
PAC Reinforcement Learning
with an Imperfect Model

Nan Jiang
Microsoft Research

New York, NY 10011
nanjiang@umich.edu

Abstract

Reinforcement learning (RL) methods have proved to be suc-
cessful in many simulated environments. The common ap-
proaches, however, are often too sample intensive to be ap-
plied directly in the real world. A promising approach to ad-
dressing this issue is to train an RL agent in a simulator and
transfer the solution to the real environment. When a high-
fidelity simulator is available we would expect significant re-
duction in the amount of real trajectories needed for learning.
In this work we aim at better understanding the theoretical
nature of this approach. We start with a perhaps surprising
result that, even if the approximate model (e.g., a simulator)
only differs from the real environment in a single state-action
pair (but which one is unknown), such a model could be
information-theoretically useless and the sample complexity
(in terms of real trajectories) still scales with the total number
of states in the worst case. We investigate the hard instances
and come up with natural conditions that avoid the patho-
logical situations. We then propose two conceptually simple
algorithms that enjoy polynomial sample complexity guaran-
tees with no dependence on the size of the state-action space,
and prove some foundational results to provide insights into
this important problem.

1 Introduction
Recently, Reinforcement learning (RL) methods have
achieved impressive successes in many challenging domains
(Mnih et al. 2015; Heess et al. 2015; Silver et al. 2016;
Levine et al. 2016; Mnih et al. 2016). Many of these suc-
cesses occur in simulated environments (e.g., video / board
games, simulated robotics domains), and the state-of-the-art
approaches require a large number of training samples, ren-
dering them inapplicable in non-simulator problems where
data acquisition may be costly.

A promising approach to addressing this issue is to train
an RL agent in a simulator and transfer the solution to the
real environment, which is particularly relevant but not lim-
ited to robotics domains (Koos, Mouret, and Doncieux 2010;
Cutler and How 2015; Hanna and Stone 2017). The ap-
proach faces a significant challenge that the policy trained in
a simulator may have degenerate performance in the real en-
vironment due to the imperfectness of the simulator (Kober,
Bagnell, and Peters 2013).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

There are many aspects from which one could address this
challenge. For example, the simulator and the real environ-
ment may not share the same observation spaces and we may
need to learn a transfer function that corrects the mismatch,
or the simulator may be significantly different from the real
environment that we should only transfer useful features in-
stead of actual policies (Rusu et al. 2016), etc. While there
has been active empirical research in this area, little in the-
ory is known in terms of when transfer is possible and what
guarantees we can have.

In this paper we focus on a particular angle of this prob-
lem, and provide some foundational results under stylized
assumptions to help understand the theoretical nature of this
approach. We start with a simple question: given an approx-
imate model (e.g., a simulator) that only differs from the
real environment in 1 state-action pair (but which one is
unknown), can we always learn a near-optimal policy by
collecting significantly fewer real trajectories compared to
RL from scratch, i.e., without the model? Perhaps surpris-
ingly, the answer is no due to a lower bound. We under-
stand and draw insights from the hard instances, and come
up with natural conditions that exclude the pathological sce-
narios (Sec.4). Under these conditions, we describe and an-
alyze two algorithms whose sample complexity guarantees
only depend on the number of incorrect state-action pairs
and have no dependence on the size of the state and action
spaces (Sec.5 and 6).

2 Preliminaries
We consider episodic RL problems where the real en-
vironment is specified by a finite-horizon MDP M =
(S,A, P,R,H, μ). S is the state space, A is the action
space, and for simplicity we assume that S and A are fi-
nite but can be arbitrarily large. P : S × A → Δ(S) is the
transition function (Δ(S) is the probability simplex over S ,
i.e., the set of all probability distributions). R : S × A → R

is the reward function; we assume rewards are non-negative.
H is the horizon, and μ ∈ Δ(S) is the initial distribution.

