
HogRider: Champion Agent of Microsoft
Malmo Collaborative AI Challenge

Yanhai Xiong,∗ Haipeng Chen,∗Mengchen Zhao, Bo An
Nanyang Technological University

{yxiong003,chen0939,zhao0204,boan}@ntu.edu.sg

Abstract

It has been an open challenge for self-interested agents to
make optimal sequential decisions in complex multiagent
systems, where agents might achieve higher utility via col-
laboration. The Microsoft Malmo Collaborative AI Challenge
(MCAC), which is designed to encourage research relating
to various problems in Collaborative AI, takes the form of a
Minecraft mini-game where players might work together to
catch a pig or deviate from cooperation, for pursuing high
scores to win the challenge. Various characteristics, such as
complex interactions among agents, uncertainties, sequential
decision making and limited learning trials all make it ex-
tremely challenging to find effective strategies. We present
HogRider - the champion agent of MCAC in 2017 out of 81
teams from 26 countries. One key innovation of HogRider is
a generalized agent type hypothesis framework to identify the
behavior model of the other agents, which is demonstrated to
be robust to observation uncertainty. On top of that, a second
key innovation is a novel Q-learning approach to learn ef-
fective policies against each type of the collaborating agents.
Various ideas are proposed to adapt traditional Q-learning to
handle complexities in the challenge, including state-action
abstraction to reduce problem scale, a warm start approach
using human reasoning for addressing limited learning tri-
als, and an active greedy strategy to balance exploitation-
exploration. Challenge results show that HogRider outper-
forms all the other teams by a significant edge, in terms of
both optimality and stability.

Introduction

In complex multiagent systems, sequential decision making
has long been a significant challenge with many characteris-
tics. One prominent characteristic is the interactions among
the agents. In many practical scenarios (e.g., the Stag-Hunt
game), agents need to cooperate with each other to achieve a
common goal with high rewards (e.g., hunting stags), while
each individual agent is self-interested and might deviate
from the cooperation for less risky goals with low rewards
(e.g., hunting rabbits). Another critical characteristic comes
from various uncertainties. One type of uncertainty arises
from the lack of accurate knowledge of environment and

∗Denotes equal contribution.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

other agents where the uncertain information can be mod-
elled probabilistically. A more challenging type of uncer-
tainty lies in the environment-related factors which we do
not know how to model.

These two challenges are significantly amplified when it
comes to sequential decision making, where we need to look
at not only short term rewards but also rewards in the long
run. Therefore, one has to consider subsequent effect of the
current action, especially in a dynamic environment. An-
other crucial characteristic is the limited learning trials. On
the Minecraft platform, it usually takes several seconds to
complete one episode of game. Therefore, it is extremely
time consuming to learn an effective policy.

The Microsoft Malmo Collaborative AI Challenge
(MCAC), which is designed to encourage research relat-
ing to various problems in Collaborative AI, builds on a
Minecraft mini-game (Mojang 2017) called “Pig Chase”.
Pig Chase is played on a 9 × 9 grid where agents can ei-
ther work together to catch the pig and achieve high scores,
or give up cooperation and achieve low scores. After play-
ing certain episodes (e.g., 100) of games, the agent who
achieves the highest average scores wins the challenge. De-
spite its simple rules, this game has all the above stated key
characteristics. Though there are numerous papers study-
ing sequential decision making in complex multiagent sys-
tems, they only address a subset of these characteristics. We
hope to shed some light on solving this class of problems
by presenting HogRider, a champion agent which won 2017
Microsoft Malmo Collaborative AI Challenge (Kuno and
Schwiderski-Grosche 2017), with the following key contri-
butions.

First, via enormous simulations, we provide thorough
analysis of the Minecraft game, and identify its key chal-
lenges. Specifically, we discover several important aspects
of the game that are not revealed by the MCAC rule, such
as the pig’s uncertain behavior model, the uncertainty in ob-
serving the other agent’s actions, among others.

Second, we propose a novel agent type hypothesis ap-
proach for dealing uncertainties about the type of the other
agent and the observation of the other agent’s actions. When
forming ad hoc teams, it is important to identify the types of
the collaborating agents. A typical approach is to maintain
a belief of their type, and update it based on the actions of
the other agents using Bayes theorem (Barrett, Stone, and

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

4767

Kraus 2011). However, we discover that the actions of the
other agents could be incorrectly observed. To this end, we
derive two adaptations to the traditional Bayes theorem to
cope with this observation uncertainty.

Third, we come up with a novel Q-learning framework to
learn an optimal policy against each type of agent, with the
following novelties. First, state-action abstraction is utilized
to reduce the huge state-action space. Besides, in classical
tabular Q-learning, Q-values are usually randomly initial-
ized, which requires a particularly large number of episodes
for training. While it takes several seconds to complete an
episode on the Minecraft platform, it is extremely time con-
suming to train an effective policy. We propose a warm start
approach to initialize the tabular Q-function, which utilizes
a decision tree framework derived from human reasoning.
Moreover, we show that when learning trials are limited,
random exploration of potential optimal actions is inefficient
and sometimes even harmful for searching optimal policies.
Therefore, we propose an active-ε-greedy method to make
better tradeoff between exploitation and exploration.

