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Abstract

Trajectory interpolation, the process of filling-in the gaps and
removing noise from observed agent trajectories, is an essen-
tial task for the motion inference in a multi-agent setting. A
desired trajectory interpolation method should be robust to
noise, changes in environments or agent densities, while also
being able to yield realistic group movement behaviors. Such
realistic behaviors are, however, challenging to model as they
require avoidance of agent-agent or agent-environment colli-
sions and, at the same time, demand computational efficiency.
In this paper, we propose a novel framework composed of
data-driven priors (local, global or combined) and an efficient
optimization strategy for multi-agent trajectory interpolation.
The data-driven priors implicitly encode the dependencies
of movements of multiple agents and the collision-avoiding
desiderata, enabling elimination of costly pairwise collision
constraints, resulting in reduced computational complexity
and often improved estimation. Various combinations of pri-
ors and optimization algorithms are evaluated in comprehen-
sive simulated experiments. Our experimental results reveal
important insights, including the significance of the global
flow prior and the lesser-than-expected influence of data-
driven collision priors.

Introduction

In a multi-agent scenario, a tracking system deployed on
an observing, moving or stationary agent (camera), needs
to estimate complete trajectories of other moving agents
(people, robots, crowds) c.f., (Bera and Manocha 2014;
Bera, Kim, and Manocha 2015). However, direct tracker out-
put of the observing agent is often insufficient to reconstruct
accurate trajectories because of factors such as noise, the
environmental configuration, density of agents in a crowd,
or hardware failures. For instance, during the movement of
multiple agents in a complex scenario, there are inevitable
inter-agent and agent-obstacle occlusions from the perspec-
tive of the observing agent, resulting in observed trajectories
that are both noisy and incomplete.

To obtain high-quality complete trajectories, tracking sys-
tems typically adopt a multi-step strategy. First, the sensor
deployed on the observing agent detects and tracks objects
in its neighboring area to obtain local tracklets, continuous

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

but short trajectories, of other moving agents. The tracklets
of specific agents are then linked together by applying track-
let similarity measurements and re-identification algorithms
(e.g., min-cost flow). Next, a trajectory interpolation algo-
rithm is applied to fill in the gaps between the linked track-
lets, in a way that the filled portions present desired realis-
tic properties such as containing few potential collisions and
saving energy. Finally, trajectory extrapolation could be ap-
plied to the reconstructed trajectories so that the observing
agent can further plan its own motion.

While several trajectory interpolation approaches have
been proposed to-date (Rodriguez et al. 2011; Sharma,
Huang, and Nevatia 2012; Bera and Manocha 2014), few
have proven to work robustly in a general setting, often
exhibiting slow performance and inability to tackle com-
plex scenarios. In practice, many real-time tracking sys-
tems typically trade-off accuracy largely for speed (Bera and
Manocha 2014). In addition, few approaches attempt to in-
tegrate realistic data-driven priors into the estimation frame-
work except for few very recent attempts in simulation and
content generation community (Bera, Kim, and Manocha
2016), resulting in interpolated trajectories that fail to match
typical realistic crowd behaviors.

The main contribution of our work is a decentralized
framework for multi-agent trajectory estimation that yields
realistic trajectory estimates and exhibits reduced computa-
tional complexity. To that end, the proposed framework is
composed of a data-driven prior (either local, global or the
combination thereof) and an optimization algorithm. The
data prior implicitly encodes the movement dependencies
of multiple agents and thus eliminates the satisfaction of
costly pairwise collision constraints and decouples individ-
ual agent trajectories, yielding reduced computational com-
plexity while maintaining or improving the quality of es-
timation. We evaluate different combinations of prior rep-
resentations in simulated experiments and demonstrate the
essential role of these priors to accomplish low-complexity,
high-accuracy multi-agent trajectory estimation.