In general, optimal policies in the finite-horizon setting
are non-stationary, i.e., they are time dependent. To keep
the notations simple, w.l.o.g. we assume that each state only
appears in a particular time step (or level) 1 ≤ h ≤ H ,
and the state space can be partitioned into disjoint sets
S =

⋃H
h=1 Sh, where μ is supported on S1 and states

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3334

Figure 1: Protocol of how the learner interacts with the real
environment and the approximate model.

in Sh only transition to those in Sh+1. Assume that the
total reward has bounded magnitude for any sequence of
state-actions, i.e.,

∑H
h=1 R(sh, ah) ∈ [0, 1] holds for all

s1 ∈ S1, a1 ∈ A, . . . , sH ∈ SH , aH ∈ A.1
Given a policy π : S → A, a random trajectory is gen-

erated by s1 ∼ μ, and for h = 1, . . . , H , ah ∼ π(sh),
rh = R(sh, ah), sh+1 ∼ P (sh, ah). The ultimate measure
of π’s performance is vπM := E[

∑H
h=1 rh |π]. Also define

the value function of π as V π
M (s) := E[

∑H
h′=h rh′ |π, sh =

s] where h is such that s ∈ Sh. Note that all such value
functions have bounded range [0, 1].

Let π�
M be the optimal policy in M , which maximizes V π

M

for all s ∈ S . We use V �
M as a shorthand for V π�

M

M , which
satisfies the Bellman optimality equation V �

M = T V �
M ,

where T : R
|S| → R

|S| is the Bellman update operator2

(T f)(s) := maxa∈A
[
R(s, a) + Es′∼P (s,a)[f(s

′)]
]
.

3 Problem formulation

Our learning algorithm is given an approximate model M̂ =

(S,A, P̂ , R,H, μ) as input. For simplicity we assume that
M̂ and M only differ in dynamics, and our analyses extend
straightforwardly to approximate reward functions.

Abstraction of computation

Since this work focuses on the sample efficiency regarding
the trajectories in the real environment, we abstract away
the computation in the approximate model by assuming an
oracle that can take any M ′ as input and return π�

M ′ and v�M ′ .
Later in Algorithm 2 we will also need the oracle to return
V �
M ′ , but that is often a side product of computing π�

M ′ .3

Protocol

We consider a learner that interacts with the real environ-
ment and the approximate model in an alternating manner
(see Figure 1). The learner repeats the following steps until it
finds a satisfying policy: (1) carrying out computation in the

1The assumption makes no reference to the transition dynam-
ics, which leads to boundedness of total reward in the approximate
model and its revisions to be introduced later.

2Let f(sH+1) ≡ 0 so that the same equation applies to s ∈ SH .
3To approximate the oracle in problems with large state spaces,

we can use Sparse Sampling (Kearns, Mansour, and Ng 2002)
or any Monte-Carlo tree search methods that do not depend on
the state branching factor (Bjarnason, Fern, and Tadepalli 2009;
Grill, Valko, and Munos 2016). Practically speaking, deep RL
methods, which are empirically state-of-the-art, are also reasonable
approximations (Mnih et al. 2015).

model, (2) collecting data in the real environment, and (3)
revising the model. In Sec.7 we show that the interactivity
in the protocol is crucial — under a non-interactive protocol
no algorithm can achieve polynomial sample complexity.

Under this protocol, an algorithm needs to specify what
computation to carry out in the approximate model, what
actions to take and how much data to collect in the real envi-
ronment, and how to revise the model based on the real data.
For now assume that the learner can revise the model arbi-
trarily, i.e., it can change any entry of the transition function
of M̂ . Of course, this assumption can be unrealistic when
the simulator is sophisticated and can only be accessed in a
black-box manner; we relax this assumption in Sec.6.

Incorrect state-action pairs

When the approximate model is very close to the real envi-
ronment, intuitively we would expect significantly reduced
sample complexity (in terms of real trajectories) compared
to RL from scratch. To formalize this intuition, we define
a soft notion of incorrect state-action pairs in Definition 1,
and use the number of incorrect state-action pairs |Xξ-inc| to
characterize the imperfectness of the model.