Last, we conduct extensive experiments to evaluate
HogRider. We demonstrate that by considering uncertainty
in agent action observation, HogRider outperforms exist-
ing agent type belief update methods. We also show im-
proved performance of HogRider compared with traditional
Q-learning methods. Challenge results show that HogRider
outperforms all the other teams by a significant edge, in
terms of both optimality and stability. Moreover, we show
that HogRider performs even better than human players.

Related Work

One line of related research is teamwork within a mul-
tiagent system where agents cooperate through commu-
nication (Tambe 1997; Grosz and Kraus 1996) or pre-
coordination (Horling et al. 1999). These methods assume
fully cooperative agents and do not consider uncertainty
about cooperating agents’ types. Recently, research efforts
have been put on ad hoc interactions among agents, where
agents need to interact without prior knowledge of the other
agents (Stone et al. 2010). They study both cooperative (Bar-
rett et al. 2013; Albrecht, Crandall, and Ramamoorthy 2016)
and competitive (Southey et al. 2012; Albrecht, Crandall,
and Ramamoorthy 2016) scenarios, where agent type hy-
pothesis and opponent modelling are used to handle the un-
certainty. However, they do not consider the uncertainty in
agent action observation and limited learning trials.

Multi-agent reinforcement learning (MARL) has also
been applied to study interactions among a set of
agents (Singh, Kearns, and Mansour 2000; Conitzer and
Sandholm 2007; Foerster et al. 2016). These approaches,
from dealing with small to large scale problems, usually fo-
cus on obtaining Nash equilibrium via self-play, or learning
optimal strategies against stationary opponents.

Another line of research studies the sequential multiagent
planning problem via game theoretic approaches (Dunne et
al. 2010; De Cote et al. 2012). Brafman et al. (2009) ap-
ply game theoretic solutions to coalition planning games
and auction planning games. Jordán and Onaindia (2015)

Figure 1: Setting of MCAC. The left hand side of the figure
is the first person view of the game, while the right hand side
of the figure is the symbolic global view.

propose a two-game proposal for solving congestion games
among a group of autonomous vehicles (Jordán et al. 2017).

Some other papers (Sandholm 2015; Horák, Bosanskỳ,
and Pechoucek 2017) apply a stochastic game framework to
multiagent planning problems. Despite the theoretical mer-
its, pure game theoretic approaches usually suffer from com-
putational issues that arise from large-scale state and strat-
egy spaces. Other classical approaches to sequential plan-
ning in multiagent systems include decentralized partially
observable Markov decision process and its variants (Seuken
and Zilberstein 2008; Agmon and Stone 2012). These ap-
proaches also suffer from high computational complexity.

Challenge Description and Analysis

We briefly introduce the challenge background and analyze
its key characteristics.

Settings & Rules

MCAC builds on a mini-game played within a 9 × 9 grid
on the Minecraft platform (Figure 1). The green grids rep-
resent the grass where agents can walk on, the yellow grids
represent the blocks where agents cannot walk on or pass
through, and the two black grids represent two exits. There
are two agents and a pig (which can be viewed as part of
the environment). The red arrow represents the agent (RED)
that we are going to design, the blue arrow represents the
agent (BLUE) that agent RED needs to play with, and the
pink dot represents a pig which needs to be caught. The le-
gal movements of the agents include: move forward (MF),
turn left (TL) and turn right (TR). Agent BLUE is provided
by MCAC, which is designed to be either a Random agent
or a Focused agent in each episode of game. A Random
agent takes any of the three legal movements with an equal
probability of 1/3, while a Focused agent always chases the
pig through the shortest path using A∗ search algorithm. In
each episode of game, there is a probability of .25 for agent
BLUE to be Random, and a probability of .75 to be Focused.
This type does not change within one episode of game.

The goal of the challenge is to achieve a high score in cer-
tain episodes (e.g., 100 or 500) of games. After an episode
started, two agents take actions in turn. If the pig is caught,
each agent receives 25 points. To catch a pig, the pig has
to be completely surrounded by blocks and the agents. Fig-
ure 2(a) shows an example where a pig can be caught by
a single agent, i.e., when the pig goes to the exit, and one

4768

(a) Catch a pig alone (b) Catch a pig together

Figure 2: Two types of situations where a pig is caught

2 4 6 8 10

2

4

6

8

10

(a)
2 4 6 8 10

2

4

6

8

10

(b)
2 4 6 8 10

2

4

6

8

10
0

0.004

0.008

0.012

0.016

0.02

(c)

Figure 3: Probability distribution of the pig’s positions af-
ter agent RED takes one step, where the grid in the center
is the original position of the pig, and darker color means
higher probability. In Figures 3(a)-3(c), agent RED respec-
tively waits for (a) no time (b) 1 second, and (c) 3 seconds
before it takes a step. Note the pig does have a very short
time (around 0.1 seconds) moving even if agent RED does
not wait. This time is the response time of the Minecraft
platform.

agent goes to the only grass grid beside the exit. Figure 2(b)
shows an example where a pig can only be caught by two
agents. An alternative is to give up cooperation and go to the
exit. In this case, only the agent who first reaches the exit
can get 5 points. Our agent loses 1 point whenever one step
is made, and one episode of game terminates as long as one
of the following conditions is met: 1) the pig is caught, 2)
one agent reaches the exit, 3) 25 steps are taken, or 4) the
maximum game time (about 100 seconds) is used up.

