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Abstract

Lu and Boutilier (2011) proposed a novel approach based on
“minimax regret” to use classical score based voting rules in
the setting where preferences can be any partial (instead of
complete) orders over the set of alternatives. We show here
that such an approach is vulnerable to a new kind of manip-
ulation which was not present in the classical (where pref-
erences are complete orders) world of voting. We call this
attack “manipulative elicitation.” More specifically, it may be
possible to (partially) elicit the preferences of the agents in a
way that makes some distinguished alternative win the elec-
tion who may not be a winner if we elicit every preference
completely. More alarmingly, we show that the related com-
putational task is polynomial time solvable for a large class
of voting rules which includes all scoring rules, maximin,
Copelandα for every α ∈ [0, 1], simplified Bucklin voting
rules, etc. We then show that introducing a parameter per pair
of alternatives which specifies the minimum number of partial
preferences where this pair of alternatives must be compara-
ble makes the related computational task of manipulative elic-
itation NP-complete for all common voting rules including a
class of scoring rules which includes the plurality, k-approval,
k-veto, veto, and Borda voting rules, maximin, Copelandα for
every α ∈ [0, 1], and simplified Bucklin voting rules. Hence,
in this work, we discover a fundamental vulnerability in using
minimax regret based approach in partial preferential setting
and propose a novel way to tackle it.

1 Introduction

Aggregating preferences of a set of agents over a set of al-
ternatives is a fundamental problem in voting theory which
has been used in many applications in AI for making various
decisions. Prominent examples of such applications include
collaborative filtering (Pennock, Horvitz, and Giles 2000),
similarity search (Fagin, Kumar, and Sivakumar 2003), win-
ner determination in sports competitions (Betzler, Bred-
ereck, and Niedermeier 2014), etc. (Moulin et al. 2016). In a
typical scenario of voting, we have a set of alternatives, a tu-
ple of “preferences”, called a profile, over the set of alterna-
tives, and a voting rule which chooses a set of alternatives as
winners based on the profile. Classically, preferences are of-
ten modeled as complete orders over the set of alternatives.
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However, in typical applications of voting in AI, collabora-
tive filtering for example, the number of alternatives is huge
and we have only partial orders over the set of alternatives
as preferences.

There have been many attempts to extend the use of vot-
ing theory in settings with incomplete preferences. The ap-
proach of Konczak and Lang (2005) was to study the possi-
ble and necessary winner problems. In these problems, the
input is a profile of partial preferences and we want to com-
pute the set of alternatives who wins (under some fixed vot-
ing rule) in at least one completion of the profile for the pos-
sible winner problem; for the necessary winner problem, we
want to compute the set of alternatives who wins in every
completion of the profile. There have been substantial re-
search effort in the last decade to better understand these two
problems (Lang et al. 2007; Pini et al. 2007; Walsh 2007;
Xia and Conitzer 2011; Betzler, Hemmann, and Nieder-
meier 2009; Chevaleyre et al. 2010; Betzler, Bredereck,
and Niedermeier 2010; Baumeister, Roos, and Rothe 2011;
Lang et al. 2012; Faliszewski et al. 2014; Dey, Misra, and
Narahari 2016b; 2016a; 2017; 2015; Dey and Misra 2017).
One of the main criticisms of this approach is that the def-
inition of a necessary winner is so strong that none of the
alternatives may satisfy it whereas the definition of a possi-
ble winner is so relaxed that a large number of alternatives
may satisfy it. Moreover, the computational problem of find-
ing the set of possible winners is NP-hard for most of the
common voting rules (finding the set of necessary winners
is also co-NP-hard for some voting rules, ranked pairs for
example) (Xia and Conitzer 2011).

Lu and Boutilier (2011) took a completely different ap-
proach to handle incomplete preferences and proposed a
worst case regret based approach for score based voting
rules. These voting rules assign some score to every alter-
native based on the profile and select the alternatives with
the maximum (or minimum) score as winners. Many popular
voting rules, for example, scoring rules, maximin, Copeland,
etc. are score based voting rules. For score based voting
rules, intuitively speaking, the worst case regret, called max-
imum regret in (Lu and Boutilier 2011), of declaring an al-
ternative w as a winner is the maximum possible difference
between the score of w and the score of a winning alternative
in any completion of the input partial profile; the winners of
a partial profile are the set of alternatives with the minimum
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maximum (called minimax) regret. A completion of a partial
profile is another profile where every preference is complete
and it respects the orderings of the corresponding preference
in the partial profile. The minimax regret based approach is
not only theoretically robust as argued in (Lu and Boutilier
2011) but also practically appealing since computing win-
ners is polynomial time solvable for all commonly used vot-
ing rules.