Prior Work

Modeling, simulation and analysis of crowd motion
have attracted significant interest in research community
over the past years, e.g. (Jacques Junior, Raupp Musse,
and Jung 2010; Ali et al. 2013; Kapadia, Pelechano,
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Figure 1: Overview of the proposed framework. A tracker
generates noisy and missing trajectories due to occlusions
or sensor failure. Our approach takes such observations and
applies a global optimization-based trajectory interpolation
framework, which incorporates data-driven priors from a
model trained on trajectories generated by crowd simulator.
Outcome of the optimization (updated trajectories) can be
used as new observations to obtain new priors for iteratively
improving the tracking performance.

and Allbeck 2015). We refer readers to survey papers
for important works in this area (Zhan et al. 2008;
Li et al. 2015). In the following, discuss related work on
crowd motion modeling and estimation in context of the
trajectory interpolation problem.

Crowd Motion and Tracking. It is common to
introduce a motion prior to improve pedestrian tracking ac-
curacy (Hu, Ali, and Shah 2008; Ali and Shah 2008;
Rodriguez, Ali, and Kanade 2009). The Social
Force model (Helbing and Molnár 1995) is one
particularly popular choice (Pellegrini et al. 2009;
2010), that represents individual dynamic behavior as
a combination of different types of forces that characterize
both attractive and repulsive effects between pairs of agents
or between an agent and an obstacle (an obstacle could be
viewed as a static agent with its own shape). Extensions
include the multi-target tracking model (Pellegrini and
Gool 2013) that incorporates several different priors such
as appearance, physical constraints and social behavior of
pedestrians. Bera and Manocha (Bera and Manocha 2014;
Bera, Kim, and Manocha 2015) introduced a real-time
algorithm for trajectory estimation, which works in medium
density crowds using particle filtering. Their approach
relies on a multi-agent motion model called velocity obsta-
cle (van den Berg, Lin, and Manocha 2008) that delimits
a space of relative velocity within which collision free
behavior is guaranteed for a certain period of time. Similar
to these model-based approaches (Pellegrini et al. 2009;
Bera, Kim, and Manocha 2015), our approach also relies
on a synthetic simulator to provide motion priors for crowd
trajectory estimation, but it utilizes the prior as a term
within a modified global optimization framework of (Yoon
et al. 2016), which is different from the aforementioned
methods. In this way, complex dependencies of movements
are implicitly encoded in the prior to decouple trajectories

while the optimization provides flexibility of incorporating
desired properties in the objective to capture more realistic
behaviors.

Crowd Trajectory Estimation. Alahi et al. (Alahi,
Ramanathan, and Fei-Fei 2014) proposed origin-destination
priors to enhance trajectory estimation performance in the
context of global optimization-based data-driven methods.
They introduced a handcrafted feature called social affinity
map (SAM) to capture relative adjoining positions of a
number of people within a limited area, by computing
the histograms of a number of agents in that region. In
contrast, our global optimization framework allows to
describe the motion patterns of crowds in a complex
scenario within the visibility area of an agent that incor-
porates much richer information (e.g., the configuration
of the environmental obstacles, the shapes and velocities
of the agents, rather than a histogram of agent numbers
in 2D space) than SAM feature. Obtaining high-quality
simulation data of crowd motion is an important aspect
in the context of data-driven crowd trajectory estimation,
with many solutions proposed in the graphics commu-
nity (Kapadia, Pelechano, and Allbeck 2015). Since crowd
simulation, tracking and trajectory estimation are closely
related, crowd simulators (Helbing and Molnár 1995;
van den Berg, Lin, and Manocha 2008) may be utilized as
the source of motion priors or training data for motion prior
models necessary to improve the tracking accuracy (Lerner,
Chrysanthou, and Lischinski 2007).

Neural Network-based Methods. The work in (Long,
Liu, and Pan 2017) introduced an approach for data-driven
collision-minimizing motion planning. In this approach a
neural network (NN) is trained from examples of collision-
free behaviors, aimed at cloning the Optimal Reciprocal
Collision Avoidance (ORCA) policy (van den Berg et al.
2011), which provides a sufficient condition for avoiding
collisions if the agents are not densely packed, otherwise
ORCA has to select a reasonable velocity. However, this
method can not mimic the movement behavior well without
a large amount of training samples. Even with large train-
ing sets, emphasizing realistic behaviors such as collision
minimization is still difficult, since behavior cloning gen-
erates only rough imitations while ignoring some detailed
properties without environmental interactions to reinforce
those properties. In contrast, our approach can embed var-
ious priors, including not only the neural network based lo-
cal prior, but also globally informed probabilistic velocity
priors (see Sec.) that are critical for proper behaviors, into a
trajectory interpolation framework. This leads to an advan-
tage over either ORCA or neural network-based behavior
cloning, resulting in a framework that can handle large por-
tions of missing trajectories.