Definition 1 (ξ-correctness). Given M and M̂ , we say that
(s, a) is ξ-incorrect if 4

d
M,̂M

(s, a) := ‖P (s, a)− P̂ (s, a)‖TV > ξ.

Let Xξ-inc be the set of state-action pairs that are ξ-incorrect.
Fact 1. Xξ-inc ⊆ Xξ′-inc if ξ ≥ ξ′.
Remark 1. When S is large, it may be difficult to have a
model M̂ that matches M on the transition probability to
each next-state in most state-action pairs. In Sec.8 we give
alternative definitions of Xξ-inc that are more lenient and
show that our analyses automatically extend.

Goal: no dependence on |S| or |A|
We are interested in the scenario where |S| and |A| may be
very large but |Xξ-inc| is small (for some reasonable choice
of ξ). Our goal is to develop algorithms that can learn a near-
optimal policy in M using polynomially many real trajecto-
ries, where the polynomial can depend on |Xξ-inc| (and other
parameters such as H) but not on |S| or |A|.

4 Sufficient conditions for avoiding

dependence on |S| and |A|
Unfortunately, the goal stated above is impossible without
further assumptions. In particular, there can be situations
where |X0-inc| = 1 but the sample complexity is polyno-
mial in |S|. This result is formalized in Proposition 1. The
proof builds on the lower bound from (Auer, Cesa-Bianchi,
and Fischer 2002) and is deferred to the appendix.5

Proposition 1. Without further assumptions, no algorithm
can return an ε-optimal policy with a probability higher than
2/3 and a sample complexity of poly(|X0-inc|, H, 1/ε) (re-
call from Fact 1 that |Xξ-inc| is the largest when ξ = 0).

4For distributions over finite spaces, ‖ · ‖TV = 1
2
‖ · ‖1.

5All appendices can be found in
https://sites.google.com/a/umich.edu/nanjiang/aaai18-pac.pdf.

3335

(a) The true environment (for all
the rest figures except (e)).

(b) A model that reflects the hard
situation in Proposition 1.

(c) A model that is optimistic only
initially.

(d) A desired approximate model. (e) A situation where Assump-
tion 1 fails but Eq.(1) promises
nontrivial value.

(f) A situation where Eq.(1) deliv-
ers nontrivial guarantee and Eq.(5)
is vacuous.

Figure 2: An environment (a) and a series of models. See text in Sec.4 for the description of the domain and the models in (b)
to (d). The red lines and bars indicate the mistakes of the model, and the blue path shows an optimal policy of the model.
(e): Here we modify the real environment by removing the leftmost obstacle and putting a smaller reward behind it. Since an
episode terminates at any star, the optimal policy is still to go through the middle gate, which is erroneously blocked in the
model. In this case, Eq.(1) will guarantee that we can get the smaller reward, which is suboptimal but nontrivial.
(f): This model erroneously believes that the agent will be teleported to the reward upon passing through the gate (red dashed
line). In this case, Definition 6 terminates a model episode when the agent goes through the gate, essentially blocking it. As a
result, the value guaranteed by Theorem 2 (Eq.(5)) becomes vacuous in this case, while Theorem 1 still competes against v�M .

Understand the hard instances

We explain the hardness result in Figure 2 and draw insights
from it. Here the real environment is depicted in 2(a): the
agent can move in 4 directions in this grid world, and the
thick bars represent obstacles. An episode ends either when
the agent runs into an obstacle or when it gets to a star (re-
ward). The optimal policy is to go through the only gate to
get the star, but the agent has no knowledge of where the
gate is. Without additional information, the agent needs to
try each obstacle one by one and incurs Ω(|S|) sample com-
plexity (note that we can easily scale up the problem).

The hard instance in Proposition 1 is similar to the one
depicted in Figure 2(b): the model claims that there is no
gate, hence no policy can get to the reward. While such a
model is obviously useless, it indeed satisfies |X0-inc| = 1.
Therefore, a small |X0-inc| does not necessarily imply a use-
ful model, and we need to impose additional conditions to
exclude such degenerate cases.