1.1 Motivation

Although the minimax regret based approach enjoys many
exciting features, it introduces a new (which was not present
in the classical setting with complete preferences) kind of
attack on the election which we call “manipulative elicita-
tion.” That is, it may be possible to partially elicit the pref-
erences in such a way that makes some favorable alterna-
tive win the election. For example, let us consider a plurality
election E where an alternative, say w, is the top alternative
of one preference and another alternative, say x, is the top
alternative of every other preference. In a plurality election,
the winners are the set of alternatives who appear as the top
alternative in the largest number of preferences. Hence, x is
the unique winner in E . Let us now consider a partial profile
where, in every partial preference, only w and every other
alternative who is preferred less than w in the correspond-
ing preference in E are comparable. Let us call the resulting
partial profile E ′. If n is the number of preferences, then the
minimax regret plurality score of w in E ′ is (n− 1) whereas
the minimax regret plurality score of every other alternative
is n which makes w the unique winner of E ′. We call this
phenomenon manipulative elicitation. The problem of ma-
nipulative elicitation is even more alarming in AI since, in
many applications (collaborative filtering for example), the
parts of the preferences that will be elicited can often be in-
fluenced and controlled in such settings.

1.2 Our Contribution

Our main contribution in this paper is the discovery of the
manipulative elicitation attack in regret based partial prefer-
ential setting. We also show that the corresponding compu-
tational problem for manipulative elicitation is polynomial
time solvable for every monotone voting rule which includes
all commonly used score based voting rules [Theorem 1
and Corollary 1]. Intuitively speaking, we call a score based
voting rule monotone if improving the position of some al-
ternative in any (complete) preference can only improve its
score; we defer its formal definition till Section 2. To counter
the negative result of Theorem 1, we introduce a parameter
per pair of alternatives which specifies the minimum number
of partial preferences where these two alternatives should be
comparable. We establish success of our approach by show-
ing that the new constraints make the corresponding com-
putational task of manipulative elicitation NP-complete for
a large class of scoring rules [Theorem 2] which includes
the plurality [Theorem 3], veto [Theorem 4], k-approval for
any k, and Borda voting rules [Corollary 2], maximin [The-
orem 5], Copelandα for every α ∈ [0, 1] [Theorem 6], and
simplified Bucklin [Theorem 7] voting rules. We remark that
there could be various ways to enforce lower bounds on the

number of partial preferences where a particular pair of al-
ternatives is comparable. For example, this can be a fea-
ture in the applications which would allow users to gen-
erate these bounds from some distribution which would in
turn overrule the possibility of such manipulation (due to
our hardness results).

2 Preliminaries and Problem Formulation

For a positive integer k, we denote the set {1, 2, . . . , k}
by [k]. Let A = {ai : i ∈ [m]} be a set of m alterna-
tives. We denote the set of all subsets of A of cardinality
2 by

(A
2

)
. A complete order over the set A of alternatives

is called a (complete) preference. We say that an alterna-
tive a ∈ A is placed at the �th position (from left or from
top) in a preference � if |{b ∈ A : b � a}| = � − 1.
We denote the set of all possible preferences over A by
L(A). A tuple �= (�i)i∈[n] ∈ L(A)n of n preferences
is called a profile. An election E is a tuple (�,A) where
� is a profile over a set A of alternatives. If not men-
tioned otherwise, we denote the number of alternatives and
the number of preferences by m and n respectively. A map
rc : �n,|A|∈N+L(A)n −→ 2A \ {∅} is called a voting rule.
Given an election E , we can construct from E a directed
weighted graph GE which is called the weighted majority
graph of E . The set of vertices in GE is the set of alternatives
in E . For any two alternatives x and y, the weight of the edge
(x, y) is DE(x, y) = NE(x, y) −NE(y, x), where NE(a, b)
is the number of preferences where the alternative a is pre-
ferred over the alternative b for a, b ∈ A, a �= b. Examples
of some common voting rules are as follows.
�Positional scoring rules: An m-dimensional vector α =
(α1, α2, . . . , αm) ∈ N

m with α1 � α2 � . . . � αm and
α1 > αm for every m ∈ N naturally defines a voting rule —
an alternative gets score αi from a preference if it is placed at
the ith position, and the score of an alternative is the sum of
the scores it receives from all the preferences. The winners
are the alternatives with the maximum score. Scoring rules
remain unchanged if we multiply every αi by any constant
λ > 0 and/or add any constant μ. Hence, we can assume
without loss of generality that for any score vector α, we
have gcd((αi)i∈[m]) = 1 and there exists a j < m such that
α� = 0 for all � > j. We call such an α a normalized score
vector. If αi is 1 for i ∈ [k] and 0 otherwise, then, we get the
k-approval voting rule. The k-approval voting rule is also
called the (m − k)-veto voting rule. The 1-approval voting
rule is called the plurality voting rule and the 1-veto voting
rule is called the veto voting rule. If αi = m − i for every
i ∈ [m], then we get the Borda voting rule.
�Maximin: The maximin score of an alternative x is
miny �=xNE(x, y). The winners are the alternatives with the
maximum maximin score.
�Copelandα: Given α ∈ [0, 1], the Copelandα score of an
alternative x is |{y �= x : DE(x, y) > 0}| + α|{y �= x :
DE(x, y) = 0}|. The winners are the alternatives with the
maximum Copelandα score.
�Simplified Bucklin: An alternative x’s simplified Bucklin
score is the minimum number � such that x is placed within
the top � positions in more than half of the preferences. The
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winners are the alternatives with the lowest simplified Buck-
lin score.