Notation
We use the following notation to define the framework. Typ-
ical tracker output at a specific time point is represented
with location and a timestamp. For 2D trackers, the triple
[xi

t; y
i
t; s

i
t] specifies the x-y location and the corresponding

4711



timestamp of agent i at video frame (time step) t. In this
work, we assume a uniform temporal grid with a fixed tem-
poral gap between each consecutive pair of frames of a tra-
jectory. Under this assumption, we can omit the timestamp
sit from the triple.

Our goal is to estimate a set of trajectories for N agents
{Xi}Ni=1, where Xi =

{
xi
t

}T

t=1
is the desired but unob-

served trajectory of agent i. We will be estimating {Xi}Ni=1
from the corresponding observed fragments of trajectories
{Oi}Ni=1, Oi =

{
oi
t

}T

t=1
, with noisy and missing portions.

We use the term tracklet to refer an observed continuous
fragment of a trajectory, and we assume known identifica-
tion (i.e., correspondences between measurements and esti-
mates) of all tracklets. Let Δt denote the sampling period
between two consecutive samples t and t − 1, and vi

t de-
note the true average velocity of agent i over time interval
[t − 1, t], thus xi

t = xi
t−1 + Δt · vi

t. Index t = 0 indicates
known initial position of each agent, xi

0.

Data Driven Priors

We consider two types of data driven priors: local collision
avoidance priors and global flow priors.

Local Collision Avoidance Prior

The goal of utilizing local collision avoidance priors is to
effectively replace collision constraints in (Yoon et al. 2016).
We will use the data driven regression approach that aims to
estimate the velocity vi of agent i at space-time point xi as

vi
t+1 = fNN

(
oi
t,NN ,vi

t

∣∣∣ θNN

)
, (1)

where oi
t,NN is the local measurement which encodes the

local visibility of the state space of agent i. fNN indicates
that this function is a neural network (NN) model that is
trained with collision-free pairs from expert trajectories, to
yield approximately collision-free agent velocities. θNN is
the parameter of the model.

Similar to (Long, Liu, and Pan 2017), the ot,NN generally
includes the following three components: (a) 2D desired ve-
locity: we assume that each agent receives a global velocity
guidance signal ṽi

t. This signal is typically a velocity vector
pointing toward the goal position of each agent, while dis-
regarding local environment geometry or other agents. (b)
Local range/occupancy map: we assume that each agent is
equipped with a 360-dimensional distance scanner to col-
lect distances to surface points of other agents and obstacles
within a certain range. Within the distance map relative po-
sitions and shapes of the environmental configurations and
other agents are explicitly encoded as distances along a 360
degree circularly sampled grid. (c) 360× 2 dimensional ve-
locity map: in addition to aforementioned distances to other
agents or obstacles, we also assume the local velocity mea-
surements of neighboring agents or obstacles.

Global Flow Prior

In a multi-agent setting, individual agent movement typi-
cally follows a flow pattern that depends on the environ-
ment and obstacles, other agents and their density, as well

as the global movement goal. This pattern can be encoded
in a global flow-field. While one could obtain it from a path
planning algorithm, we instead use a data driven approach to
capture the global flow field patterns. Specifically, we model
the flow field with a Gaussian Process (GP) prior:

xi
t+Δt = xi

t + δi
(
xi
t

)
, (2)

where
δix

(
xi
t

)
∼ GP

(
δ|xi

t,Xtrain, θGP

)
. (3)

δix(x
i
t) is the ”global” velocity of agent i at frame t. The

GP will now model the data-prior velocity field in (x, y, s)
space, similar to (Kim, Lee, and Essa 2011). Xtrain denotes
the trajectory data used to train the GP model and θGP the
model hyper-parameter.