Exclude the degenerate cases: a first attempt

One thing that we might notice in Figure 2(b) is that the
optimal value in the model is very low (v�

̂M
= 0). Intuitively,

a model should claim that there exists a policy that achieves
a high value to be any useful. Based on this observation, we
might come up with the condition that v�

̂M
≥ v�M , which

excludes the model in 2(b).
However, it is easy to construct another degenerate case

without violating the condition; see 2(c). The model satis-

fies the condition by claiming the existence of a gate in the
wrong location, which yields |X0-inc| = 2. Note, however,
that the learner could generate such a model by choosing a
location randomly, which does not require any external in-
formation hence the model is still useless.

A sufficient condition

An alternative explanation of the failure of 2(c) is that, if we
follow the optimal policy suggested by the model in the real
environment, we will realize that the red gate is actually an
obstacle. Once this mistake is fixed, however, we literally
get back to the model in 2(b).

Based on the above intuitions, we come up with the a suf-
ficient condition that excludes all degenerate cases that ob-
scure the desired sample complexity. Roughly speaking, we
require the optimal value in the approximate model to al-
ways stay high whenever we replace the dynamics of any
subset of state-action pairs in Xξ-inc with the true dynamics
(see Figure 2(d) for example). This idea is formalized in the
following definitions and Assumption 1.

Definition 2 (Partially repaired model). Given M and M̂

which only differ in the transition dynamics P and P̂ , and
X ⊆ S × A, define M̂X as the MDP (S,A, P̂X , R,H, μ)
where

P̂X (s, a) :=

{
P (s, a), if (s, a) ∈ X ,

P̂ (s, a), otherwise.

3336

Definition 3. M := {M̂X : X ⊆ Xξ-inc}.

Assumption 1 (Always optimistic). ∀M ′ ∈ M, v�M ′ ≥ v�M .

While Assumption 1 is sufficient, it is also too strict since
it fails if any v�M ′ is slightly below v�M . In the next section
we will not make any explicit assumptions but rather use
an agnostic version of Assumption 1: instead of requiring
the algorithm to compete against v�M (i.e., return a policy
with at least v�M − ε value), we only require the algorithm to
compete against

inf
M ′∈M

v�M ′ . (1)

If Assumption 1 holds, we compete against v�M as usual;
when Assumption 1 fails, our optimality guarantee degrades
gracefully with the violation. Figure 2(e) illustrates a situ-
ation where Eq.(1) delivers nontrivial guarantee while As-
sumption 1 fails (see caption for details).

5 Repair the model

In this section, we describe a conceptually simple algo-
rithm whose sample complexity has no dependence on |S|
or |A|. The pseudocode is given in Algorithm 1. We first
walk through the pseudocode and give some intuitions, and
then state and prove the sample complexity guarantee.

The outer loop of the algorithm computes πt = π�
Mt

, the
optimal policy of the current model Mt (initialized as M̂),
and use Monte-Carlo policy evaluation to estimate its return.
If the policy’s performance is satisfying, we simply output it.
Otherwise, the inner loop uses the same policy to collect tra-
jectories, and add every next-state to the dataset associated
with the preceding state-action pair.

The inner loop stops whenever the size of a dataset Ds,a

for some (s, a) increases to a pre-determined threshold, nest,
which will be set later in the analysis. This triggers a model
revision: we replace P̂ (s, a) with the empirical frequency of
states observed in Ds,a, and produce model Mt+1 for the
next iteration of outer loop.

A straightforward analysis of the above procedure, how-
ever, would incur polynomial dependence on |S|: we recover
the multinomial distributions {P (s, a) : (s, a) ∈ S × A}
from sample data, and such distributions are supported on
S . In general, if we want to guarantee low estimation error
(measured by e.g., total variation), we would incur depen-
dence on size of the support.