We call a voting rule “score based” if the voting rule
assigns some score to every alternative based on the pro-
file and chooses either the set of alternatives with the maxi-
mum score or the set of alternatives with the minimum score
as winners. All the above mentioned voting rules are score
based. We say that a score based voting rule s is monotone
if, for every positive integer n, every two profiles (�i)i∈[n]

and (�′
i)i∈[n] over any finite setA of alternatives, and every

alternative x ∈ A such that {y ∈ A : x �i y} ⊆ {y ∈
A : x �′

i y} for every i ∈ [n], we have s(x, (�i)i∈[n]) �
s(x, (�′

i)i∈[n]). We call a voting rule r neutral if, for every
positive integer n, every profile (�i)i∈[n] over any finite set
A = {xi : i ∈ [m]} of m alternatives, and every permuta-
tion σ of [m], we have σ(r((�i)i∈[n])) = r((σ(�i))i∈[n])
where σ(�i) = xσ(1) � xσ(2) � · · · � xσ(m) if �i= x1 �
x2 � · · · � xm. We call a voting rule worst efficient if the
worst possible score with n preferences over m alternatives
can be computed in a polynomial (in m and n) amount of
time. We observe that all the voting rules mentioned above
are neutral, worst efficient, and monotone if, for the case
of simplified Bucklin voting rule, we replace the simplified
Bucklin score with negative of that and choose the alterna-
tive with the maximum score.

2.1 Incomplete Election and Minimax Regret
Extension of Score Based Voting Rules

Although preferences are classically modeled as complete
orders, in many scenarios, preferences can be any partial or-
der over A. We often denote a partial order R by the set
{(a, b) : a, b ∈ A, aRb}. Given a profile P of partial pref-
erences (which we call a partial profile), we denote the set
of all completions of P to complete orders by C(P). Lu and
Boutilier (2011) proposed a novel approach to extend the use
of score based voting rules for settings with partial profiles
based on a notion of regret. Let s be a score based voting
rule so that the winner is an alternative with the maximum
score. Positional scoring rules, maximin, Copelandα for ev-
ery α ∈ [0, 1], etc. are prominent examples of such score
based voting rules. Let us denote the score that a score based
voting rule s assigns to an alternative a ∈ A in a profile
�∈ L(A)n by s(a,�). We denote the minimax regret vot-
ing rule based on a voting rule s by s. For a profile �, let
s(�) = argmaxa∈A{s(a,�)}. Given a partial profile P and
a score based rule s, s(P) is defined as follows.

s−Regret(a,�) = |s(s(�),�)− s(a,�)|
s−MR(a,P) = max

�∈C(P)
s−Regret(a,�)

s(P) = argmin
a∈A

s−MR(a,P)

For a partial profile P and a minimax regret (MR for
short) voting rule s, we say that an alternative a ∈ A co-
wins if a ∈ s(P) and wins uniquely if s(P) = {a}. For an
alternative a ∈ A, if s −MR(a,P) = s − Regret(a,�)
for some �∈ C(P), then we call an alternative in s(�) a
competing alternative of a in P .

We now formally define manipulative elicitation and the
basic computational problem of manipulative elicitation for
a score based voting rule s.

Definition 1 (s-manipulative elicitation). For a profile �
over a set A of alternatives, we say that a partial pro-
file P is called a manipulative elicitation if �∈ C(P) and
s(P) = {c}.
Definition 2 (s-MANIPULATIVE ELICITATION). Given a
set A of alternatives, a profile �∈ L(A)n of n preferences,
and an alternative c ∈ A, compute if there exists a partial
profile P such that �∈ C(P) and s(P) = {c}?

We will see in Theorem 1 that the s-MANIPULATIVE
ELICITATION problem is polynomial time solvable for ev-
ery neutral, monotone, and worst efficient score based voting
rule. This shows that all the commonly used voting rule con-
sidered here are vulnerable under manipulative elicitation. In
the hope to counter this drawback, we extend the basic prob-
lem in Definition 2 to MANIPULATIVE ELICITATION WITH
CANDIDATE PAIR LIMIT in Definition 3. We will indeed see
in Section 4 that the MANIPULATIVE ELICITATION WITH
CANDIDATE PAIR LIMIT problem is NP-complete for all
the voting rules that we consider in this paper. For a partial
profile �= (�i)i∈[n] and {a, b} ∈ (A

2

)
, we denote the num-

ber of partial preferences in� where a and b are comparable
by p{a,b}(�).
Definition 3 (s-MANIPULATIVE ELICITATION WITH CAN-
DIDATE PAIR LIMIT). Given a set A of alternatives, a pro-
file �∈ L(A)n of n voters, a function f :

(A
2

) −→ N such
that 0 � f({a, b}) � n for every {a, b} ∈ (A

2

)
, and an alter-

native x ∈ A, compute if there exists a partial profile P such
that�∈ C(P), f({a, b}) � p{a,b}(�) for every {a, b} ∈ (A

2

)

and s(P) = {x}?
We remark that both the computational problems in Defi-

nition 2 and 3 have been defined for the unique winner case;
we could as well define these problems for the co-winner
case also. It turns out that all our proofs (except Theorem 1)
can be easily modified for the co-winner counterpart and our
choice for defining these problems in the unique winner set-
ting is only a matter of exposition.