Embedding Priors into

Multi-agent Optimization Framework

The essence of the multi-agent optimization framework is to
estimate (interpolate) the trajectories of a set of N agents X
from some set of observations O, given a partially observ-
able environment Z, Pr (X|O,Z). In (Yoon et al. 2016),
this problem is formulated as a MAP estimation problem by
minimizing the following objective

∑

i

Ei
u(x

i,vi|oi) +
∑

i

∑

i �=j

Ei,j
p (xi,vi,xj ,vj), (4)

where Ei
u is the energy term related to an individual agent i

(i.e., unary) and Ei,j
p denotes the pairwise energy term de-

scribing dependencies of a pair of agents (i, j). The unary
term includes energies that model kinematic constraint,
maximum velocity constraint as well as the compatibility
between the estimated trajectories and the measurements oi.
The pairwise term is responsible for avoiding collisions be-
tween agents. However, joint optimization of X is a chal-
lenging task, in part because of the existence of the pairwise
terms as well as the lack of strong motion priors. We next
describe some of the weak but frequently used priors and
then suggest a way to combine our data-driven priors while
keeping the computational complexity under control.

Existing Unary Priors

The following three unary energy terms are defined in (Yoon
et al. 2016) to model individual behavior of an agent: tracker
output, kinetic energy, and maximum velocity constraint.
The Tracker Output term seeks to keep the estimated tra-
jectory close to the measured trajectories while taking into
account the amount of observation uncertainty ui

t:

Ei
gt(x

i|oi) =
∑
t

ui
t‖xi

t − oi
t‖2. (5)

For instance, ui
t = 0 indicates that the measurement is miss-

ing. The Kinetic Energy term ensures that the total traveled
distance is minimized:

Ei
kn(x

i) = Ckn

∑
t

‖xi
t − xi

t−1‖2. (6)

Here parameter Ckn can be interpreted as the mass of an
agent. Finally, the Maximum Velocity Constraint certifies
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Algorithm 1: Proposed Optimization Framework
Input : O, (θNN , σNN ), (θGP , μGP , σGP ),

Ckn, Cmv

Output: X̂
1 Initialize X;
2 repeat
3 Compute NN prior velocities of X using Eq. 1;
4 Compute GP prior velocities of X using Eq. 3;
5 Find X by minimizing Eq. 9;
6 until X converges;
7 X̂ = X;

that each agent’s speed not exceed a physically feasible ve-
locity, given as Cmv:

Ei
mv(x

i) =

{
0 if ‖vi

t‖ ≤ Cmv

∞ otherwise
, ∀t = 1..T. (7)

Combining Local and Global Priors

The key challenge in the aforementioned multi-agent opti-
mization framework arises from the existence of the pair-
wise terms, implying coupling trajectories between agents,
the highly nonlinear nature of the coupling (collision) con-
straints and the expensive computations due to this cou-
pling. If such coupling were to be eliminated, the optimiza-
tion of trajectories for each agent could be solved indepen-
dently from other agents. However, their elimination would
result in infeasible motion with possibly many collisions.
We therefore propose to replace the computationally costly
pairwise terms with stronger global motion and local data-
driven collision priors. Specifically, we propose to modify
the unary objectives by augmenting them as follows:

Ei
dg(v

i|oi) =
1

σ2
GP (oi

t, θGP )

∥∥∥vi
t+Δt − μGP

(
oi
t, θGP

)∥∥∥2

+
1

σ2
NN

∥∥∥vi
t+Δt − fNN

(
oi
NN |θNN

)∥∥∥2

(8)

Here, μGP is the predictive mean and σGP is the predic-
tive standard deviation given by the learned GP and σNN is
the standard deviation of the NN regression model. Integrat-
ing all unary terms above, we obtain the final global objec-
tive, which we seek to minimize in the estimation process:

X̂ = argmin
X

∑
i

Ei
u(x

i,vi|oi) = argmin
X

∑
i

Ei
gt(x

i|oi)

+Ei
kn(x

i) + Ei
mv(x

i) + Ei
dg(x

i|oi) (9)

Therefore, the method proposed in (Yoon et al. 2016)
must optimize all trajectories jointly due to the existence of
the paired term. In contrast, in our framework, each trajec-
tory could be optimized independently because the complex
spatial dependencies among trajectories have been encoded
in the priors. This leads to a practical disjoint (but itera-
tive) optimization paradigm where the decoupled agent tra-
jectories could be optimized in parallel. Consequently, our
method exhibits faster convergence.

