Our model consid-
ers the observation function to represent the behavior of all
neighboring vehicles rather than one single vehicle. Further,
Pr(or|〈r′, ol, of 〉) in the observation function is unknown
and needs to be learned. For reroute and ignore action, we
set their observation function as uniform distribution as they
do not contribute in gathering event information.

Belief Update

Given the observation o = 〈or, ol, of 〉, current state s =
〈r, l, f〉 and the next state s′ = 〈r′, l′, f ′〉, the belief update
based on Eqn. 1 is given by,

b′(〈r′, l′, f ′〉) ∝ Pr(o|s′, Q)
∑

sPr(s′|s,Q)b(s)

From Eqn. 5, Pr(o|s′, Q) = 0, when l′ �= ol or f ′ �= of .
Thus b′(〈r′, l′, f ′〉) = 0 for the same cases. Let b′(r′) denote

the next belief on r′, we have:

b′(r′) =
∑

l′∈L,f ′∈F
b′(〈r′, l′, f ′〉) = b′(〈r′, ol, of 〉)

b′(r′) ∝ Pr(or|〈r′, ol, of 〉)
∑

sPr(s′|s,Q)b(s)

Substituting Eqn. 4 and note the δr,r′ , we further have,

∑
s

Pr(s′|s,Q)b(s) =
∑

l∈L,f∈F

1

|L||F|b(〈r
′, l, f〉) (6)

b(〈r′, l, f〉) �= 0, when l = lp and f = fp, where lp and
fp denote the trustworthiness and freshness of the previous
message sender. Thus,

∑
s

Pr(s′|s,Q)b(s) =
1

|L||F|b(〈r
′, lp, fp〉) (7)

If b(r′) is the current belief on r′,

b(r′) =
∑

l∈L,f∈F
b(〈r′, l, f〉) = b(〈r′, lp, fp〉)

Substituting for b(〈r′, lp, fp〉) in Eqn. 7,

∑
s

Pr(s′|s,Q)b(s) =
1

|L||F|b(r
′)

Thus the belief update is given by:

b′(r′) ∝ Pr(or|〈r′, ol, of 〉) · b(r′) (8)

Note that Eqn. 8 is actually Bayesian inference. Therefore,
our POMDP model implicitly incorporates Bayesian infer-
ence along with the decision-making process.

Learning the Observation Function

Existing methods for learning the POMDP parameters try
to improve learning speed and lower approximation er-
ror (Ghavamzadeh et al. 2015). However, most of them as-
sume the POMDP model to be stationary and thus are not
suitable for VANETs, as neighboring vehicles change with
time and hence their behavior model (represented by the ob-
servation function) also changes. Existing works need longer
learning periods to override historical data before adapting
to the changed model. To address this issue, more impor-
tance can be given to recent experience (Jaulmes, Pineau,
and Precup 2005), however, doing so will ignore valuable
history information which could be useful in settings where
malicious vehicles change their behavior frequently.

Here, we propose Algorithm 1 to learn the obser-
vation function in our POMDP model under dynamic
conditions where the behavior of neighboring vehicles
changes. We know from Eqn. 5 that learning the observa-
tion function implies learning the probability distribution
Pr(or|〈r′, ol, of 〉). For each s′ = 〈r′, ol, of 〉, we use a
Dirichlet distribution Dirs

′
(φs′

or , or ∈ {yes, no}) to main-
tain the prior over Pr(or|s′). Note that the Dirichlet distri-
bution here is actually a Beta distribution since or only has

4649



1 Initialize model Pcur , history set H and time window W .
2 while driving do
3 if new experience e is received then

4 Initialize a new Dirichlet distribution Dirs
′
(φs′

or )
and compute its posterior using e;

5 Compute �ve from Dirs
′
(φs′

or ) (Eqn. 9) and add it
to H;

6 Cluster the vectors in H using K-Means;
7 Find the cluster C which contains �ve;
8 Find its cluster center C̄;
9 Initialize a POMDP model P with observation

function as C̄;
10 Set Pcur to be P ;

Algorithm 1: Learning the Observation Function

two possible values. Given the observation history �hs′ , the
posterior Pr(or|s′) can be computed by,

Pr(or|s′) =
φs′
or +N(or|�hs′)∑|Ω|

j=1[φ
s′
oj +N(oj |�hs′)]

(9)