3 Polynomial Time Algorithm for

MANIPULATIVE ELICITATION

Our first result is Theorem 1 which shows that the MANIPU-
LATIVE ELICITATION problem is polynomial time solvable
for a large class of voting rules.

Theorem 1. The MANIPULATIVE ELICITATION problem is
polynomial time solvable for every monotone, neutral, and
worst efficient score based voting rule s.

Proof. Let (A,�= (�i)i∈[n], c) be an arbitrary instance of
s-MANIPULATIVE ELICITATION. Our algorithm is as fol-
lows. If c receives the worst possible score in �, then we
output NO; otherwise we output YES. Our algorithm runs
in polynomial time since s is worst efficient. To prove the
correctness of our algorithm, we begin with Claim 1 below.
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Claim 1. If the score of c in � is the worst possible
score (say βn) that any alternative in A can possibly re-
ceive in any profile with n preferences under s, then the s-
MANIPULATIVE ELICITATION instance is a NO instance.

Proof. Suppose not, then let us assume that R = (Ri)i∈[n]

be a partial profile such that �∈ C(R) and s(R) = {c}. Let
s−MR(c,R) = s(s(�′),�′)−s(c,�′) for some�′= (�′

i
)i∈[n] ∈ C(R). We now claim the following.

Claim 2. s(c,�′) = βn.

Proof. The idea of the proof is that if s(c,�′) > βn, then we
can construct another profile which can be used to calculate
worse regret for c than �′ and this will contradict the choice
of �′. Formally, let us define another profile �̄ = (�̄i)i∈[n]

where �̄i is obtained from�′
i by “moving” c immediately to

the right of the alternatives that are on the left of c in either
�′

i or �i for i ∈ [n]; that is, for every i ∈ [n], �̄i is defined
as follows.

�̄i = {(a, b) : a, b ∈ A \ {c}, a �′
i b}

∪ {(c, a) : a ∈ A, c �′
i a, c �i a}

∪ {(a, c) : a ∈ A, a �′
i c or a �i c}

The profile �̄ ∈ C(R) since �∈ C(R) and �′∈ C(R).
Due to monotonicity of s, the score of c in �̄ is at most the
score of c in �′ and the score of every other alternative in
�̄ is at least their score in �′. However, �′ has been used
to calculate the MR score of c under s. Hence, we have the
following:

s(s(�′),�′) = s(s(�̄),�′), s(c,�′) = s(c, �̄)
We now have the following:

βn � s(c,�′) = s(c, �̄) � s(c,�) = βn

The first inequality follows from the definition of βn and the
second inequality follows from monotonicity of s.

Let y ∈ s(�′) and s − MR(y,R) = s(s(�′′),�′′) −
s(y,�′′) for some �′′= (�′′

i )i∈[n] ∈ C(R). We now have
the following claim.

Claim 3. s(s(�′′),�′′) � s(s(�′),�′)

We now combine Claim 2 and 3 as follows to prove the
main claim.

s−MR(y,R) = s(s(�′′),�′′)− s(y,�′′)

� s(s(�′),�′)− s(y,�′′)

� s(s(�′),�′)− βn

= s(s(�′),�′)− s(c,�′)
= s−MR(c,R)

The second line follows from Claim 3, the third line fol-
lows from the definition of βn, and the fourth line follows
from Claim 2. Hence we have s − MR(y,R) � s −
MR(c,R) which contradicts our assumption that s(R) =
{c}.

We now show that if c does not receive the worst possible
score with n preferences over A under s from the profile
�, then the instance is a YES instance. To see this, let us
consider the partial profile P = (Pi)i∈[n] as Pi = {c � y :
c �i y} for every i ∈ [n]. Let R be any profile in C(P).
Since, the alternative c does not receive the worst possible
score with n preferences over A under s from the profile �,
s(c,R) < βn. Hence, if α is the best possible score with
n preferences over A under s, we have s − MR(c,P) <
α− βn. On the other hand, for any alternative y ∈ A \ {c},
let us consider the profile Qy = (Qi)i∈[n] where Qi = c �
· · · � y for every i ∈ [n]. Now due to monotonicity of s,
we have s(c,Qy) = α and s(y,Qy) = βn. Hence, we have
s −MR(y,P) = α − βn for every y ∈ A \ {c} and thus
s(P) = {c}.

We remark that the proof of Theorem 1 for the co-winner
case is trivial: every instance is a YES instance since a partial
profile where every preference is empty makes every alter-
native win due to neutrality. Since scoring rules, maximin,
Copelandα for every α ∈ [0, 1], and simplified Bucklin vot-
ing rules are monotone, neutral, and worst efficient, Theo-
rem 1 immediately implies the following corollary.
Corollary 1. The MANIPULATIVE ELICITATION problem
is polynomial time solvable for scoring rules, maximin,
Copelandα for every α ∈ [0, 1], and simplified Bucklin vot-
ing rules.