Analysis and Key Challenges

Uncertain behavior model of the pig. The behavior model
of the pig is crucial to generating efficient policies, whereas
it is not released by MCAC. We keep statistics of the pig’s
positions after our agent takes one step. After 10, 000 steps,
we draw the probability distribution of the pig’s positions.
As shown in Figure 3, we can see that 1) the pig does not
follow the legal movements as human agents, and is able to
move multiple steps or even make turns when human agent
takes one step, 2) the probability of the pig moving to each
direction is almost equal, and 3) with longer waiting time
before our agent RED takes a step, the higher probability
the pig moves. The statistics gives us a hint that it might be
beneficial to wait for a few seconds when the pig is in a po-
sition that is uncatchable, so that it might move to positions
that are catchable.

Uncertainties in the type of agent BLUE & observation of
its actions. In each episode of game, agent BLUE has a .25
and a .75 probability of being Random or Focused, respec-
tively. While correctly predicting its type relies on accurate
observation of its movements, we noticed that the action ob-
served (returned by the Minecraft simulator) has a probabil-
ity of around .25 to be incorrect. It would be highly risky if
this observation uncertainty is neglected.

Coexistence of cooperation & self-interest. To catch a pig
(25 points) in situations like in Figure 2(b), agent RED must
cooperate with agent BLUE. Under some other situations,
it might be more beneficial to deviate from the cooperation
and move to the exit (5 points), especially when agent RED
is close to the door, or there are few steps left.

Sequential decision making. Apart from the above chal-
lenges, our agent needs to sequentially make decisions dur-
ing each episode of game. This significantly adds to the com-
putational complexity of the problem.

Limited learning trials. The simulations are performed on
the Minecraft platform, which usually takes several seconds
for one episode of game. As a result, it is extremely time
consuming to run a large number of simulations. For exam-
ple, if one episode runs for 5 seconds, it would take around
6 days to train 100, 000 episodes.1

Solution Approach

In this section, we present key ideas behind HogRider. First,
we design an agent type hypothesis framework to update the
belief over the types of agent BLUE, which is robust to un-
certainty in agent action observation. On top of that, we pro-
pose a novel Q-learning approach to learn an optimal policy
against each type of agent BLUE.

Belief Update for Agent Types

Formally, we denote a set of agent types as T =
{T} = {Random,Focused}. We have a prior probabil-
ity distribution over the agent types, i.e., P (Random) =
0.25, P (Focused)=0.75. At each position, we also know
the conditional probability P (a|T) of a type T agent taking
movement a ∈ {MF,TL, TR}. According to the Bayes
theorem, the posterior probability of an agent being type T
when it takes movement a is:

P (T |a) = P (a|T) · P (T)

P (a)
, (1)

where P (a) is the probability of movement a being taken.
Generalizing Bayes theorem. As the movements of agent

BLUE might be incorrectly observed with a probability of
Pu ≈ .25. We now derive the belief update rule which con-
siders the uncertainty in observing agents’ actions.

1As we will introduce in the next section, this number is smaller
than half of the state-action space size. An alternative to the
Minecraft platform is to build our own simulator by formalizing
a model for the game. However, the uncertainties discussed above
cannot be accurately modelled.

4769

Theorem 1. With the existence of uncertainty in observing
the action of agent BLUE, the agent belief update rule is

P (T |a) = P (T)·[(1−Pu)·P (a|T)+Pu·P (a|u)]
(1−Pu)·

∑
T∈T P (a|T)·P (T)+Pu·P (a|u)

= P (T)ϕ(T, a) (for simplicity) (2)

where P (a|u) is the conditional probability of movement a
being observed when the observation is incorrect.

Proof. With observation uncertainty, we rewrite P (a|T) as

P ′(a|T) = (1− Pu) · P (a|T) + Pu · P (a|u). (3)

Similarly, the probability P (a) of an action being taken is
reformulated as

P ′(a) = (1−Pu) ·
∑
T∈T

P (a|T) ·P (T)+Pu ·P (a|u). (4)

Substituting Eqs.(3)-(4) to Eq.(1), we obtain Eq.(2).