To handle behavior change, we periodically collect obser-
vation histories. Vehicles know the ground truth about the
occurrence of traffic event from the centralized map service
after some delay. The observations obtained in the form of
responses and alerts from neighboring vehicles as well as
the ground truth from the centralized map service are gath-
ered over a stipulated time period and constitute event ex-
perience. Each experience forms a set of observation his-
tories {�hs′ |∀s′ ∈ S} and is used to formulate the poste-
rior {Pr(or|s′)|or ∈ {yes, no}, ∀s′ ∈ S} for that time pe-
riod. With time, vehicles gather a set of experience, using
which the Pr(or|s′) for every time period is determined.
As Pr(or = no|s′) = 1 − Pr(or = yes|s′), the set
{Pr(or|s′)|or ∈ {yes, no}, ∀s′ ∈ S} can be sufficiently
represented using a vector �ve = {Pr(or = yes|s′)|∀s′ ∈
S}, and the vector length |�ve| equals to the size of state space
which is 2|L||F|. Thus, we will obtain �ve for each experi-
ence e gathered in every time period. We then use K-Means
clustering to cluster �ve across different time periods based on
Euclidean distance. Doing so allows us to determine the re-
current behavior patterns of neighboring vehicles. Once the
clusters are formed, we locate the cluster C which contains
�ve representing the most recent experience/time period. This
cluster represents the current behavior pattern of neighbors.
Though this cluster might not be the representative of neigh-
bors who change their behavior immediately after the most
recent experience was collected, this scenario is rare.

If V denotes vectors �ve in C, and {P̂ r(yes|s′)|∀s′ ∈ S}
is the vector derived based on the most recent experience,
the cluster center C̄ can be computed as:

C̄ =
{∑|V|

i=1 Pri(yes|s′) · |�hs′
i | ·ΔPi∑|V|

i=1 |�hs′
i | ·ΔPi

, ∀s′ ∈ S
}

(10)

where ΔPi = 1 −
√
|Pri(yes|s′)− P̂ r(yes|s′)|. C̄ rep-

resents the current observation function. It can be used to

initialize a new POMDP model which will be able to han-
dle the current set of neighbors. |�hs′

i | in Eqn. 10 normalizes
the effect of observation histories of different length. ΔPi

degrades the effect of vectors which are not that similar to
{P̂ r(yes|s′)|∀s′ ∈ S}. This is meaningful when the pre-
set cluster number is small and thereby the vectors clustered
into the same cluster might not be very similar.

The details of Algorithm 1 are described as follows. Let
Pcur be the POMDP model whose optimal policy is exe-
cuted to obtain a new experience for the current time period,
H be the set of vectors {�ve} collected across all time pe-
riods and W denote the time window, i.e., length of each
time period. When new experience is obtained, the corre-
sponding �ve is derived (lines 4-5), after which the K-Means
algorithm is used to determine the clusters (line 6). Each
identified cluster corresponds to a behavior pattern. We lo-
cate the cluster which contains the recent �ve, initialize a new
POMDP model with the new observation function computed
using Eqn. 10, and set Pcur as the new model (line 7-10)
which advises all the actions to be taken in the next time win-
dow. Note that this algorithm requires initializing a POMDP
model and computing its optimal policy periodically. This is
practical only when the model state space is small, and our
design satisfies this condition.

Experiments

We conduct extensive experiments to compare the perfor-
mance of our POMDP approach with threshold-based trust
schemes in terms of decision quality and cost/delay under
static behavior settings. Also, we analyze the robustness of
our proposed algorithm for learning observation function
under dynamic behavior settings.

Simulation Setup

We evaluate our POMDP model using the Veins simula-
tor (Sommer, German, and Dressler 2011), which combines
OMNeT++ for vehicle-to-vehicle communication simula-
tion, and SUMO for road traffic microsimulation. We pe-
riodically set the speed of some vehicles to zero in order
to mimic traffic accidents. When a vehicle is close enough
(25 meters) to an event location, we deem that the vehicle
has directly observed the event and can broadcast alerts or
responses. We also add trust management function to the
Scenario Manager of Veins simulator to make it behave as
server. The initial trustworthiness value of vehicles is 0.5.
In POMDP, we regard the trustworthiness as high when its
value is larger than 0.8, low when the value is less than 0.3
and medium otherwise. The freshness is fresh if the trust-
worthiness is updated within 30 seconds (s) and old other-
wise. The values for rewards used in our experiments are:
R(r = yes,RE) = −R(r = yes, IG) = 30, R(r =
no, IG) = −R(r = no,RE) = 20 and R(r,Q) = 1. We
set R(r,Q) = 1 to encourage query when the event belief
is highly uncertain. 210 vehicles join the simulation within
120s and ten of them are used to mimic accidents. When a
vehicle arrives its destination, it will choose a new random
destination. Therefore, each vehicle is active until the simu-
lation ends. Averagely, there is one accident every 35s and
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p = 0.5, mp = 0.2