4 Hardness Results for MANIPULATIVE

ELICITATION WITH CANDIDATE PAIR

LIMIT

In this section we show that the MANIPULATIVE ELICI-
TATION WITH CANDIDATE PAIR LIMIT problem is NP-
complete for maximin, Copelandα for every α ∈ [0, 1], sim-
plified Bucklin, and a large class of scoring rules which in-
cludes the k-approval voting rule for every k and the Borda
voting rule. In the interest of space, we omit some of our
proofs. They are available here (Dey 2017).

Let us define a restricted version of the classical set cover
problem which we call SET COVER FREQUENCY TWO. We
will see in Lemma 1 that this problem is NP-complete by
reducing from the vertex cover problem which is well known
to be NP-complete (Garey and Johnson 1979). Most of our
NP-hardness reductions are from this problem.
Definition 4 (SET COVER FREQUENCY TWO). Given a
universe U of cardinality q, a family S = {Si : i ∈ [t]}
of t subsets of U such that for every a ∈ U , we have
|{i ∈ [t] : a ∈ Si}| = 2, and a positive integer �, com-
pute if there exists a subset G ⊆ S containing at most � sets
such that ∪A∈GA = U . We denote an arbitrary instance of
SET COVER FREQUENCY TWO by (U ,S, �).
Lemma 1. SET COVER FREQUENCY TWO is NP-
complete.

We begin with showing that the MANIPULATIVE ELIC-
ITATION WITH CANDIDATE PAIR LIMIT problem is NP-
complete for a large class of scoring rules which included
the k-approval voting rule for every 3 � k � γm for any
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constant 0 < γ < 1 and the Borda voting rule. While de-
scribing a (complete) preference, if we do not mention the
order of any two alternatives, they can be ordered arbitrarily.
On the other hand, if we are describing a partial preference
and we do not mention the order of any two alternatives, then
they should be assumed to be incomparable.
Theorem 2. Let r be a normalized scoring rule such that
there exists a function g : N −→ N such that for every m ∈
N, we have 3m � g(m) � poly(m) and if α = (αi)i∈[g(m)],
then there exists a positive integer p such that 3 � p �
g(m) − m + 3, αp > αp+1 and αp−1 = poly(m). Then
the MANIPULATIVE ELICITATION WITH CANDIDATE PAIR
LIMIT problem is NP-complete for the scoring rule r.

Proof. The MANIPULATIVE ELICITATION WITH CANDI-
DATE PAIR LIMIT problem clearly belongs to NP. To
prove NP-hardness, we reduce from SET COVER FRE-
QUENCY TWO to MANIPULATIVE ELICITATION WITH
CANDIDATE PAIR LIMIT for the scoring rule r. Let (U =
{u1, . . . , uq},S = {Si : i ∈ [t]}, �) be an arbitrary instance
of SET COVER FREQUENCY TWO. Let us consider the fol-
lowing instance (A,P, c, f) of MANIPULATIVE ELICITA-
TION WITH CANDIDATE PAIR LIMIT where A is defined
as follows.

A = {ai : i ∈ [q]} ∪ {c, d} ∪W,

where W = {w1, . . . , wg(q)−q−2}
The profileP consists of the following preferences. For an

integer 0 � k � g(q)−q−2, we denote the set {wi : i ∈ [k]}
by Wk. Let κ = max{i ∈ [g(q)] : αi �= 0}; we observe that
ακ = 1 since r is normalized. For X ⊆ U , let us denote the
set {aj : uj ∈ X} of alternatives by X to simplify notation.

� ∀i ∈ [t] : Wp−3 � Si � d � c � (U \Si) � (W \Wp−3)

� t − 2 copies of Wp−1 � ai � d � (U \ {ai}) � (W \
Wp−1) � c

� t(αp − αp+2) copies of W2 � · · · � c � · · · d where the
alternative c is placed at κ position from left.

� If αg(q)−1 = 1, then we add (q+1)tαp−1 copies of · · · �
c � d

� Otherwise:
– If κ � g(q)− q − 1, then we add (q + 1)tαp−1 copies

of W2 � · · · � c � d � U � · · · where the alternative
d is placed at κ + 1 position from left and we add, for
every i ∈ [q], (q+1)tαp−1 copies of W2 � · · · � ai �
d � c � (U \ {ai}) � · · · where the alternative d is
placed at κ+ 1 position from the left.

– Otherwise we add (q+ 1)tαp−1 copies of W2 � · · · �
U � c � d � · · · where the alternative d is placed at
κ+ 1 position from the left.

For ease of reference, we call the above four groups as
G1,G2,G3, and G4 respectively. Let n be the number of pref-
erences in P . We observe that n = poly(m) since αp−1 =
poly(m). The function f is defined as follows: f({d, x}) = n
for every x ∈ A \ ({c, d}), f({d, c}) = n − �; the value of
f be 0 for all other pairs of alternatives. This finishes the de-
scription of our reduced instance. We now claim that the two
instances are equivalent.