Squash Bayes update with hyperbolic tangent function.
Even with the generalization to Bayes theorem, a single
wrong action observation could drastically drop the pos-
terior probability of the correct agent type. To mitigate
this issue, we propose a more conservative update method,
which uses a shifted hyperbolic tangent function sq(x) =

tanh(x−1)+1 = e2(x−1)−1
e2(x−1)+1

+1 to squash the factor ϕ(T, a)
to a value between 0.5 and 2, such that the agent type belief
is updated to a new value within (0.5, 2) times of the original
value. Formally, the Squash Bayes update function is:

P (T |a) = P (T)ϕ′(T, a), (5)

where

ϕ′(T, a) =

{
sq(ϕ(T, a)), ϕ(T, a) ≥ 1

1
sq(1/ϕ(T,a)) , ϕ(T, a) < 1 . (6)

Adapt Q-Learning to Various Challenges

Q-learning (Watkins 1989) is a model-free reinforcement
learning technique for finding optimal policies in sequential
decision making problems. We adapt Q-learning to deal with
various complexities in the problem. Formally, we formulate
the Minecraft game as a Markov Decision Process (MDP).
The state s ∈ S is defined as a four-dimension vector, which
includes the position and facing direction of agent RED, the
position and facing direction of agent BLUE, the position
of the pig (the pig’s behavior does not depend on its facing
direction), as well as the steps that have already been taken.
The action A ∈ A of the MDP is a tuple A = 〈w, a〉, where
w is a binary variable indicating whether HogRider needs
to wait for a certain time period (usually 3 seconds), and a
is the legal movement after the wait option.2 A Q-function
maps a state action pair (s, A) into real values:

Q : S ×A → R (7)

A policy π(A|s) is a mapping from any state s to an ac-
tion A that should be taken in that state. In Q-learning, an

2Note that action is different from the legal movement in the
sense that it has one more dimension of variable w.

important challenge is to perform the “exploitation” of the
current optimal action, while balancing the “exploration”
of potentially better actions. For example, in the ε-greedy
policy, it selects the action with the largest Q-value (i.e.,
A∗ = argmaxQ(s, A)) with probability 1 − ε, and selects
a random action with probability ε.

Usually, Q-learning starts with a randomized initializa-
tion of Q-function Q(s, A). It then generates an episode
(e.g., one round of game on the Minecraft platform) by per-
forming actions derived from the policy, while updating Q-
function with a stochastic gradient descent method, using
the state-action values returned from the generated episode.
Q-learning is guaranteed to converge after sufficient obser-
vations of each action at each state (Watkins 1989).

State-Action Abstraction. For each agent, the number of
its feasible positions is 25−4 = 21 and there are 4 directions
for each position. For the pig, since it can stay at the two ex-
its, the number of feasible positions is 23. Consequently, the
possible combinations of the agents and the pig’s positions
are 21 × 4 × 21 × 4 × 23 = 162, 288. Taking the last di-
mension of state (i.e., the number of steps have already been
taken) into consideration, the possible number of states is
162, 288×25 = 4, 057, 200, which is a huge number consid-
ering the average running time for an episode. While playing
the game, we notice that:

It is the relative positions (i.e., distances) between the
agents, the pig and the exits, rather than the absolute po-
sitions, that determines a player’s strategy.

We propose a state abstraction method based on the intu-
ition. An abstracted state has five dimensions, i.e., PigStat
which indicates whether the pig is uncatchable (PigStat =
0), catchable by a single agent (PigStat = 1) or catchable
by 2 agents (PigStat = 2), d(R,P) which indicates the
distance between agent RED and the pig, d(B,P) which de-
notes the distance between agent BLUE and the pig, d(R,E)
which denotes the distance between agent RED and the near-
est exit, and step which denotes the number of steps that
have been taken. Since PigStat has three possible states,
the distance of an agent to the pig ranges from 0 to 9, and
the distance of agent RED to the nearest exit ranges from 0
to 7, the total number of states in the abstracted state repre-
sentation is 3×10×10×8×25 = 60, 000, which is less than
15% of the original state space. To transform from the orig-
inal representation of states to the new one, we only need
to calculate the three types of distances based on the origi-
nal state representation, the calculation overhead of which is
trivial.

One issue raised from the abstracted state representation
is that, in the new state space, we ignore the direction of
agent RED, making it infeasible to directly decide its legal
movement. To handle this issue, we propose a corresponding
action representation, i.e., a binary variable w which is the
same as the original action representation, and a binary vari-
able a′ which indicates whether to chase the pig or to head
for the exit. To translate the new action representation to the
original one, we only need to relate to the position of agent
RED, the computation overhead of which is also negligible.
Moreover, the action space is reduced from 2 × 3 = 6 to
2 × 2 = 4. With new representations of states and actions,

4770

Start

0
1

2

YesY Noo

Return -functionn fu

Yes
No

NNNoYesYeYe o

Yess
N

Y

All states visited

End

Generate a state

200 2
1

Figure 4: Flow of the human reasoning-derived decision tree

we can reduce the size of the tabular Q-function to less than
1%, with only 240, 000 state-action pairs.

