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Abstract

As an important population-based algorithm, ant colony op-
timization (ACO) has been successfully applied into various
combinatorial optimization problems. However, much exist-
ing work in ACO focuses on solving centralized problems. In
this paper, we present a novel algorithm that takes the power
of ants to solve Distributed Constraint Optimization Prob-
lems (DCOPs), called ACO DCOP. In ACO DCOP, a new
mechanism that captures local benefits is proposed to com-
pute heuristic factors and a new method that considers the
cost structure of DCOPs is proposed to compute pheromone
deltas appropriately. Moreover, pipelining technique is intro-
duced to make full use of the computational capacity and im-
prove the efficiency. In our theoretical analysis, we prove that
ACO DCOP is an anytime algorithm. Our empirical eval-
uation indicates that ACO DCOP is able to find solutions
of equal or significantly higher quality than state-of-the-art
DCOP algorithms.

Introduction

Distributed Constraint Satisfaction and Optimization Prob-
lems (DCSPs and DCOPs) (Yokoo et al. 1998) are fun-
damental frameworks for Multi-agent Systems (MAS) in
which agents need to coordinate their decisions to find a fea-
sible solution (for DCSPs) or optimize the global objective
(for DCOPs). They have been successfully deployed into
various real applications including sensor networks (Zhang
et al. 2005), task scheduling (Sultanik, Modi, and Regli
2007), power networks (Fioretto et al. 2017), etc.

Algorithms for solving DCOPs can be classified into com-
plete algorithms and incomplete algorithms according to
whether they guarantee to find the optimal solutions. Typical
search based complete algorithms include ADOPT (Modi et
al. 2005), BnB-ADOPT (Yeoh, Felner, and Koenig 2008),
AFB (Gershman, Meisels, and Zivan 2009) and so on. DPOP
(Petcu and Faltings 2005), on the other hand, is an inference
based complete algorithm to solve DCOPs by using a dy-
namic programming technique. Since DCOPs are NP-Hard,
considerable research efforts have been made to develop in-
complete algorithms. Local search algorithms are the most
popular incomplete algorithms including DSA (Zhang et
al. 2005), MGM (Maheswaran, Pearce, and Tambe 2004),
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MGM2 (Maheswaran, Pearce, and Tambe 2004), DSAN
(Arshad and Silaghi 2004), GDBA (Okamoto, Zivan, and
Nahon 2016), etc. In those algorithms, agents make deci-
sions based on their neighbor states. Recently, several mech-
anisms such as anytime local search framework (ALS) (Zi-
van, Okamoto, and Peled 2014), k−optimality (Pearce and
Tambe 2007) and partial decision scheme (PDS) (Yu et al.
2017) have been proposed to enhance the solution quality
of local search algorithms. Max-sum(Farinelli et al. 2008)
and its variants (Rogers et al. 2011; Zivan and Peled 2012;
Chen, Deng, and Wu 2017) are typical inference based in-
complete algorithms, where agents propagate and accumu-
late utilities through the whole factor graph. Sample based
algorithms including DUCT (Ottens, Dimitrakakis, and Falt-
ings 2012) and D-Gibbs (Nguyen, Yeoh, and Lau 2013) are
emerging incomplete algorithms, which sample the search
space to approximate a function as a product of statistical
inference.

Many existing DCOP algorithms derive from central-
ized single-solution optimization approaches such as hill-
climbing algorithm and simulated annealing. Ant colony
optimization (Dorigo, Birattari, and Stutzle 2006), as a
population-based metaheuristic, has been successfully ap-
plied into various NP-Hard problems including traveling
salesman problem (TSP) (Dorigo and Gambardella 1997),
constraint satisfaction problem (CSP) (Solnon 2002) and
many others. However, to the best of our knowledge, the ant
solver for DCSP (Semnani and Zamanifar 2012) is the only
ant-based algorithm for solving distributed constraint rea-
soning problems. Unfortunately, since solving DCOPs re-
quires to enumerate all possible assignment combinations to
find the optimal solution rather than just find a feasible solu-
tion, the ant solver for DCSP cannot directly be applied into
solving DCOPs. Considering the difference between DCOPs
and DCSPs, we propose a novel ant-based DCOP algorithm
in which agents try to keep track of promising areas of the
search space by employing pheromone trails as a guide to
make wiser decisions.