To overcome this difficulty, note that there is no need to
recover the detailed transition distribution over states. In-
stead, we simply need to guarantee that when we use the
estimated probabilities in the Bellman update operators, the
value function(s) of interest are updated correctly. That is,
when we have enough samples for some Ds,a, we would
like to guarantee that

d f
M,D(s, a) :=

∣∣Es′∼P (s,a)[f(s
′)]− Es′∼Ds,a [f(s

′)]
∣∣ (2)

is small for some careful choice(s) of f . In standard RL liter-
ature, f is often chosen to be V �

M , the optimal value function
which we compete against (see e.g., (Kearns, Mansour, and

Algorithm 1 MODEL REPAIR(M̂)

1: M0 ← M̂ . Ds,a ← {}, ∀s ∈ S, a ∈ A.
2: for t = 0, 1, . . . do
3: πt ← π�

Mt
.

4: Collect neval trajectories using πt, and let v̂πt

M be the
Monte-Carlo estimate of value.

5: if v̂πt

M ≥ vπt

Mt
− 7ε/10 then return πt.

6: repeat
7: Collect trajectory s1, a1, . . . , sH , aH using πt.
8: ∀h, add sh+1 to Dsh,ah

if |Dsh,ah
| < nest.

9: until some |Ds,a| increases to nest for the 1st time
10: Construct Mt+1 from M̂ by plugging in Ds,a for

each (s, a) in X ′
t+1 := {|Ds,a| = nest}.

11: end for

Ng 2002)). For such a fixed f , we can use Hoeffding’s in-
equality to guarantee concentration, and the necessary size
of Ds,a has no dependence on |S|.

In our case, however, we compete against multiple value
functions (Eq.(1)), and need to guarantee that all of them are
updated correctly. In particular, when we have enough sam-
ples in Ds,a, we want Eq.(2) to be small for any f that is
the optimal value function of some partially repaired model
(Definition 2). Interestingly, there are at most 2|Xξ-inc| such
models (Fact 2), and by union bound we pay logarithmic de-
pendence on the number of functions, which is O(|Xξ-inc|).
Below we state the formal guarantees for the algorithm and
prove it using the intuitions described above.
Theorem 1. Given any δ ∈ (0, 1), ε ∈ (0, 1), run
Algorithm 1 with parameters ξ = ε

10H2 , neval =

Õ(1
ε2 log

1
δ), nest = Õ(H

4

ε2 (|Xξ-inc| + log 1
δ)). With prob-

ability at least 1 − δ the algorithm will return a policy
πT such that vπT

M ≥ infM ′∈M v�M ′ − ε after acquiring

Õ
(
|Xξ-inc|(|Xξ-inc|+ log(1/δ))H

4

ε3

)
sample trajectories.6

To prove Theorem 1, we introduce some further defini-
tions and helping lemmas. We first define the value function
class of interest, F , and establish some basic properties.

Definition 4. Given M, M̂, ξ, let F := {V �
M ′ : M ′ ∈ M}

(recall the definition of M from Definition 3).
Fact 2. |F| ≤ |M| ≤ 2|Xξ-inc|.
Definition 5. Given value function f and M1 and M2 that
differ only in dynamics P1 and P2, define

d f
M1,M2

(s, a) :=
∣∣Es′∼P1(s,a)[f(s

′)]− Es′∼P2(s,a)[f(s
′)]
∣∣ ,

and dF
M1,M2

:= supf∈F d f
M1,M2

(s, a).

Fact 3. If f ∈ [0, 1] ∀f ∈ F , then for any M1, M2, s, a,

d f
M1,M2

(s, a) ≤ dF
M1,M2

(s, a) ≤ dM1,M2
(s, a) ≤ 1

Lemma 1. In Algorithm 1, for any fixed t and any δ ∈
(0, 1), w.p. at least 1− δ, |v̂πt

M − vπt

M | ≤
√

1
2neval

log 2
δ .

6We use Õ to suppress logarithmic dependence on |Xξ-inc|, H ,
1/ε, and log(1/δ). However, no log |S| or log |A| is incurred here.