Warm Start Using Human Reasoning. As analyzed
above, even after abstraction, there are still 240, 000 state-
action pairs. In traditional Q-learning, where Q-function is
usually arbitrarily initialized, it is required to run millions
of episodes to ensure convergence, which takes days due
to the long simulation time. Human demonstration (Wang
and Taylor 2017) was proposed to improve efficiency of re-
inforcement learning, where humans directly assign values
to initialize the Q-function. However, human demonstration
becomes rather inefficient when there are too many state-
action pairs. We take a further step by utilizing a human
reasoning-derived decision tree for Q-function’s warm start.

The key principles of the warm start approach include
1) when making instant decisions (i.e., w=0), we ignore
the pig’s movement according to Figure 3(a); 2) we wait
for the pig to move when it is at an uncatchable position;
and 3) we always choose the action with the highest esti-
mated score. Figure 4 shows the flow of the decision tree
for playing with the Focused agent. It starts with generat-
ing state s = 〈PigStat, d(B,P), d(R,P), d(R,E), step〉.
We first check the value of PigStat. If PigStat = 1, we
further check distance d(R,P). Then we initialize the Q
values of different actions accordingly. For simplicity, we
use w = 0 (or 1) to represent an action without (or with)
waiting time and a′ = 0 (or 1) to represent chasing the pig
(or leaving the game) for A = 〈w, a′〉. For state s, we can
compute the probability Nm(0) (and Nm(1)) that pig stays
unmoved with 25−step steps remaining for w = 0 (and
w = 1). scoreexit is what agent RED can get by leaving the
game through exits. Min Estimate is the estimated score
when the pig stays unmoved with probability Nm(0) for
PigStat = 0 (or moves away with probability 1 − Nm(1)
for PigStat > 0); Max Estimate is the score for agent
RED when the pig is caught at its current position (or the
nearest catchable position). We initialize the Q-function for
playing with Random agent in a similar way.

Active-ε-Greedy. To explore a potentially better action,
classical tabular Q-learning methods usually explore the en-
tire action space (e.g., ε-greedy). Counter-intuitively, experi-
mental results (to be explained later in Figure 6(a)) show that
the performance of ε-greedy (the line with solid circle mark-
ers) declines in the early stage of learning. This is because
the optimal actions estimated by our constructed decision
tree are usually very good. Therefore, exploring suboptimal
actions would lead to performance deterioration in a short
term. Meanwhile, if we always deterministically exploit an
action that has the highest Q-value, there would be very lim-
ited improvement to the current policy. To this end, we pro-
pose an active-ε-greedy approach to balance the exploration
and exploitation. In active-ε-greedy, we still select the opti-
mal action based on the Q-function with the probability of
1 − ε. Different from ε-greedy, we explore sub-optimal ac-
tions with probability ε, when the Q-value of that action is
no less than certain percentage (hand tuned as 50% in prac-
tice) of the highest Q-value in the same state.

Training HogRider. In the training process, the type of
agent BLUE is fixed as either Random or Focused. As shown
in Algorithm 1, training starts with initialization via the de-
cision tree derived from human reasoning. It then enters the
outer loop (Lines 2-8). In each iteration (episode) of the
outer loop, HogRider first initializes the state s (Line 3). It
then enters the inner loop (Lines 4-7). In each iteration (step)
of the inner loop, HogRider first chooses an action A ac-
cording to the active-ε-greedy method(Line 5). It then takes
the action (after that, agent BLUE will alternatively take an
action) and observes the immediate reward R and the next
state s′ (Line 6), which will be assigned as the starting state
of the next step (Line 7). The inner loop terminates when
a terminal state is reached. After that, Q-values for all the
state-action pairs (s, A) that have been visited during this
episode are updated (Line 8), where α is the learning rate.
V (s, A) =

∑terminal
s′=s R(s′, A) denotes the “real” value of

the state-action pair (s, A)), which is the sum of immediate
reward of all the state action pairs that are visited after state
s during the episode. The entire outer loop terminates after
M (e.g., 3, 000) episodes.

Algorithm 1: Training HogRider
1 Q(s, A) ← human reasoning, ∀s, A;
2 while #episodes ≤ M do
3 Initialize state s;
4 while s is not terminal do
5 Choose A with active-ε-greedy method;
6 Take action A, observe R(s, A) and s′;
7 s ← s′;
8 Q(s, A)←(1−α)Q(s, A)+αV (s, A), ∀ visited (s, A)
9 return Q(s, A), ∀s, A;

HogRider

After training, we obtain Q-functions for both agents Ran-
dom and Focused, which are denoted as QR and QF , respec-
tively. We now present HogRider (Algorithm 2) which inte-
grates the learned type-specific Q-function with the agent

4771

type hypothesis framework. Note that unlike the training
process, agent BLUE can be either Random or Focused
for different episodes of games. At the beginning of each
episode of game, HogRider initializes the belief of agent
BLUE being Random as P (Random) = 0.25 (Line 1). At
the same time, HogRider observes the initial state s of the
game and takes the first action according to the initial belief
(Line 3). After that, it observes the new state s′ (Line 4) and
enters the while loop (Lines 5-9).