Background

Distributed Constraint Satisfaction and
Optimization Problems

DCSPs can be defined by a tuple 〈A,X,D,C〉 where
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Figure 1: A DCOP instance

• A = {a1, a2, . . . , an} is a set of agents.

• X = {x1, x2, . . . , xm} is a set of variables. Each variable
xi is controlled by one of the agents.

• D = {D1, D2, . . . , Dm} is a set of finite variable do-
mains, variable xi taking a value in Di.

• C = {c1, c2, . . . , cq} is a set of constraints, where a con-
straint ci is a predicate that is defined on Di1 × Di2 ×
· · · ×Din . The predicate is true iff the assignment of the
variables satisfies the constraint.

The goal of DCSPs is to find an assignment to all variables
such that all constraints are satisfied. To facilitate under-
standing, we assume that each agent has a single variable
and constraints are binary. Thus, the term ”agent” and ”vari-
able” can be used interchangeably (i.e., m = n). A binary
constraint cij is a constraint involving exactly two variables
with the scope Di ×Dj . We also assume that all agents can
communicate with every other agent.

DCOPs extend DCSPs by replacing hard constraints with
cost functions. Formally, constraints in a DCOP are a set
of functions fij ∈ F , where fij is any function fij :
Di × Dj → R

+ which denotes how much cost is assigned
to each possible combination of values of the involved vari-
ables. Without loss of generality, a solution of a DCOP is
an assignment to all variables that minimizes the total cost,
which is the sum of all constraints:

X∗ = argmin
di∈Di,dj∈Dj

∑
fij∈F

fij(xi = di, xj = dj)

A DCOP can be visualized by a constraint graph where
the vertexes correspond to variables in the DCOP and the
edges connect pairs of variables that are constrained. Fig. 1
presents an example of a DCOP problem whose constraint
graph and cost matrices are shown in Fig. 1 (a) and Fig. 1
(b).

Ant Colony Optimization

Ant colony optimization (ACO) is a population-based meta-
heuristic to solve combinatorial optimization problems,
which is inspired by the foraging behavior of ants. Ants
communicate with each other by laying pheromone to mark
some promising paths that should be followed by the other
members of the colony.

As shown in Fig. 2, ACO consists of three parts: con-
structing solutions, applying local search and updating

Algorithm 1: Ant Colony Optimization
1 Set parameters, initialize pheromone trails
2 while termination condition is not met do
3 ConstructAntSolutions
4 ApplyLocalSearch (optional)
5 UpdatePheromones
6 end

Figure 2: The sketch of ACO

pheromones. At the beginning of each cycle, several arti-
ficial ants construct solutions by traversing a construction
graph in which each ant constructs one solution by a proba-
bilistic mechanism that is biased by a pheromone factor and
a heuristic factor. Specifically, the pheromone factor associ-
ating to the quality of solutions represents a posteriori indi-
cation of the desirability of the traverse, while the heuristic
factor related to the evaluation of the partial solution indi-
cates the a priori desirability of the traverse. After that, an
optional local search phase is performed to improve these
solutions. Finally, pheromones are updated according to the
quality of solutions (i.e., the pheromones associated with
good solutions will be increased and the bad ones will be
decreased).

Although it has been successfully applied into various
NP-Hard problems, ACO cannot be directly applied into dis-
tributed constraint reasoning problems since there is no ac-
tual path for artificial ants to traverse. Consequently, ants
fail to build solutions and pheromone trails also cannot be
updated.

Ant Solver for DCSP

The ant solver for DCSP overcomes the pathology by using
message-passing between agents to simulate the movements
of ants. The algorithm starts with converting a constraint
graph to a fully-connected construction graph in which the
vertexes correspond to agents and each vertex is associated
with multi-line of pheromone. Each line of pheromone is re-
lated to two values for two agents and is distinguished by
the four factors: Source Variable (agent), Source value, Des-
tination Variable (agent), Destination value. Fig. 3 shows a
construction graph derived from the constraint graph shown
in Fig. 1. Then, agents are ordered by max-static heuristic in
which the algorithm first prioritizes agents based on their do-
main size and assigns higher priority values to the agents that
have more neighbors. In each iteration, each agent who has
received the assignments from all its higher priority neigh-
bors selects a value for each ant. The value selection is made
stochastically according to a probability that depends on
a pheromone factor and a heuristic factor. Concretely, the
pheromone factor for a value di of an agent ai is the sum of
all pheromone lines of ai that involve di, while the heuris-
tic factor for di is inversely proportional to the number of
constraint violations created by di between ai and its higher
priority neighbors.