3337

Lemma 2. In Algorithm 1, for any fixed (s, a) ∈ S × A
and any δ ∈ (0, 1), when |Ds,a| = nest, w.p. at least

1 − δ, dF
M,D(s, a) ≤

√
1

2nest
log 2|F|

δ , where dF
M,D(s, a) :=

supf∈F d f
M,D(s, a).

The proofs of the above two lemmas are elementary and
deferred to the appendix. Our argument that Ds,a only needs
to update certain value functions correctly is supported by
Lemma 3. Its proof is deferred to the appendix.
Lemma 3. Given any M1 and M2 where V �

M1
∈ F , we have

‖V �
M1

− V �
M2

‖∞ ≤ H‖dF
M1,M2

‖∞.

The last lemma in this section is Lemma 4, which is a fine-
grained version of the simulation lemma (Kearns and Singh
2002), a result commonly found in the analyses of PAC ex-
ploration algorithms. The proof is deferred to the appendix.
Lemma 4. Suppose M1 and M2 only differ in dynamics. If
there exists f ′ such that ‖f ′ − V π

M2
‖∞ ≤ ξ′, we have

|vπM1
− vπM2

| ≤ 〈ηπM1
, d f ′

M1,M2
〉+ 2Hξ′,

where ηπM1
is the state-action occupancy of π in M1, defined

as ηπM1
(s, a) :=

∑H
h=1 P[sh = s, ah = a

∣∣π, P1].

With all the preparation, we are ready to prove Theorem 1.

Proof of Theorem 1. Throughout the analysis we assume
that two type of events always hold, which are later guar-
anteed by concentration inequalities and union bound: (A)
whenever a (s, a) pair satisfies |Ds,a| = nest we have
dF
M,D(s, a) ≤ ξ; (B) |vπt

M − v̂πt

M | ≤ ε/10 (Line 5).
Given these high probability events, we first show the cor-

rectness of the algorithm. That is, when it terminates at t =
T , the returned policy πT satisfies the theorem statement.
Define X ′

t as on Line 10 (i.e., the set of (s, a) with sufficient
samples at the beginning of round t) and Xt := Xξ-inc

⋂
X ′

t .
Since M̂Xt

∈ M and V �
̂MXt

∈ F , claim that

∀t, ‖dF
Mt,̂MXt

‖∞ ≤ 2ξ. (3)

This is because, for (s, a) ∈ Xt, P̂Xt
(s, a) = P (s, a), and

Pt(s, a) uses the empirical estimate which is guaranteed to
be ξ-close to P (s, a) with respect to F ; for (s, a) /∈ X ′

t ,
Pt(s, a) = P̂Xt

(s, a) = P̂ (s, a); for the remaining case,
both P̂Xt

(s, a) and Pt(s, a) are ξ-close to P (s, a) with re-
spect to F , so they differ by at most 2ξ.

Now we invoke Lemma 3 on M̂XT
and MT , and obtain

|v�
̂MXT

− vπT

MT
| ≤ 2Hξ. Hence,

vπT

M ≥ v̂πT

M − ε
10 ≥ vπT

MT
− 4ε

5

≥ v�
̂MXT

− 2Hξ − 4ε
5 ≥ inf

M ′∈M
v�M ′ − ε.

Next we show that when t < T , πt always puts significant
occupancy on unlearned state-action pairs in Xξ-inc; we will
refer to the visits to such state-action pairs as effective visits
in the remainder of the proof. ∀ 0 ≤ t < T , vπt

Mt
− vπt

M ≥
v̂πt

M + 7ε/10 − v̂πt

M − ε/10 = 3ε/5. Let p be the occupancy

of π�
Mt

on the subset of Xε-inc that are unlearned, i.e., p is the
expected number of effective visits. We would like to upper
bound vπt

Mt
− vπt

M via Lemma 4 by letting M1 := M , M2 :=
Mt. To do that we first have to bound ξ′ in Lemma 4 by
approximating V πt

Mt
with V �

̂MXt

(the latter is in F): recall that

πt = π�
Mt

, and Lemma 3 implies that ‖V πt

Mt
− V �

̂MXt

‖∞ ≤
2Hξ. Now we can invoke Lemma 4 on M and Mt with f ′ =
V �
̂MXt

and ξ′ = 2Hξ, and

vπt

Mt
− vπt

M ≤ p+ (H − p)ξ + 4H2ξ (4)

≤ p+ 5H2ξ = p+ ε/2.