In one direction, let us assume that the SET COVER FRE-
QUENCY TWO instance is a YES instance; without loss
of generality, let us assume (by renaming) that S1, . . . , S�

forms a set cover of U . Let us consider the following partial
profile Q with P ∈ L(Q).
� Preferences in G1: ∀i ∈ [�] : ((Wp−3 ∪ Si) � d � ((U \

Si) ∪ (W \Wp−3))
⋃

c � ((U \ Si)) ∪ ((W \Wp−3)))

� Preferences in G1: ∀i with �+1 � i � t : (Wp−3∪Si) �
d � c � ((U \ Si) ∪ (W \Wp−3)

� Preferences in G2: t − 2 copies of (Wp−1 ∪ ai) � d �
((U \ {ai}) ∪ (W \Wp−1) ∪ {c})

� Preferences in G3: t(αp − αp+2) copies of c � X where
the alternative X = {b ∈ A : c � b in G3}.

� Preferences in G4: for every preference in G4, we add
c � Y where the alternative Y = {b ∈ A : c �
b in the corresponding preference in G4}.
Let Δ be the score that the alternative w1 receives in P .

We observe that the minimum scores that the alternatives c
and ai, i ∈ [q] receive in profileRwithR ∈ L(Q) are all the
same; let it be λ. We summarize the MR score (based on r)
of every alternative fromQ in Table 1. Hence the alternative
c wins uniquely in Q.

Alternative MR-r score
from Q

Competing
alternative

c Δ− tα� − λ w1 (or w2)
ai, ∀i ∈ [q] Δ− tα� + α�+1 − λ w1 (or w2)
w1(w2) Δ w2(w1)

w ∈W \W2 Δ w1

d > D − tα� w1 (or w2)

Table 1: Summary of MR scores (based on r) of all the alter-
natives from the partial profileQ in the proof of Theorem 2.

In the other direction, let us assume that the MANIPU-
LATIVE ELICITATION WITH CANDIDATE PAIR LIMIT in-
stance (A,P, c, f) is a YES instance. Let Q be a partial pro-
file such that P ∈ C(Q) and the alternative c wins uniquely
inQ under the MR scoring rule based on r. We observe that
if a preference profileRc withRc ∈ L(Q) is used to calcu-
late the MR score of the alternative based on r, then the MR
score of c based on r is at least Δ−tα�−λ using the alterna-
tive w1 as a competing alternative where λ and Δ are as de-
fined above. Let J ⊆ [t] be the set of i ∈ [t] such that the cor-
responding partial preferences in the group G1 inQ leave the
alternatives c and d incomparable. Since f({d, c}) = n − �,
we have |J | � �. We claim that {Sj : j ∈ J} forms a set
cover of U . Suppose not, then let uk ∈ U \ (∪j∈JSj). Then
we observe that the MR score of ak based on r is at least
Δ − tα� − λ using the alternative w1 as a competing alter-
native.However, this contradicts our assumption that c is the
unique MR-r winner of Q. Hence {Sj : j ∈ J} forms a set
cover of U and thus the SET COVER FREQUENCY TWO is a
YES instance. This concludes the proof of the theorem.

Theorem 2 immediately gives us the following corollary.
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Corollary 2. The MANIPULATIVE ELICITATION WITH
CANDIDATE PAIR LIMIT problem is NP-complete for the
Borda and k-approval voting rules for every 3 � k � γm
for any constant 0 < γ < 1.

A drawback of Theorem 2 is that it does not cover the plu-
rality, 2-approval, and the k-veto voting rules for k = o(m).
We will show that the MANIPULATIVE ELICITATION WITH
CANDIDATE PAIR LIMIT problem is NP-complete for the
k-veto voting rule for any 1 � k � γm for any con-
stant 0 < γ < 1 in Theorem 4. We now show in Theo-
rem 3 that the MANIPULATIVE ELICITATION WITH CAN-
DIDATE PAIR LIMIT problem is NP-complete for the plu-
rality and 2-approval voting rules by reducing it from the
X3C problem which is defined as follows and known to be
NP-complete (Garey and Johnson 1979).
Definition 5 (X3C). Given a universe U of cardinality q
such that q is divisible by 3, a family S = {Si : i ∈ [t]}
of t subsets of U each of cardinality 3, compute if there ex-
ists a subset G ⊆ F of q/3 sets such that ∪A∈GA = U . We
denote an arbitrary instance of X3C by (U ,S).
Theorem 3. The MANIPULATIVE ELICITATION WITH
CANDIDATE PAIR LIMIT problem is NP-complete for the
plurality and the 2-approval voting rules.

Proof. Let us first consider the plurality voting rule. The
MANIPULATIVE ELICITATION WITH CANDIDATE PAIR
LIMIT problem for the plurality voting rule clearly belongs
to NP. To prove NP-hardness, we reduce from X3C to MA-
NIPULATIVE ELICITATION WITH CANDIDATE PAIR LIMIT
for the plurality voting rule. Let (U = {u1, . . . , uq},S =
{Si : i ∈ [t]}) be an arbitrary instance of X3C. For every
i ∈ [q] let us define fi = |{j ∈ [t] : ui ∈ Sj}|. Let us
assume, without loss of generality, that fi < t − q/2 (if not,
then we add 3t new elements in U and t sets in S each of
size 3 and collectively covering these new 3t elements). Let
us assume, without loss of generality, that q is divisible by
6; if not then we add 3 new elements in U and a set con-
sisting of these three new elements in S . Let us consider the
following instance (A,P, c, f) of MANIPULATIVE ELICI-
TATION WITH CANDIDATE PAIR LIMIT where A is defined
as follows.