Algorithm 2: HogRider
1 P (Random) ← 0.25;
2 Observe initial state s;
3 Take action A w.r.t. s and P (Random);
4 Observe s′;
5 while s′ is not terminal do
6 Observe action of agent BLUE;
7 Update P (Random) using Eq.(5);
8 Take action A w.r.t. s′ and P (Random);
9 s ← s′ and observe new state s′;

Different strategies of selecting an optimal action. In
each iteration, it observes the action of agent BLUE in
last step (Line 6) according to the difference between s
and s′, updates the belief accordingly (Line 7), takes an
action A based on the current state s′ and P (Random)
(Line 8). There are three ways to select an action. One
way (called Separate) is to compare P (Random) with
a threshold P0, and choose A∗ = argmaxQR(s, A) when
P (Random) ≥ P0 (vice versa). The second way (called
Weighted) is to maintain an expected Q-value for each ac-
tion A: Q̄(s, A) = P (Random) ·QR(s, A)+P (Focused) ·
QF (s, A), and select A∗ = argmax Q̄R(s, A). These two
methods are deterministic. The last way (called Mixed)
is to use A∗ = argmaxQR(s, A) with a probability
P (Random), and use A∗ = argmaxQF (s, A) with a prob-
ability of P (Focused), which is non-deterministic. After
taking an action, it stores the current state in s and observes a
new sate s′ (Line 9). This process until s′ is a terminal state.

Experimental Evaluations

In this section, we present the challenge results of the top
5 teams in MCAC 2017. We also conduct extensive exper-
iments to evaluate performance of various ideas from the
proposed solution algorithm.3

MCAC Results Table 1 shows the performance of the top
5 teams in MCAC 2017. In terms of both per step mean
score and variance/mean, HogRider achieves the best perfor-
mance. Compared to the second best team, HogRider wins
with an edge of 13% in mean score, and an edge of 21.7%

3There are two ways to measure the performance of different
methods, i.e., per step score and per game (episode) score. Due to
page limit, we only show results for per step scores, while we refer
to our online appendix (Xiong et al. 2017) for results of per episode
scores, as well as figures showing the detailed curves of the results
that cannot be presented with tables.

in variance/mean. This demonstrates that HogRider outper-
forms other teams in both optimality and stability.

Table 1: Performance of different teams in MCAC. ↑ means
the higher, the better, while ↓ means the opposite. The best
performance is highlighted for all the tables.

Team Mean (↑) Variance Variance/Mean (↓)

HogRider 2.752 2.55 0.9266

The Danish Puppeteers 2.435 2.88 1.1828

Bacon Gulch 1.681 2.18 1.2968

Village People 1.618 2.05 1.2670

AASMA 0.591 1.07 1.8105

Strategies for Selecting the Optimal Action As we de-
scribed, there are three strategies to select an optimal action
based on the Q-function, i.e., Separate, Weighted and
Mixed. Table 2 shows the performance of the three different
strategies, where Separate has the best performance in
both optimality and stability. In the following experiments,
we utilize Separate as the base strategy for optimal action
selection.

Table 2: Strategies for selecting the optimal action
Mean score (↑) Variance Variance/Mean (↓)

Separate 2.752 2.55 0.9266

Weighted 2.527 2.36 0.9339

Mixed 2.478 2.81 1.1340

Belief Update Table 3 evaluates the performance of
HogRider using different methods for updating the beliefs
over agent types, where Bayes means traditional Bayes the-
orem in Eq.(1), G-Bayes means the extension of Bayes the-
orem in Eq.(2), and G-Bayes+tanh means G-Bayes with a
hyperbolic tangent squashing function in Eq.(5).

Table 3: Different methods for agent type belief update
Method Accuracy Mean(↑) Var. Var./Mean(↓)

Bayes 0.578, 0.955 (0.672) 2.456 2.45 0.9976

G-Bayes 0.701, 0.886 (0.747) 2.505 2.27 0.9062

G-Bayes+tanh 0.961, 0.863 (0.937) 2.752 2.55 0.9266

Note that for the Accuracy column, the three numbers are
respectively the detection accuracies of two agent BLUE
types and the expected overall accuracy. In general, G-
Bayes+tanh has the highest overall detection accuracy and
optimality among all methods, while being slightly inferior
to G-Bayes in stability. Compared with the second best ap-
proach, G-Bayes+tanh is better with an edge of 9.9% in op-
timality, and an edge of 25% in overall detection accuracy.

Warm Start Figure 5 shows the learning curve and valida-
tion curve of HogRider with human reasoning-aided initial-
ization playing with the Focused agent. The validation curve
shows that, using initialization, the mean score of HogRider

4772

0 500 1000 1500 2000 2500 30002.5

3

3.5

4

Learning episodes

Av
er

ag
e

sc
or

e
/ s

te
p

No Init.
With Init.