Each agent sends the selected values to its lower prior-
ity neighbors after the value selection. If it does not have
any lower priority neighbor, it sends the values to the lowest
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Figure 3: An example of a construction graph in the ant
solver for DCSP

priority agent. When receiving the values selected by other
agents, the lowest priority agent calculates the cost of each
ant. If the cost of the best ant is not zero, then the agent
computes the pheromone delta which is defined inversely
proportional to the cost of the best ant (i.e., the number of
constraint violations) and broadcasts the delta to all of the
agents. Otherwise, the solution is found and the algorithm
terminates.

When receiving the pheromone delta, an agent will trig-
ger the evaporation phase and updating phase consecutively.
The evaporation phase decreases all the pheromone trails
uniformly to allow ants to forget bad assignments and then
pheromone trails that appear in the best ant path will be
updated according to the delta. These procedures are per-
formed until a solution is found or the cycle number is ex-
ceeded.

Proposed Method

Motivation

A DCOP generally has a larger search space than a DCSP
since it requires algorithms to exhaust all possible assign-
ment combinations to find the optimal solution rather than
just find a feasible solution in a DCSP. Thus, as an algo-
rithm that is originally designed for solving DCSPs, the ant
solver for DCSP cannot solve DCOPs efficiently due to the
following facts.

• The calculation of a pheromone factor in an agent does
not consider the assignments of the other agents, which
makes the agent unable to utilize the assignments of its
higher priority neighbors to remove irrelevant pheromone
trails and hence prohibits it from computing the desirabil-
ities precisely.

• Heuristic factors in an agent prefer the assignments that
do not create any constraint violation against its higher
priority neighbors. However, the mechanism greatly lim-
its the search space of an agent in a DCOP since the partial
local benefit of an individual agent often conflicts with the
global benefit. Thus, a new evaluation mechanism for the
total local benefits should be provided to accommodate
DCOPs.

• The pheromone delta is inversely proportional to the num-
ber of constraint violations of the best ant in the algorithm,
which is unsuitable for DCOPs since the cost structure in
a DCOP is more complex. Specifically, a constraint in a
DCOP is a general-valued function from assignments to
costs rather than a predicate in a DCSP. Therefore, a new
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Figure 4: A BFS pseudo-tree, an ordered arrangement and
the construction graph

computation method that is compatible with DCOPs be-
comes an urgent need.

Besides, the algorithm also suffers from large storage over-
heads since the construction graph is fully connected. The
concurrency is another performance bottle-neck of the algo-
rithm since agents need to wait pheromone delta messages
to update pheromone trails and start a new cycle.

In fact, compared to local search algorithms, ACO is an
effective approach for combinatorial optimization problems
since it can keep the balance between local benefits and
the global benefit. Although the ant solver for DCSP takes
ACO into distributed constraint reasoning problems, its ex-
ploration ability is insufficient to solve DCOPs. Thus, we
propose a novel algorithm called ACO DCOP that takes the
power of ACO to solve DCOPs.

ACO DCOP

ACO DCOP generally consists of three parts: initialization,
constructing solutions and updating. The sketch of the algo-
rithm can be found in Fig. 5.

Initialization initiates the algorithm by ordering agents
into a BFS pseudo-tree (Chen, He, and He 2017), and then
an ordered arrangement (i.e., the message-passing order) is
constructed according to the pseudo-tree, where agents with
smaller depths are prioritized over the agents with larger
depths, agents with the same depth are prioritized by their
degrees, and ties are broken alphabetically. In this way, the
neighbors of an agent ai are grouped into the higher prior-
ity neighbors Hi and the lower priority neighbors Li. Fig. 4
(a) and (b) show an example of a BFS pseudo-tree of Fig. 1
(a) and the corresponding ordered arrangement in which x1

is the highest priority agent, x4 is the lowest priority agent,
and arrows represent the message-passing directions. Then
the ordered arrangement is converted to the construction
graph by replacing each constraint with multiple pheromone
lines. Each pheromone line τij(di, dj) is associated with two
values di, dj for agents ai, aj and is initialized with τ0. In
this way, storage overheads are much reduced compared to
the fully connected construction graph in the ant solver for
DCSP. Fig. 4 (c) shows the construction graph of Fig. 4 (b).
It is worth mentioning that pheromone lines of a constraint
are managed by the agent that has lower priority. As a result,
the highest priority agent can only select values randomly
since it does not have any pheromone lines.