From this we conclude that p + ε/2 ≥ 3ε/5, so p ≥ ε/10.
In other words, in expectation we have ε/10 effective vis-
its per trajectory. If we ignore the randomness in effective
visits, 10nest|Xξ-inc|/ε sample trajectories would guarantee
successful termination of the algorithm, which matches the
theorem statement. The remainder of the proof applies con-
centration inequalities to deal with the randomness and is
deferred to the appendix.

Before concluding the section, we comment on the guar-
antee in Theorem 1. Perhaps the most outstanding term is
H4, which seems unreasonably high. The main difficulty
here is that Mt is random, and it is hard to capture it in a
model class with reasonable size specified a priori. What we
do is to approximate its optimal value function using V �

̂MXt

before invoking Lemma 4, which blows up one-step transi-
tion error twice (see the H2ξ term in Eq.(4)).7 In the next
section we consider a similar but slightly different setting,
where Mt can be exactly captured in a deterministic model
class and the sample complexity is quadratic in H .

6 What if we cannot change the model?

As discussed in Sec.3, one of the unrealistic assumptions so
far is that we can manipulate the model and make arbitrary
changes to the transition function, which is seldom possible
for a sophisticated simulator. To remove the assumption, we
need to incorporate the knowledge learned from real trajec-
tories without changing the model itself. But how?

We borrow intuitions from Figure 2 again. An alternative
way of explaining 2(b) to 2(e) is that, we should actually
compete against policies that only visit (s, a) pairs where the
model dynamics are correct. Such an objective is also con-
sistent with the optimality criterion of Eq.(1) for the models
in 2(b) to 2(e).

To make this objective more robust, we may want to al-
low the agent to visit incorrect (s, a) pairs with small prob-
abilities. Instead of imposing constraints on the state-action
occupancy of a policy, a more lenient solution is to penalize
a policy for visiting incorrect (s, a) pairs. A natural penalty
would be to fix the future value of incorrect state-action pairs
as the minimum value 0: the future value predicted by the

7The recent work of (Azar, Osband, and Munos 2017) faces a
similar difficulty and they avoid heavy dependence on H by bound-
ing a particular residual (see their Sec 5.1). However, their tech-
nique incurs dependence on |S| and cannot be applied here.

3338

Algorithm 2 MODEL PENALIZE(M̂)

1: M0 ← M̂ . X0 ← {}. Ds,a ← {}, ∀s ∈ S, a ∈ A.
2: for t = 0, 1, . . . do
3: πt ← π�

Mt
, ft ← V �

Mt
.

4: Collect neval trajectories using πt, and let v̂πt

M be the
Monte-Carlo estimate of value.

5: if v̂πt

M ≥ vπt

Mt
− 4ε/5 then return πt.

6: while ∀(s, a) /∈ Xt, ISFINE(s, a, ft) do
7: Collect a trajectory s1, a1, . . . , sH , aH using πt.
8: ∀h, add sh+1 to Dsh,ah

if |Dsh,ah
| < nest.

9: end while
10: Xtmp ← {}.
11: for h = H − 1, . . . , 2, 1 do

12: Mtmp ← M̂\Xtmp , ftmp ← V �
Mtmp

.
13: Xtmp ← Xtmp

⋃
{(s, a) ∈ Sh ×A : ¬ISFINE(s, a, ftmp)}.

14: end for
15: Xt+1 ← Xtmp, Mt+1 ← M̂\Xt+1

.
16: end for

17: function ISFINE(s, a, f)
18: if |Ds,a| < nest then return true.
19: if d f

̂M,D
(s, a) ≤ 1.5ξ then return true.