(a) Learning curve (b) Validation curve

Figure 5: Evaluate human reasoning-aided initialization

0 500 1000 1500 2000 2500 30002.5

3

3.5

4

Learning episodes

Av
er

ag
e

sc
or

e
/ s

te
p

Deterministic
ε−Greedy

Semi−Deterministic
Active ε−greedy

(a) Learning curve

0 200 400 600 800 10002.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

Validation episodes

Av
er

ag
e

sc
or

e
/ s

te
p

Deterministic
ε−Greedy

Semi−Deterministic
Active ε−greedy

(b) Validation curve

Figure 6: Evaluate different exploration methods

significantly improves by 10.9%, while variance/mean de-
creases by 5.7%. The learning curve indicates that we can
learn a better Q-function much faster.

Different Exploration Methods Figure 6 compares the
learning curve and validation curve of the active-ε-greedy
with other exploration methods (playing with Focused
agent), where Deterministic always selects the current op-
timal action A∗ = argmaxQ(s, A)), ε-greedy selects A∗

with probability 1 − ε and randomly explores other actions
with probability ε, Semi-Deterministic selects A∗ with prob-
ability 1− ε and explores the second best action with prob-
ability ε. From the learning curve, we can see that 1) arbi-
trary exploration (i.e., ε-greedy) can be rather harmful when
learning trials are limited, 2) deterministic methods pro-
vide limited help in improving the current policy, 3) semi-
deterministic methods always explore the second-best action
without considering the estimated value of it, which is also
inefficient, and 4) with active-ε-greedy, the potential opti-
mal actions (with at least 50% estimated value of the best
action) are exploited and the policy keeps improving along
the training process. The validation curve demonstrates the
effectiveness of active-ε-greedy method. In terms of mean
score, active-ε-greedy is better with an edge of 4.1% com-
pared with the second best approach (Deterministic), and
better with an edge of 6.7% compared with ε-greedy.

Compare HogRider with Human Players We also in-
vited 10 human players from our university to play the Pig
Chase game, all of whom are PhD candidates. Surprisingly,
the results show that HogRider performs even better than
human players with an edge od 28.1% in mean increase and
29.6% in variance/mean decrease.

Table 4: Comparison with human players
Approach Mean(↑) Variance Variance/Mean(↓)
HogRider 2.752 2.55 0.9266
Human 2.149 2.83 1.3169

Lessons Learned

Developing HogRider has been a progressive experience.
Different from the constructive flow that presents HogRider,
it was rather a step by step process where new discover-
ies and ideas interchangeably emerge. We gained several
insights into solving challenging problems in the areas of
collaborative AI, as well as other more general research do-
mains. First, “if you know yourself and your enemy, you
will never lose a battle”.4 It has been a long exploration
before we set up the integrated framework of agent type hy-
pothesis and Q-learning. Our initial plan was to simply learn
an effective policy with Q-learning without differentiating
different types of agents. Despite the model-free property of
Q-learning, its direct application worked poorly simply be-
cause we did not exploit the problem structure. While look-
ing for cutting-edge tools is important, learning the foun-
dations of the problem ensures the right direction. Second,
human intuition can take machines to the heights. Due
to its popularity, we initially decided to use DQN (Glorot
and Bengio 2010) as the learning approach to learn policies
against each agent type. Despite its power in expressing Q-
functions, initialization does not work due to the parame-
terized Q-functions, which poses DQN at a disadvantageous
place against tabular Q-learning approaches. In fact, a few
teams using DQN had poor performance in the challenge. It
is rather surprising and enlightening how much human rea-
soning could help. This type of initialization could be uti-
lized in other areas where domain knowledge can help de-
rive human reasoning. Moreover, models and solution al-
gorithms should be kept updating with new discoveries
of latent properties. For example, the uncertainty in agent
action observation was not discovered until the algorithm
was almost built. To this end, we made two additional adap-
tations to the traditional Bayes theorem which brought sig-
nificant improvement to the algorithm.

Conclusion & Future Research

There are many characteristics such as complex interactions
among agents, uncertainties, and limited learning trials that
make effective sequential planning extremely challenging.
The MCAC, which is designed to encourage research re-
lating to various problems in Collaborative AI, is a typical
test bed with all these challenges. We introduce HogRider,
champion agent of MCAC in 2017, which has two key inno-
vations. First, we design a generalized agent type hypothesis
framework to handle the uncertainties in agent type and ob-
servation in the other agent’s action. Second, we propose a
novel Q-learning approach to learn effective policies against
each type of collaborating agents with various novel ideas,
including state-action abstraction, a human reasoning-aided

4It is from an ancient Chinese military treatise, The Art of War.

4773

approach to initialize Q-function, and an active greedy strat-
egy to balance the exploitation and exploration.

One potential future research is to look at scenarios where
agents are completely unknown to each other before they
meet. For example, there are no prior knowledge of the dis-
tribution of agent types, or there are no pre-defined types
for the collaborating agents. Another potential research is to
propose solution algorithms which can be generalized to dif-
ferent types of environments. For example, if the positions
of the blocks are replaced, more blocks are added, or the
size of grids are varied, how could the policy learned from
the old setting applied to the new setting? In these scenarios,
algorithms might have to combine off-linely trained policies
with online learning (Anderson 2008), which resembles the
idea of Endgame solving (Ganzfried and Sandholm 2015)
in Computer Poker games, and the set of transfer learning
algorithms that are designed for reinforcement learning do-
mains (Taylor and Stone 2009).