The initialization procedure of each agent begins with ini-
tializing parameters (line 1) where K is the number of ants.
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Algorithm 2: ACO DCOP for agent ai
1 Initialize Parameters: α, β, ρ, τ0,K
2 StartCycle()
3 foreach di ∈ Di do
4 calculate esti(di) by formula (3)

Function StartCycle:
5 foreach ant k do
6 Vk,∗ ← {}
7 V ← V ∪ Vk,∗
8 if ai is the root then
9 foreach ant k do

10 Vk,i ← randomly selects a value from Di

11 Vk,∗ ← Vk,∗ ∪ Vk,i

12 Sends ValueMessage({i, V }) to agents in Li

When received Value(id,recv V):
13 foreach ant k do
14 Vk,∗ ← Vk,∗ ∪ recv Vk,∗
15 if id ∈ Hi then
16 if ai has received ValueMessages from all

higher priority neighbors then
17 foreach ant k do
18 selects a value for Vk,i by formula (5)
19 Vk,∗ ← Vk,∗ ∪ Vk,i

20 if |Li| �= 0 then
21 Sends ValueMessage({i, V }) to agents

in Li
22 else if ai is not the lowest priority agent

then
23 Sends ValueMessage({i, V }) to the

lowest priority agent
24 if ai is the lowest priority agent then
25 if each agent has selected values for all ants

then
26 foreach ant k do
27 calculates Δk according to Vk,∗ by

formula (6)
28 if cost(Vk,∗) < best cost then
29 best cost ← cost(Vk,∗)
30 v∗ ← Vk,∗
31 sends PheromoneMessage({V ,Δ,v∗}) to all

agents
When received Pheromone(recv V,Δ,v∗):

32 d∗i ← v∗i
33 foreach ant k do
34 updates pheromone trails according to Δk by

formula (7)
35 evaporates all pheromone trails by formula (9)
36 UpdateEstimation(recv V )
37 if termination condition is not met then
38 StartCycle()

Function UpdateEstimation(recv V):
39 foreach di ∈ Di do
40 s ← 0, c ← 0
41 foreach ant k do
42 if recv Vk,i = di then
43 s ← s+

∑
j∈Li

costij(di, recv Vk,j)

44 c ← c+ 1
45 if c �= 0 then
46 avg cost ← s/c
47 esti(di) ← (esti(di) + avg cost)/2

Figure 5: The sketch of ACO DCOP

Then each agent executes StartCycle to initialize each ant
with an empty set of assignments (line 5 - 7). Here, V is a
set of solutions for K ants, Vk,∗ ∈ V denotes the solution
constructed by ant k, and Vk,i ∈ Vk,∗ denotes the value se-
lected by agent ai for ant k. If ai is the root (i.e., |Hi| = 0),
it selects a value randomly for each ant and sends value mes-
sages that consist of its id and V to its lower priority neigh-
bors (line 8 - 12).

Take Fig. 4 for an example. Since it is the highest pri-
ority agent, x1 selects values randomly for ants. Let’s as-
sume there are two ants and x1 selects 0 and 1 for ant
1 and ant 2, respectively. Then x1 sends value message
{1, {{V1,1 = 0}, {V2,1 = 1}}} to its lower priority neigh-
bors x2, x3, x4.