Optimization of the Global Objective

We introduce three optimization approaches to solve the op-
timization problem in Eq. 9. In general, our optimization

framework is iterative and outlined in Alg. 1. The iterative
nature of our algorithm stems from the coupling between
the essential collision-avoiding NN term in Eq. 1 and the so-
lution to the optimization problem. Namely, the NN term’s
range observations require the knowledge of the agents’ lo-
cations and velocities, which are the variable we are solving
for. To mitigate this, we propose the alternating optimiza-
tion scheme where the agent’s trajectories from a previous
iteration are used as the proxies for measurements in Eq. 1.

The choice of the minimizer in Step-5 of this algorithm
is important but less essential. We consider three methods
for optimizing Eq. 9: a message-passing algorithm (MPA)
of (Bento et al. 2013; Yoon et al. 2016), a general interior
point method (IPM), and an unscented Kalman smoother
(UKS) that exploits the sequential nature of each (indepen-
dent) agent’s trajectory optimization task while applying a
nonlinear Rauch-Tung-Striebel smoother (Rauch, Striebel,
and Tung 1965). Further details of some of the selected ap-
proaches are provided in the Supplement.

Experiments
To evaluate the proposed framework, we consider six ex-
perimental settings similar to those in (Yoon et al. 2016):
three different settings of bottlenecks (each contains a chal-
lenging egress in evacuation-like scenarios), concentric cir-
cle (agents are symmetrically placed along a circle and aim
to reach their antipodal positions), two-way and four-way
hallways (the environment is divided by two or four build-
ing blocks and agents move along the regulated ways). The
configuration of each scenario and the details of training can
be found in the supplementary.

We considered five different prior velocity predictors:
Gaussian Process (GP), Neural Network (NN), a linear com-
bination of the NN and GP (LinComb GP+NN), GP-driven
NN (GP-fed-NN), and GP-driven ORCA (GP-fed-ORCA).
For GP, NN, and LinComb GP+NN, we used the training
split of the trajectories to train the data-driven priors we
described in Eq. 1, Eq. 3, and Eq. 8, respectively. For GP-
fed-NN, we used the outputs of the trained GP (the velocity
(mean) and the variance) as two additional input branches to
a neural network model, besides the local observation. For
GP-fed-ORCA, we used the trained GP’s velocity (mean) as
the preferred velocity for ORCA (van den Berg et al. 2011),
a common local collision avoiding framework. When train-
ing the models, GP was trained within each scenario while
the NN was trained across all six scenarios to obtain a more
general velocity predictor.

Experimental Setup. The ground truth trajectories are
obtained by running SteerSuite (Singh et al. 2009) library
with social force AI (Helbing and Molnár 1995), and are
split into a training and testing sets. In testing set, each tra-
jectory contains a challenging missing segment around 30%
points, which are initially inferred with linear interpolation
(again, the overall framework is not a forward prediction
procedure. Instead, it iteratively estimates the missing por-
tion of a trajectory (interpolation)). See illustration in Fig.2.

We consider two evaluation strategies. In the first Fixed-
Density strategy, we evaluate our trained models on the test
sets from the same agent density setting. Namely, both the
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Figure 2: Visualization: the two columns show bottleneck
evacuation and bottleneck squeeze scenario respectively. In
each column, the top figure illustrates the initial linear inter-
polation and the middle figure shows the optimized trajec-
tories in the yellow portion, which is further enlarged in the
bottom figure. Best viewed by zooming in.

training and the test scenarios contain the matching (identi-
cal) number of agents. In the second Varying-Density strat-
egy, we consider test scenarios where the agent density
varies compared to training setting to evaluate the general-
ization ability of our approaches. Details of these evaluations
are described below.