A = {ai : i ∈ [q]} ∪ {c, d, w}
The profile P consists of the following preferences. For

X ⊆ U , let us also denote, for the sake of simplicity of
notation, the set {aj : uj ∈ X} of alternatives by X .

� ∀i ∈ [t] : d � Si � c � (U \ Si) � w

� q/6 + 1 copies of c � (A \ {c, w})
� 1 copy of d � w � c � (A \ {d, w})
For ease of reference, we call the above three groups as
G1,G2, and G3 respectively. Let n be the number of pref-
erences in P . That is, n = t + q/6 + 2. The function f is
defined as follows: f({c, ai}) = n− fi +1 for every i ∈ [q],
f({w, d}) = n−1, f({w, x}) = n for every x ∈ A\{w, d};
the value of f be 0 for all other pairs of alternatives. This fin-
ishes the description of our reduced instance. We now claim
that the two instances are equivalent.

In one direction, let us assume that the X3C instance is a
YES instance; without loss of generality, let us assume (by
renaming) that S1, . . . , Sq/3 forms a set cover of U . Let us
consider the following partial profile Q with P ∈ L(Q).
� Preferences in G1: ∀i ∈ [q/3] : (Si � c � (U \ Si) �

w)
⋃
(d � w)

� Preferences in G1: ∀i with q/3 + 1 � i � t : (c � (U \
Si) � w)

⋃
(d � w)

� Preferences in G2: q/6 + 1 copies of c � (A \ {c, w})
� Preferences in G3: 1 copy of w � c � (A \ {d, w})

We summarize the MR-plurality score of every alternative
from Q in Table 2. Hence the alternative c wins uniquely in
Q.

Alternative MR-plurality score
from Q

Competing
alternative

c t− q/6 d
ai, ∀i ∈ [q] t d

d t− q/6 + 1 c

Table 2: Summary of MR-plurality scores of all the alterna-
tives from the partial profile Q in the proof of Theorem 3.

In the other direction, let us assume that the MANIPU-
LATIVE ELICITATION WITH CANDIDATE PAIR LIMIT in-
stance (A,P, c, f) is a YES instance. Let Q be a partial pro-
file such that P ∈ C(Q) and the alternative c wins uniquely
in Q under the MR-plurality voting rule. Let J ⊆ [t] be
the set of i ∈ [t] such that the corresponding partial pref-
erences in the group G1 in Q leave the alternatives c and at
least one alternative in Si incomparable. A key observation
is that since f({c, ai}) = n − fi + 1 for i ∈ [q], we have
∪j∈JSj = U . Hence we have |J | � q/3. We now claim that
|J | � q/3. Suppose not, then the MR-plurality score of d is
at most (t− q/3−1)+ q/6+1 = t− q/6 using c as competing
alternative (we observe that, since f({c, ai}) = n − fi + 1
for i ∈ [q], using the alternative ai as a competing alterna-
tive for any i will lead to MR-plurality score of d at most
2fi < t − q/6). Hence the MR-plurality score of d is at
most t− q/6. However the MR-plurality score of c is at least
t + 1 − (q/6 + 1) = t − q/6. This contradicts our assump-
tion that c is the unique MR-plurality winner of Q. Hence
{Sj : j ∈ J} forms a set cover of U and thus the X3C is a
YES instance. This concludes the proof of the theorem.

For the 2-approval voting rule, we can introduce n dummy
alternatives each of which appears at the first position in ex-
actly one preference and in the rest (n − 1) preferences, it
appears in the bottom (n−1) positions. All other parameters
of the reduction remain same. It is easy to see that a simi-
lar argument will prove the result for the 2-approval voting
rule.

We now show our hardness result for the k-veto voting
rule by reducing from X3C.

Theorem 4. The MANIPULATIVE ELICITATION WITH
CANDIDATE PAIR LIMIT problem is NP-complete for the
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k-veto voting rule for every 1 � k � γm for any constant
0 < γ < 1.

We now show our hardness result for the maximin voting
rule by reducing from SET COVER FREQUENCY TWO.
Theorem 5. The MANIPULATIVE ELICITATION WITH
CANDIDATE PAIR LIMIT problem is NP-complete for the
maximin voting rule.

Proof. The MANIPULATIVE ELICITATION WITH CANDI-
DATE PAIR LIMIT problem clearly belongs to NP. To prove
NP-hardness, we reduce from SET COVER FREQUENCY
TWO to MANIPULATIVE ELICITATION WITH CANDIDATE
PAIR LIMIT for the maximin voting rule. Let (U =
{u1, . . . , uq},S = {Si : i ∈ [t]}, �) be an arbitrary instance
of SET COVER FREQUENCY TWO. Let us consider the fol-
lowing instance (A,P, c, f) of MANIPULATIVE ELICITA-
TION WITH CANDIDATE PAIR LIMIT where A is defined
as follows.