Constructing solutions is a procedure in which each ant
gradually builds solutions. When it receives a value mes-
sage, agent ai first merges the received solution set for every
ant (line 13 - 14). After that, if ai has received value mes-
sages from all its higher priority neighbors, it selects a value
di for each ant k stochastically with a probability pk,i(di)
biased by a pheromone factor θk,i(di) and a heuristic factor
ηk,i(di) (line 15 - 19). To allow agents to consider only rel-
evant pheromone trails, pheromone factors in our algorithm
depend on the assignments of higher priority neighbors. For-
mally, a pheromone factor is defined as:

θk,i(di) =
∑
j∈Hi

τij(di, Vk,j) (1)

Since the partial local benefit of an individual agent often
conflicts with the global benefit in DCOPs, a new evaluation
mechanism to the local benefit, which includes a cost esti-
mation for lower priority neighbors, is proposed to compute
heuristic factors. Formally, a heuristic factor is defined as:

ηk,i(di) =
1∑

j∈Hi
costij(di, Vk,j) + esti(di)− LB

(2)

where costij(di, Vk,j) is the cost that is produced by the con-
straint fij when xi = di and xj = Vk,j . esti(di) is an es-
timation to the sum of costs with lower priority neighbors
of ai when xi = di, which is periodically updated and ini-
tially set to the most optimistic estimation (line 3 - 4). The
procedure can be formalized by:

esti(di) =
∑
j∈Li

min
dj∈Dj

costij(di, dj) (3)

LB is a factor to scale up differences of heuristic factors,
which is the most optimistic estimation under esti. For-
mally, LB is defined as:

LB = min
di∈Di

(
∑
j∈Hi

min
dj∈Dj

costij(di, dj) + esti(di))− 1 (4)

Given θk,i(di) and ηk,i(di), the probability for selecting
value di is defined as:

pk,i(di) =
θk,i(di)

αηk,i(di)
β∑

d′
i∈Di

θk,i(d′i)αηk,i(d
′
i)

β
(5)
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where α and β define the importance of the pheromone fac-
tor and the heuristic factor, respectively.

After selecting values, each agent sends value messages to
its lower priority neighbors if it has any lower priority neigh-
bors or sends a value message to the lowest priority agent if
it does not have any lower priority neighbors and is not the
lowest priority agent (line 20 - 23). It is worth noting that the
cost of an ant is propagated by value messages. Specifically,
each agent accumulates the cost by summing the receiving
costs and the cost pertaining to the selected value, and then
propagates the cost to lower priority agents by proportioning
the cost equally to each outgoing value message to avoid cal-
culating the cost more than once. We omit this in the sketch
for space.

For example in Fig. 4, since x2 and x4 have received value
messages from x1 and hence satisfied line 15, they now can
select value for ants. We will take x2 and ant 1 as a demon-
stration. Suppose that τ0 = 3, α = 2, β = 2. According to
Equations (3) and (4), we have:

est2(0) = 3, est2(1) = 2

LB = 2

Probabilities of each possible assignment are:

p1,2(0) =
32 × 0.1672

32 × 0.1672 + 32 × 12
= 0.027

p1,2(1) =
32 × 12

32 × 0.1672 + 32 × 12
= 0.973

Thus, x2 selects 0 with the probability 0.027 and selects 1
with the probability 0.973 for ant 1. After the value selec-
tion, x2 sends a value message to its lower priority agent x3,
which triggers the value selection procedure of x3. It is no-
ticeable that x4 does not send any value message since it is
the lowest priority agent.

Updating consists of four parts: calculating pheromone
deltas, updating pheromone trails, evaporation and updating
estimations. The calculation of pheromone deltas and the up-
dating to the best ant v∗ are performed by the lowest priority
agent so long as each agent has selected values for all ants
(line 24 - 30). Since the cost structure in a DCOP is much
more complex than the one in a DCSP, a new computation
method that employs the mean cost of all ants as a standard is
proposed to produce appropriate deltas. Formally, the delta
Δk ∈ Δ for ant k is computed by:

Δk = 1− cost(Vk,∗)− best cost
1
K

∑K
k′=1 cost(Vk′,∗)− best cost

(6)

where cost(Vk,∗) denotes the cost of ant k and best cost is
the cost of the best solution explored so far. Note that if an
ant k performs better than the average level of all ants, Δk is
positive and hence corresponding pheromone trails will re-
ceive a reward. Otherwise, Δk is negative and corresponding
pheromone trails will receive a penalty. It should be noted
that ACO DCOP cannot handle hard constraints (i.e., infi-
nite costs for violated constraints) since it needs solution
costs to compute deltas. After computing pheromone deltas,

the lowest priority agent sends pheromone messages to all
agents (line 31).