The following methods are evaluated: explicit colli-
sion avoidance local optimization using message-passing
ADMM (MPA) (Yoon et al. 2016) that includes pair-wise
constraints, our framework with various prior velocity pre-
dictor settings (GP, NN, LinComb GP+NN, GP-fed-NN,
and GP-fed-ORCA), while the optimizer is either IPM or
UKS. We set the parameter as: ut = 1 if the point is ac-
tually observed, otherwise ut = 0; Ckn = 1 by assum-
ing homogeneous crowd, Cmv = 2.6m/s, Δt = 1.5s and
λ = 1/(σ2

NNΔt2) ≈ 108.0.
We employ four evaluation scores. The deviation in spa-

tial locations of the reconstructed trajectory w.r.t. the ground
truth trajectory is measured with dynamic time warping dis-
tance (DTW). In order to incorporate velocity (temporal in-
formation) in the score, average mean squared error (MSE)

(a) bottleneck evacuation
hh
(b) bottleneck evacuation 2

(c) bottleneck squeeze (d) concentric circles

hh
(e) hallway-two-way (f) hallway-four-way

Figure 3: DTW over 6 scenarios using UKS optimization
for Varying-Density evaluation. Horizontal axis denotes the
number of agents (density). Bounding box indicates the case
where training and test densities are the same.

is also reported. We also measure the number of agent-
agent collisions and agent-obstacle collisions. A collision
occurs when the distance between the centers of two agents
is strictly less than the sum of their radii during their con-
tinuous movements, and it could be checked by solving a
quadratic equation provided with locations of two agents at
consecutive time points. The number of collisions is accu-
mulated by counting all collisions along every time step,
which means this metric is strict. Note that for simplicity
a collision does not change the velocities of involved agents.
We also measure time-to-completion as a proxy for the com-
putational complexity of each approach. Indices are mea-
sured after the 5th optimization loop, when the change of a
trajectory decreases are sufficiently small.

Experimental Results. Results of experiments in the
first, matching-agent-density setting, are summarized in Ta-
ble 1, 2, 3, 4. The average rankings of different methods
can be used to ascertain relative performance and are pre-
sented in Table 5. Table 6 shows the computational time
of different evaluated approaches. Finally, results of evalua-
tions across different train-test agent densities are shown in
Figures 3, 4 and 5. We only show evaluations for one of the
optimization approaches, the UKS, for brevity and because
other approaches follow similar trends.
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Table 1: Missing 30% of frames, Average Relative DTW Distance in Percentage for Fixed-Density evaluation. Red color
indicates the best method in each scenario, followed by the second best in blue. Best viewed in color.

Scenario MPA NN GP-fed-NN LinComb GP+NN GP GP-fed-ORCA
IPM UKS IPM UKS IPM UKS IPM UKS IPM UKS

bottleneck-evacuation 22.2 11.4 18.1 9.2 12.0 10.2 10.4 9.0 9.1 9.0 9.3
bottleneck-evacuation-2 20.9 16.3 18.5 12.7 14.4 11.4 13.1 9.3 11.1 12.3 14.1
bottleneck-squeeze 19.2 3.7 4.4 2.3 3.1 2.6 2.8 3.1 3.1 3.3 3.1
concentric-circles 47.2 14.8 42.5 11.2 46.2 17.2 36.6 17.1 35.8 37.3 34.0
hallway-two-way 16.9 17.4 13.2 13.7 11.2 14.3 13.5 15.3 14.1 14.8 12.6

hallway-four-way 18.0 25.0 17.3 15.5 14.9 15.0 14.1 12.6 12.0 12.9 12.3

Table 2: Missing 30% of frames, Average MSE Distance for Fixed-Density evaluation. Red color indicates the best method in
each scenario, followed by the second best in blue. Best viewed in color.

Scenario MPA NN GP-fed-NN LinComb GP+NN GP GP-fed-ORCA
IPM UKS IPM UKS IPM UKS IPM UKS IPM UKS

bottleneck-evacuation 11.0 1.8 2.8 1.6 1.9 1.1 1.1 1.1 1.1 1.0 1.0

bottleneck-evacuation-2 0.7 0.5 0.9 0.2 0.5 0.3 0.2 0.2 0.2 0.3 0.3
bottleneck-squeeze 6.1 1.0 0.9 0.5 0.3 0.6 0.5 0.8 0.5 0.8 0.5
concentric-circles 0.4 0.6 0.6 0.4 0.5 0.1 0.2 0.1 0.2 0.5 0.3
hallway-two-way 3.1 1.8 1.8 0.6 0.5 1.8 1.1 5.3 4.0 4.2 2.4
hallway-four-way 4.5 1.8 1.9 0.7 0.5 1.5 1.4 2.9 1.4 2.5 1.4

Table 3: Missing 30% of frames, Agent-Agent Collisions for Fixed-Density evaluation. Red color indicates the best method in
each scenario, followed by the second best in blue. Best viewed in color.