A = {ai : i ∈ [q]} ∪ {c, w1, w2, d}
The profile P consists of the following preferences. For

X ⊆ U , let us also denote, for the sake of simplicity of
notation, the set {aj : uj ∈ X} of alternatives by X .

� ∀i ∈ [t] : w1 � w2 � Si � d � c � (U \ Si)

� 2 copies of c � U � d � w1 � w2

For ease of reference, we call the above two groups as G1
and G2 respectively. Let n be the number of preferences in
P . The function f is defined as follows: f({d, x}) = n for
every x ∈ A \ ({c, d}), f({d, c}) = n − �; the value of
f be 0 for all other pairs of alternatives. This finishes the
description of our reduced instance. We now claim that the
two instances are equivalent.

In one direction, let us assume that the SET COVER FRE-
QUENCY TWO instance is a YES instance; without loss
of generality, let us assume (by renaming) that S1, . . . , S�

forms a set cover of U . Let us consider the following partial
profile Q with P ∈ L(Q).
� Preferences in G1: ∀i ∈ [�] : (({w1, w2} ∪ Si) � d �
{U \ Si})

⋃
(c � {U \ Si})

� Preferences in G1: ∀i with � + 1 � i � t : ({w1, w2} ∪
Si) � d � c � {U \ Si}

� Preferences in G2: 2 copies of c � U � d � {w1, w2}
We summarize the MR-maximin score of every alterna-

tive fromQ in Table 3. Hence the alternative c wins uniquely
in Q.

In the other direction, let us assume that the MANIPU-
LATIVE ELICITATION WITH CANDIDATE PAIR LIMIT in-
stance (A,P, c, f) is a YES instance. Let Q be a partial
profile such that P ∈ C(Q) and the alternative c wins
uniquely in Q under the MR-maximin voting rule. We ob-
serve that for every R ∈ L(Q) which can be used for
calculating the MR-maximin score of the alternative c, we
have NR(c, d) � 2. Also, there are only two preferences
(the preferences in G2) where there exist some alternatives
which are preferred over the alternative w1. Hence the MR-
maximin score of the alternative c in Q is at least t− 2. Let

Alternative MR-maximin
score from Q Comments

c t− 2 N(w1, c)−N(c, d)
ai, ∀i ∈ [q] t− 1 N(w1, c)−N(ai, c)
w1(w2) t N(w1, c)−N(w2, w1)

d t N(w1, c)−N(d, w1)

Table 3: Summary of MR-maximin scores of all the alterna-
tives from the partial profile Q in the proof of Theorem 5.

J ⊆ [t] be the set of i ∈ [t] such that the corresponding
partial preferences in the group G1 in Q leave the alterna-
tives c and d incomparable. Since f({d, c}) = n − �, we
have |J | � �. We claim that {Sj : j ∈ J} forms a set cover
of U . Suppose not, then let uk ∈ U \ (∪j∈JSj). We ob-
serve that for every R′ ∈ L(Q), we have NR′(ak, c) = 2.
We also observe that NR′(ak, d) = NR′(ak, wi) = 2 for
every i ∈ [2] since f({d, ui}) = n for every i ∈ [q] and
f({d, w1}) = f({d, w2}) = n. Hence, the MR-maximin
score of the alternative ak is t − 2 where the alternative w1

plays the role of a competing alternative. However, this con-
tradicts our assumption that c is the unique MR-maximin
winner of Q. Hence {Sj : j ∈ J} forms a set cover of U
and thus the SET COVER FREQUENCY TWO is a YES in-
stance. This concludes the proof of the theorem.

For the Copelandα voting rule, we have the following re-
sult for every α ∈ [0, 1].

Theorem 6. The MANIPULATIVE ELICITATION WITH
CANDIDATE PAIR LIMIT problem is NP-complete for the
Copelandα voting rule for every α ∈ [0, 1].

For the simplified Bucklin voting rule, we have the fol-
lowing result.

Theorem 7. The MANIPULATIVE ELICITATION WITH
CANDIDATE PAIR LIMIT problem is NP-complete for the
simplified Bucklin voting rule.

5 Conclusion and Future Work

In this work, we have discovered an important vulnerabil-
ity, namely manipulative elicitation, in the use of minimax
regret based extension of classical voting rules in the in-
complete preferential setting. Moreover, we have shown that
the related computational task is polynomial time solvable
for many commonly used voting rules including all scoring
rules, maximin, Copelandα for every α ∈ [0, 1], simplified
Bucklin voting rules, etc. Then we have shown that by in-
troducing a parameter per pair of alternatives which speci-
fies the minimum number of partial preferences where this
pair of alternatives must be comparable makes the compu-
tational task of manipulative elicitation NP-complete for all
the above mentioned voting rules.

A drawback of our approach is that the parameters can be
non-uniform – their values do not need to be the same for
every pair of alternatives. It would be interesting to study
the computational complexity of the problem when the val-
ues of the parameters are all the same. In another direction,
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it would be interesting to conduct extensive experimentation
to study usefulness of our approach in practice. This is spe-
cially important since computational intractability is known
to provide only a weak barrier in other forms of election ma-
nipulation (Procaccia and Rosenschein 2007).
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