p = 0.5, mp = 0.4

p = 1, mp = 0.4

Figure 1: Performance Evaluation under Static Behavior

each accident lasts about 120∼180s. The ground truth up-
date delay from centralized map service is set to 60s.

Our POMDP model is compared with Dempster-Shafer
Theory (DST) and Bayesian inference (BI) (Raya et al.
2008) and reputation-based announcement (RBA) (Li et al.
2012). (Raya et al. 2008) maintains two beliefs for each
event, i.e., br: event happens and bf : event does not happen.
For (Raya et al. 2008), we compare the difference between
br and bf , i.e., |br−bf |, with the threshold to decide whether
to re-route or not. In RBA, we use the sender’s trustworthi-
ness as well as a time-decay factor to make the decision.
We use SARSOP (Kurniawati, Hsu, and Lee 2008) to com-
pute the POMDP policy. K-means clustering is performed
by Cluster 3.0 software5. We evaluate the decision-making
performance under both static and dynamic scenarios.

The evaluation metrics are: 1) precision: TP
TP+FP where

TP is true positive, means how many times vehicles re-
route when events exist and FP is false positive, means how
many times vehicles re-route when events are fake; 2) re-
call: TP

TP+FN where FN is false negative, means how many
times vehicles ignore when events exist; 3) decision cost:
how many messages are processed before making each deci-
sion; 4) decision delay: how long a vehicle needs to make de-
cision after receiving the first message about a certain event.

Malicious Behaviors

In our simulation, we have considered both static and dy-
namic malicious behaviors described as follows.

5http://bonsai.hgc.jp/∼mdehoon/software/cluster/software.htm

Static: Vehicles report truthful opinions with probability
p and lie with probability (1−p). The probability p does not
change with time.

DynamicI: Malicious vehicles report truthful opinions un-
til their trustworthiness value reaches high, after which they
provide complementary opinions.

DynamicII: Similar to DynamicI, vehicles can report
truthful opinions only when their trustworthiness is low.

The update of trustworthiness is set as: vehicles will up-
date their trustworthiness in a long interval (60s) if they
have lied recently while they will update trustworthiness fre-
quently (every 20s) if they have reported truth.

Static Behavior Scenario

In the static scenario, we have evaluated the performance
when malicious vehicles exhibit Static behavior with p =
0.5 and p = 1, and the percentage of malicious vehicles
mp is 0.2 and 0.4. The overall driving period is 3600s. The
results are as shown in Fig. 1. The performance of threshold-
based schemes is evaluated under different thresholds. How-
ever, since there is no threshold setting in POMDP, we eval-
uate the results under different time windows. Thus, the x-
axis is threshold being from 0.1 to 0.8 for threshold-based
schemes and time window W being from 10s to 80s for
POMDP. We set the cluster number of K-Means clustering
as 1 for this scenario, i.e. POMDP learns the observation
function without detecting behavior patterns.

The Fig. 1 shows that in all the three cases, RBA, BI and
DST have low precision and high recall when setting a low
threshold. This is because a low threshold value allows high
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(a) (b)

Figure 2: The Warm Up Period in POMDP (W = 60s)

uncertainty about event occurrence and vehicles choose to
re-route most of the time, i.e. large FP and low FN . When
the threshold increases, these schemes seek more messages
to reduce uncertainty, and thus have high precision. How-
ever, high threshold also incurs more cost/delay for DST and
RBA especially when mp is large. Compared to threshold-
based schemes, POMDP has the lowest cost/delay under dif-
ferent time windows and different behavior settings. Our
POMDP model is more efficient because it uses Bayesian
theory to update belief. The opinion from the vehicles with
low trustworthiness will strengthen the belief about the op-
posite of that opinion, i.e. false information also contributes
to event belief. Thus, POMDP often just needs one or two
messages to achieve high event belief. BI has the second
lowest cost/delay due to the same reason.