Scenario MPA NN GP-fed-NN LinComb GP+NN GP GP-fed-ORCA
IPM UKS IPM UKS IPM UKS IPM UKS IPM UKS

bottleneck-evacuation 10.6 16.2 15.4 17.2 15.0 14.6 12.6 14.2 13.8 16.0 14.2
bottleneck-evacuation-2 147.0 159.8 140.4 157.0 132.4 139.4 140.8 144.8 139.6 158.6 143.4
bottleneck-squeeze 132.0 49.0 46.6 47.4 47.0 46.6 47.0 47.0 47.0 47.4 47.4
concentric-circles 63.4 18.4 52.4 19.6 71.0 26.0 44.0 26.0 44.0 67.0 54.4
hallway-two-way 53.6 30.4 29.6 27.8 29.0 29.8 27.6 29.8 29.6 29.0 30.0
hallway-four-way 35.8 13.6 13.6 12.2 13.0 10.6 12.4 13.6 13.4 15.0 15.4

Table 4: Missing 30% of frames, Average-Obstacle Collisions for Fixed-Density evaluation. Red color indicates the best method
in each scenario, followed by the second best in blue. Best viewed in color.

Scenario MPA NN GP-fed-NN LinComb GP+NN GP GP-fed-ORCA
IPM UKS IPM UKS IPM UKS IPM UKS IPM UKS

bottleneck-evacuation 39.2 52.4 61 45.4 60.2 46.6 54.6 37.2 46.2 39.4 49.4
bottleneck-evacuation-2 46.2 75.4 83.2 76.4 88.0 88.8 87.6 70.4 73.8 89.4 81.4
bottleneck-squeeze 28.0 30.8 32.6 7.8 28.8 8.2 18.8 6.6 18.6 13.2 16.8
hallway-two-way 0.0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
hallway-four-way 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 3.2 0.4

Table 5: Average ranks of different combinations over scenarios for Fixed-Density evaluation. Lower rank is better. Red color
indicates the best method for each evaluation approach, followed by the second best in blue. Best viewed in color.

Evaluation MPA NN GP-fed-NN LinComb GP+NN GP GP-fed-ORCA
IPM UKS IPM UKS IPM UKS IPM UKS IPM UKS

DTW 10.67 8.33 8.50 4.00 6.67 4.83 5.33 3.67 3.75 5.58 4.67
MSE 9.67 8.17 8.83 3.67 4.83 5.33 3.83 5.83 4.17 7.00 4.67
Agent-Agent 8.50 8.17 5.50 5.67 5.17 3.58 3.50 5.67 4.41 8.25 7.58
Agent-Obstacle 3.30 6.60 8.00 4.40 7.80 6.00 7.00 4.10 5.00 7.10 6.70
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Table 6: Computational time for Fixed-Density evaluation (in second). Note that the time of IPM and UKS is sequentially
accumulated over trajectories, while in practice, trajectories could be optimized in parallel when using IPM and UKS.

Scenario MPA NN GP-fed-NN LinComb GP+NN GP GP-fed-ORCA
IPM UKS IPM UKS IPM UKS IPM UKS IPM UKS

bottleneck-evacuation 1343.6 887.9 304.4 887.5 352.7 922.2 337.9 881.1 353.4 681.1 144.4
bottleneck-evacuation-2 521.1 290.1 201.4 321.2 233.8 308.7 222.4 320.0 234.7 174.7 87.7
bottleneck-squeeze 738.8 746.8 283.9 769.3 329.6 637.5 313.4 615.7 331.2 475.5 136.4
concentric-circles 29.5 173.0 143.8 191.6 162.0 178.0 148.5 192.1 162.2 85.2 56.3
hallway-two-way 876.3 841.5 293.9 876.4 342.6 885.8 324.9 880.7 343.7 694.7 143.2
hallway-four-way 1135.9 901.9 319.1 941.4 369.5 944.4 350.6 944.4 368.8 729.7 147.2

(a) bottleneck evacuation (b) bottleneck evacuation 2

(c) bottleneck squeeze
hh

(d) concentric circles

(e) hallway-two-way (f) hallway-four-way

Figure 4: Number of agent-agent collisions over 6 scenar-
ios using UKS optimization for Varying-Density evaluation.
See Fig. 3 for additional caption details.