When receiving a pheromone message, agent ai updates
the best value d∗i with the assignment in the best ant (line
32). Then related pheromone trails are updated according to
the assignments for ant k and the corresponding pheromone
delta Δk (line 33 - 34). That is,

τij(Vk,i, Vk,j) = τij(Vk,i, Vk,j) + δk,ij , ∀j ∈ Hi (7)

where δk,ij is the weighted pheromone delta for the
pheromone trail between ai and aj . δk,ij is used to alleviate
the penalty to the pheromone trail that has a small propor-
tion to the cost of ant k. Formally, the weighted pheromone
delta of ant k for the selected pheromone trail between ai
and aj is computed by:

δk,ij =

{
Δk Δk ≥ 0

Δk
λcostij(Vk,i,Vk,j)

cost(Vk,∗)
Δk < 0

(8)

where λ is the number of constraints in a DCOP and can
be easily counted by ants during the constructing solution
procedure.

As the most of ant-based algorithms, an evaporation
phase is performed after updating pheromone trails (line 35).
Evaporation is a mechanism that allows ants to forget the
information they have accumulated to help them to escape
from local optima. Concretely, pheromone trails of ai are
updated as:

τij(di, dj) = (1− ρ)τij(di, dj) + ρτ0 (9)

where di ∈ Di, dj ∈ Dj , j ∈ Hi, and 0 < ρ < 1 de-
notes the evaporation rate. Moreover, pheromone trails are
bounded by a maximal value τmax and a minimal value
τmin.

We also include a phase to update the estimation esti for
ai after the evaporation phase (line 36). Specifically, for each
value di ∈ Di, agent ai calculates the average cost with
lower priority neighbors Li by considering ants whose val-
ues for xi are di (line 39 - 46). Then, an estimation is up-
dated by averaging itself and the corresponding average cost
(line 47).

Consider agent x4 in Fig. 4. When receiving a value
message from x3, the lowest priority agent x4 is ready
to compute pheromone deltas. Assume that V1,∗ =
{0, 1, 1, 0}, V2,∗ = {1, 0, 0, 1}. Then the cost of ant 1 is 8
and the cost of ant 2 is 12. According to Equation (6), the
pheromone delta for ant 1 and 2 are:

Δ1 = 1− 8− 8

10− 8
= 1,Δ2 = 1− 12− 8

10− 8
= −1

After that, x4 sends the computed deltas (Δ = {1,−1})
via pheromone messages to all agents. When receiving
the pheromone message, each agent computes weighted
pheromone deltas for pheromone trails based on Equation
(8). That is:

δ1,12 = δ1,13 = δ1,14 = δ1,23 = Δ1 = 1

δ2,12 = −1× 4× 2

12
= −0.667, δ2,13 = −1× 4× 3

12
= −1
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Figure 6: Recommended values for K in different size of
random DCOPs

δ2,14 = −1× 4× 4

12
= −1.333, δ2,23 = −1× 4× 3

12
= −1

After computing weighted pheromone deltas, each agent up-
dates its pheromone trails by Equation (7) and evaporates its
trails by Equation (9). We omit this because of lacking space.
To illustrate the updating of estimation, let’s consider x2 in
Fig. 4. According to function UpdateEstimation, we have:

est2(0) = (est2(0)+cost23(V2,2, V2,3))/2 = (3+3)/2 = 3

est2(1) = (est2(1)+cost23(V1,2, V1,3))/2 = (2+4)/2 = 3

At this point, one cycle is finished and agents start a next
cycle by executing function StartCycle (line 37 - 38).

Pipelining is introduced to make full use of the compu-
tational capacity and reduce the solving time, since agents
need to wait the lowest priority agent to send pheromone
messages after selecting values in the algorithm.

Rather than waiting for the pheromone message, each
agent in our algorithm selects values for ants in every it-
eration (i.e., the communication step between agents). To
do this, the root agent must send value messages to its
lower priority neighbors consecutively and each message is
tagged with the number of iteration. The other agents group
messages by tags and process each group as in the non-
pipelining version.

Theoretical Analysis

In this section, we will prove that our proposed method is an
anytime algorithm, i.e., the quality of the solution can only
remain the same or increase if more iterations are performed.