Acknowledgement

We thank Microsoft Research for organising the challenge.
This research is supported by the National Research Foun-
dation, Prime Ministers Office, Singapore under its IDM
Futures Funding Initiative, and is supported by NRF2015
NCR-NCR003-004 and NCR2016NCR-NCR001-002.

References

Agmon, N., and Stone, P. 2012. Leading ad hoc agents in
joint action settings with multiple teammates. In AAMAS,
341–348.
Albrecht, S. V.; Crandall, J. W.; and Ramamoorthy, S. 2016.
Belief and truth in hypothesised behaviours. Artificial Intel-
ligence 235:63–94.
Anderson, T. 2008. The Theory and Practice of Online
Learning. Athabasca University Press.
Barrett, S.; Stone, P.; Kraus, S.; and Rosenfeld, A. 2013.
Teamwork with limited knowledge of teammates. In AAAI,
102–108.
Barrett, S.; Stone, P.; and Kraus, S. 2011. Empirical evalua-
tion of ad hoc teamwork in the pursuit domain. In AAMAS,
567–574.
Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz,
M. 2009. Planning games. In IJCAI, 73–78.
Conitzer, V., and Sandholm, T. 2007. Awesome: A gen-
eral multiagent learning algorithm that converges in self-
play and learns a best response against stationary opponents.
Machine Learning 67(1-2):23–43.
De Cote, E. M.; Chapman, A. C.; Sykulski, A. M.; and Jen-
nings, N. R. 2012. Automated planning in repeated adver-
sarial games. arXiv preprint arXiv:1203.3498.
Dunne, P. E.; Kraus, S.; Manisterski, E.; and Wooldridge,
M. 2010. Solving coalitional resource games. Artificial
Intelligence 174(1):20–50.
Foerster, J.; Assael, Y. M.; de Freitas, N.; and Whiteson, S.
2016. Learning to communicate with deep multi-agent rein-
forcement learning. In NIPS, 2137–2145.

Ganzfried, S., and Sandholm, T. 2015. Endgame solving in
large imperfect-information games. In AAMAS, 37–45.
Glorot, X., and Bengio, Y. 2010. Understanding the diffi-
culty of training deep feedforward neural networks. In AIS-
TATS, 249–256.
Grosz, B. J., and Kraus, S. 1996. Collaborative plans for
complex group action. Artificial Intelligence 86(2):269–357.
Horák, K.; Bosanskỳ, B.; and Pechoucek, M. 2017. Heuris-
tic search value iteration for one-sided partially observable
stochastic games. In AAAI, 558–564.
Horling, B.; Lesser, V.; Vincent, R.; Wagner, T.; Raja, A.;
Zhang, S.; Decker, K.; and Garvey, A. 1999. The TAEMS
white paper.
Jordán, J., and Onaindia, E. 2015. Game-theoretic approach
for non-cooperative planning. In AAAI, 1357–1363.
Jordán, J.; de Weerdt, M.; Onaindia, E.; et al. 2017. A
better-response strategy for self-interested planning agents.
Applied Intelligence 1–21.
Kuno, N., and Schwiderski-Grosche, S. 2017. Present-
ing the winners of the Project Malmo Collaborative AI
Challenge. https://www.microsoft.com/en-us/research/blog/
malmo-collaborative-ai-challenge-winners/.
Mojang. 2017. Minecraft. https://minecraft.net/en-us/.
Sandholm, T. 2015. Abstraction for solving large
incomplete-information games. In AAAI, 4127–4131.
Seuken, S., and Zilberstein, S. 2008. Formal models and
algorithms for decentralized decision making under uncer-
tainty. In AAAMAS, 190–250.
Singh, S.; Kearns, M.; and Mansour, Y. 2000. Nash conver-
gence of gradient dynamics in general-sum games. In UAI,
541–548.
Southey, F.; Bowling, M. P.; Larson, B.; Piccione, C.; Burch,
N.; Billings, D.; and Rayner, C. 2012. Bayes’ bluff: Oppo-
nent modelling in poker. arXiv preprint arXiv:1207.1411.
Stone, P.; Kaminka, G. A.; Kraus, S.; Rosenschein, J. S.;
et al. 2010. Ad hoc autonomous agent teams: Collaboration
without pre-coordination. In AAAI, 1504–1509.
Tambe, M. 1997. Towards flexible teamwork. Journal of
Artificial Intelligence Research 7:83–124.
Taylor, M. E., and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research 10:1633–1685.
Wang, Z., and Taylor, M. E. 2017. Improving reinforcement
learning with confidence-based demonstrations. In IJCAI,
3027–3033.
Watkins, C. J. C. H. 1989. Learning from Delayed Rewards.
Ph.D. Dissertation, King’s College, Cambridge.
Xiong, Y.; Chen, H.; Zhao, M.; and An, B. 2017. Hogrider
appendix. http://AAAImalmo.weebly.com.

4774