For decision quality, the POMDP solution has the lowest
recall and lower precision when the threshold of DST and
RBA is high. This is due to the high FN and FP which
occur at the beginning of simulation (called warm up pe-
riod). In specific, at the beginning, the trustworthiness of be-
nign and malicious vehicles are both (medium, fresh) while
malicious vehicles send lots of fake alerts. Thus, the true
information from benign vehicles seems untrustworthy and
makes vehicles believe in the opposite since POMDP up-
dates belief with Bayesian theory. This effect will disappear
after benign and malicious vehicles have different trustwor-
thiness and POMDP learns the Pr(or|s′) given different
s′. We collect precision and recall data in every 120s and
show this process in Fig. 2. It shows that recall and preci-
sion increase to a high value with time. While different mp
and p settings affect this increasing speed, the trend is the
same, i.e. POMDP can handle malicious behavior very well
through learning. Thus, the decision quality of POMDP is
actually at least as good as threshold-based schemes if leav-
ing out the warm up period. Overall, our model has the same
if not better decision quality than threshold-based schemes
while its decision cost/delay is lowest.

Dynamic Behavior Scenario

In this section, we evaluate the performance of our POMDP
model under dynamic behavior setting. In specific, we set
the overall simulation period as 6000s, and the precision, re-
call and cost data are collected every 150s. The percentage
of malicious vehicles mp is set as 0.3. Malicious vehicles ex-
hibit Static behavior with p = 1 till 2000s, after which they

(a) (b)

Figure 3: Decision Quality under Dynamic Behavior

Figure 4: Cost under Dynamic Behavior

exhibit DynamicII behavior until 4000s. Then they change
the behavior to DynamicI after that. We have tested the per-
formance when cluster number equals to 1, 2, 3, and 5. The
time window W is set to 60s. The results about precision
and recall are as shown in Fig. 3. From Fig. 3a, we can ob-
serve that when simulation time is around 2000s, the recall
value decreases significantly. This is because the malicious
vehicles with low trustworthiness start to tell truth, which is
totally opposite to their previous behavior. Therefore, when
malicious vehicles report a true event, other vehicles will ig-
nore it and FN increases. Comparing the different cluster
numbers, it can be observed that recall recovers fast when
adopting clustering while POMDP needs more time to adapt
to new behavior without clustering. When simulation time
reaches 4000s, malicious vehicles change behavior to Dy-
namicI. However, the influence is limited because most of
the malicious vehicles do not have high trustworthiness at
that time and they will keep telling truth, which is similar to
their previous behavior. From Fig. 3b, we can find that af-
ter first behavior change, the POMDP with cluster number
being 5 starts to have low precision. This is because the clus-
ter number is too large for the existing experience, i.e. each
cluster only has several vectors. In this case, the learning
algorithm can not catch the current behavior appropriately.
This implies that the setting of cluster number should fit with
the amount of experience.

The cost of POMDP under dynamic behavior is as shown
in Fig. 4. It indicates that during warm up period, the cost of
POMDP is relatively high. After that period, the cost of the
POMDP with cluster number being 1, 2, and 3 is close to 1
even under behavior change. For the POMDP setting cluster
number as 5, its cost starts to increase after the first behavior
change due to failing to learn the behavior pattern correctly.
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Conclusion and Future Work

This work proposes a POMDP-based approach to assist ef-
ficient decision-making for handling unforeseen events in
VANETs. The POMDP model optimally queries informa-
tion about uncertain events from neighboring vehicles while
taking into account their malicious behavior. It better trades
off the decision quality and the cost/delay incurred during
information collection compared to the heuristic threshold-
based schemes. This work also considers the realistic setting
where the observation function representing the behavior of
neighbors needs to be learned and proposes a learning al-
gorithm that can handle dynamic scenarios where malicious
vehicles change their behavior from time to time. Experi-
ments demonstrate that the proposed POMDP approach can
make decisions faster without sacrificing quality. The exper-
iments under dynamic scenario verify that the learning al-
gorithm can learn the observation function efficiently while
still handling behavior change effectively.

As future work, we will conduct experiments with other
kinds of sophisticated malicious behavior as well as in-
clude factors such as time, location, etc., while designing our
POMDP model state. We will also explore the possibility of
including dynamic reward functions.
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