Lemma 1. At the t+r iteration, the lowest priority agent
holds enough information to calculate costs of all ants in
iteration t, where r is a constant that only depends on the
problem structure.

Proof. We denote the length of the longest path (i.e., the
message-passing path) in the ordered arrangement as l and
the length of the longest path to the lowest priority agent as
l′. Directly from the algorithm, leaf agents (i.e., agents who
do not have any lower priority neighbors) will send value
messages to the lowest priority agent so long as they select
values (line 22 - 23). Thus, r actually depends on the lowest
priority agent and the leaf agent who has the longest path
from the root. Consider the following cases: 1) l = l′ and
there are other leaf agents whose lengths of the longest path
from the root are equal to l; 2) l = l′ and there is no other
leaf agent whose length of the longest path from the root is
equal to l; 3) l > l′, i.e.,there are some leaf agents whose

lengths of the longest path from the root are greater than the
one of the lowest priority agent.

Obviously, leaf agents whose lengths of the longest path
from the root are l will receive value messages from all their
higher priority neighbors after l iterations. Since they don’t
have any lower priority neighbors, the agents will send value
messages to the lowest priority agent, which requires an ex-
tra iteration. Thus, the lowest priority agent is able to calcu-
late costs of all ants after r = l+1 iterations in the first case.
The similar analyses can be applied to the remaining cases
and hence r = l in the second case and r = l+1 in the third
case. Thus, the lemma is proved.

Proposition 1. ACO DCOP is an anytime algorithm, i.e., it
reports the best result among first t iterations after running
for t+ r + 1 iterations.

Proof. Directly from Lemma 1 and the algorithm, the low-
est priority agent can calculate costs of all ants and broad-
casts the best ant v∗ explored so far via pheromone mes-
sages at the t + r iteration (line 26 - 31). When an agent ai
receives the pheromone message at the t + r + 1 iteration,
it will update its best assignment d∗i with the corresponding
assignment in v∗ (line 32). Thus, every agent holds the best
assignment found among first t iterations, which concludes
the proposition.

Complexity Analysis

In every iteration, all agents except the lowest priority agent
need to send value messages to their lower priority neigh-
bors (or to the lowest priority agent) and the lowest priority
agent needs to broadcast pheromone messages to all agents.
Thus, the algorithm requires n + λ + ε − 1 messages in
each iteration, where λ is the number of constraints and ε
is the number of leaf agents. Since it contains the solutions
constructed by all ants, the size of a value message is pro-
portional to the number of agents and the number of ants,
namely O(nK). For a pheromone message, it contains the
solutions constructed by all ants, the pheromone deltas for
all ants and the assignments of the best ant. Thus, the size of
a pheromone message is O((K + 1)n+K).

Each agent ai requires O(w|Hi||Di|) space to store
pheromone trails, where w = maxj∈Hi

|Dj |. The time com-
plexity of ai mainly depends on the computation of value
messages. For each value in Di and each ant, ai needs to tra-
verse all its higher priority neighbors to calculate the prob-
ability. Thus, ai requires O(K|Hi||Di|) operations to com-
pute a value message.

Empirical Evaluation

We empirically evaluate our proposed method with peer al-
gorithms including DSA (p = 0.8), MGM2, DSAN, D-
Gibbs, GDBA and the ant solver for DCSP (ACO DCSP
for short) on two type of problems: random DCOPs and
weighted graph coloring problems. For random DCOPs, we
set agent number to 70, domain size to 10 and uniformly
select cost from [1, 100]. Each pair of agents is constrained
independently with a probability p1 = 0.1 (for the sparse
configuration) or p1 = 0.6 (for the dense configuration).
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Figure 7: Comparison of ACO DCOP and the competing al-
gorithms on sparse configuration of random DCOPs

We consider weighted graph coloring problems with 120
agents, 3 available colors for each agent and p1 = 0.05.
The cost for each violation is uniformly selected from range
1 to 100. All algorithms are stopped after 1000 iterations.
For non-monotonic algorithms, we present the anytime re-
sults by using the ALS framework. For ant-based algo-
rithms, we consider the number of ants K = 13 for the
sparse random DCOPs, K = 20 for the dense random
DCOPs and weighted graph coloring problems, set τ0 = 3
for ACO DCOP and τ0 = 10 for ACO DCSP. Moreover,
we implement ACO DCSP as a pipelining version and set
α = 2, β = 8, ρ = 0.02. The experimental results are av-
eraged over 50 independently generated problems that are
each solved by each algorithm 30 times.