Discussion

For the Fixed-Density evaluations where the agent density
of the test set matches that of the training set, Table 1, 2,
3 and 4 show that (i) for DTW score, GP-fed-NN, GP and
GP-fed-ORCA perform better than other priors. This illus-
trates that GP is important for regulating the trajectory to
roughly follow the movement (flow) pattern. Furthermore,
MSE measurement follows a similar trend: GP-fed-NN, Lin-
Comb GP+NN and GP perform better than other priors. (ii)
In terms of the number of agent-agent collisions, GP-fed-
NN, LinComb GP+NN perform best, followed by NN. This
demonstrates that pure GP alone is not sufficient to guar-

(a) bottleneck evacuation (b) bottleneck evacuation 2

(c) bottleneck squeeze (d) hallway-two-way

Figure 5: Number of agent-obstacle collisions over 4 scenar-
ios using UKS optimization for Varying-Density evaluation.
See Fig. 3 for additional caption details.

antee the desired collision avoidance, and has to be aug-
mented by another policy learner like NN to achieve the least
number of agent-agent collisions. Surprisingly, for this met-
ric GP-fed-ORCA does not give satisfactory results, which
might stem from our complex training/testing datasets, con-
taining densely packed agents (especially for bottleneck-
evacuation-2 scenario) such that the permitted set of ORCA
is prone to be empty under such agent density. (iii) For the
number of agent-obstacle collisions, MPA and GP perform
better than others, indicating the importance of global flow
patterns to avoid stationary environmental obstacles.

Tab. 5 suggests that, as the optimization approach, IPM
is slightly better than UKS and MPA for DTW; on the other
hand, UKS achieves the fewest agent-agent collisions, lower
than IPM and MPA. MPA yields the fewer agent-obstacle
collisions than IPM and UKS. However, in terms of com-
putational complexity, Tab. 6 shows that MPA is the most
expensive approach since it includes pair-wise constraint. In
addition, UKS is cheaper than IPM, in that UKS exploits
fast forward-backward computations specific to the trajec-
tory domain. The lack of conformability in the above obser-
vations implies that there might not exist a dominant opti-
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mization algorithm and one might need to trade off when
choosing the optimizations.

Evaluation across different agent densities above and be-
low the training density, shown in Fig 3, 4 and 5, provides
an insight into the important generalization ability and ro-
bustness of proposed approaches. In these figures, the model
is trained with density in the third group, marked with a
red bounding box. We can see that (i) for DTW, GP-fed-
ORCA performs best except for concentric-circle scenario,
where NN presents least DTW distance w.r.t. the ground
truth test trajectories. The reason might be that in concentric-
circle scenario, agents are symmetrically placed along a cir-
cle, leading to observation patterns similar across all agents
and, hence, local NN policy patterns that can be learned by
reusing (sharing) the data across agents. On the other hand,
global GP fails to reuse the data, leading to a weaker gener-
alization model. (ii) There is a general increasing monotonic
trend in the number of collisions across densities. This is an
expected outcome, however without a clear winner in terms
of collisions except for concentric-circle scenario. For this
scenario, again, the ability to reuse data across agents, due to
symmetry, may lead to better generalization of the local NN
approach. (iii) Models in the matching density settings out-
perform those in the mismatched density settings in terms
of the agent-agent collisions only for the concentric-circle
scenario, while in terms of the agent-obstacle collisions this
happens for the bottleneck-squeeze scenario. These results
suggest that varying density impact the performance of dif-
ferent models in a reasonable and predictable manner.

Overall, the above observations emphasize the importance
of the global flow priors, embodied in the GP model, in our
multi-agent trajectory optimization framework. Local colli-
sion avoidance priors, manifested through the NN model,
have lesser than expected yet still measurable impact. We
plan to further investigate these factors as well as the gener-
alization across environments and considerations of exploit-
ing advanced trajectory learning algorithms where the dy-
namics of the trajectory and the cost of making an inference
could be implicitly learned, in our future work.
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