Our first experiment explores the relationship between the
solution quality and ACO parameters including α, β, ρ and
K. In our experiments, we received good results when α =
3, β = 4 and ρ = 0.0025. For the number of ants, it is
closely related to the scale of problems. We vary K from 5
to 25 to evaluate the solution quality under different sizes of
random DCOPs and present the recommended values for K
in Fig. 6.

Fig. 7 demonstrates the superiority of ACO DCOP over
all the competitors on the sparse configuration of random
DCOPs. All differences at 1000 iterations are statistically
significant for p-value<0.001. Since they do not have any
global information, DSA and DSAN converge to poor re-
sults very quickly. MGM2 outperforms DSA since it can
find a 2-coordinated solution, but it gets trapped in local
optima after 400 iterations. GDBA performs slightly better
than MGM2 within 150 iterations but it cannot do any fur-
ther optimization. ACO DCSP gradually optimizes the solu-
tion due to the ability to utilize global information. However,
it can be observed that ACO DCSP eventually produces a
poor solution, which indicates that its optimization ability
is too weak to solve DCOPs effectively. ACO DCOP, on
the other hand, finds better solutions than all the compet-
ing algorithms after 100 iterations and continues to improve
slowly in the remaining iterations. At the end of execution,
the improvements of ACO DCOP over all the competing al-
gorithms are 7.5%∼12.8%, which indicates that the heuris-
tic factor and the pheromone factor can collaborate with
each other to achieve a better balance between exploration
and exploitation.

Fig. 8 shows the comparison of ACO DCOP and the other
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Figure 8: Comparison of ACO DCOP and the competing al-
gorithms on dense configuration of random DCOPs
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Figure 9: Comparison of ACO DCOP and the competing al-
gorithms on weighted graph coloring problems

algorithms on the dense configuration of random DCOPs.
It can be concluded that ACO DCOP has advantages over
all the competitors other than GDBA about 0.4%∼23.1%,
and is slightly inferior to GDBA. Besides, one can easily
observe that although both ACO DCOP and D-Gibbs make
decisions stochastically according to probabilities, D-Gibbs
cannot perform any optimization and eventually yields a
poor result. This is because the probabilities in D-Gibbs
are never changed and hence the previous solutions can-
not provide any information for further optimization. How-
ever, the probabilities in ACO DCOP are biased by the
pheromones, which indicates that the previous solutions can
directly feedback to the next optimization and hence enables
ACO DCOP to learn from experience.

Fig. 9 presents the comparison of ACO DCOP and the
competing algorithms on weighted graph coloring problems.
It can be seen that ACO DCSP exhibits more excellent per-
formance over the other algorithms, which is not surprising
since ACO DCSP is originally designed to solve DCSPs.
However, it is also noticeable that our proposed method out-
performs all the competitors by 34.1%∼63.8%, which indi-
cates that ACO DCOP is also a very suitable algorithm for
DCSPs.

Conclusion

In this paper, we analyze the restrictions that prohibit ant-
based algorithms from solving DCOPs efficiently and in-
troduce a novel ant-based algorithm to solve DCOPs where
agents utilize the pheromone factor and the heuristic factor
to achieve the balance between exploration and exploitation.
The pheromone factor is computed by considering the as-
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signments of higher priority neighbors, while the heuristic
factor is computed by a novel evaluation mechanism to the
local benefit which includes a cost estimation for lower pri-
ority neighbors. We also propose a new method to calculate
pheromone delta to cope with the complex cost structure in
DCOPs. Finally, we introduce pipelining technique to im-
prove the solving efficiency. Our experimental results show
that ACO DCOP is superior to the competing algorithms.

Also, ACO DCOP builds a bridge between solving
DCOPs and population-based optimization algorithms. We
will explore more swarm intelligence approaches to solve
DCOPs in our future work. We also attempt to extend the
algorithm to solve asymmetric DCOPs.
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