// recall definition of d f
̂M,D

from Eq.(2)
20: return false.
21: end function

model is not trustworthy due to incorrect dynamics and we
replace it with a pessimistic guess.

Finally, due to our assumption of non-negative rewards,
the penalty can be simply implemented by terminating a
model episode upon running into an incorrect (s, a) pair.
We will still treat the penalized model as a new MDP to
facilitate analysis, with the understanding that such changes
can be implemented in a black-box manner. The penalized
model is formally defined below.

Definition 6 (Partially penalized model). Given MDP M̂ =

(S,A, P̂ , R,H, μ) and X ⊆ S×A, define M̂\X as the MDP
(S,A, P̂\X , R,H, μ) where

P̂\X (s, a) :=

{
termination, if (s, a) ∈ X ,

P̂ (s, a), otherwise.

We define M̃ and F̃ , the analogies of M and F .

Definition 7. Given M , M̂ , and ξ, define
M̃ := {M̂\X : X ⊆ Xξ-inc}, F̃ := {V �

M ′ : M ′ ∈ M̃}.

Similarly to Eq.(1), in this section we compete against:

inf
M ′∈ ˜M

v�M ′ . (5)

It is worth noting that the value in Eq.(5) is always less than
or equal to that in Eq.(1). Intuitively, whenever an incorrect
state-action pair is discovered, we allow the agent to avoid it

as opposed to fixing the incorrect dynamics since we refrain
ourselves from modifying the model. This comes with the
cost that we give up the opportunity of reusing these state-
action pairs in future policies. This intuition is formalized in
Fact 4, and we give a concrete example in Figure 2(f) where
Eq.(1) and (5) have a nontrivial gap.

Fact 4. For any X ⊆ S×A and π : S → A, vπ
̂M\X

≤ vπ
̂MX

.

In the remainder of this section, we introduce Algorithm 2
and state the sample complexity result. Overall Algorithm 2
is similar to Algorithm 1, but with a few differences:
1. Unlike Algorithm 1 where we blindly replace P̂ (s, a)

with Ds,a (which is valid as Ds,a is always unbiased),
here we penalize (s, a) selectively as penalizing a correct
(s, a) may affect the value we could obtain.

2. While we would like to compare P̂ (s, a) and Ds,a

against all functions in F̃ , this is impossible as we do not
know F̃ in advance (because Xξ-inc is unknown). Fortu-
nately, it is sufficient to compare them against the current
value function ft, which gives the criterion on Line 6.

3. The for-loop computes a set of incorrect (s, a) pairs from
the bottom up. This is necessary because penalizing an
(s, a) pair at a lower level (i.e., a later time step) may
trigger a change in value function, which affects whether
some other (s, a) at a higher level should be penalized or
not. The bottom-up procedure guarantees that isfine is
never invoked on an outdated f .

4. Thanks to the binary nature of the penalty, any Mt that
we could run into is a member of M̃ (with high probabil-
ity), hence Mt and πt are much more deterministic objects
than in Algorithm 1. As a result, we avoid the difficulty in
Theorem 1 and can show a quadratic dependence on H .

Theorem 2. Given any δ ∈ (0, 1), ε ∈ (0, 1), we run Al-
gorithm 2 with parameters ξ = ε

5H , neval = Õ(1
ε2 log

1
δ),

nest = Õ(H
2

ε2 (|Xξ-inc| + log 1
δ)). W.p. at least 1 − δ

the algorithm will return a policy πT such that vπT

M ≥
inf

M ′∈ ˜M v�M ′ − ε after acquiring Õ(|Xξ-inc|(|Xξ-inc| +

log(1/δ))H
2

ε3) sample trajectories.

The proof of Theorem 2 is similar to that of Theorem 1
and is deferred to the appendix.

7 Non-interactive algorithms are inefficient

In the previous sections we give two algorithms that enjoy
polynomial sample complexity guarantee without any de-
pendence on |S| or |A|. Both algorithms fit into the abstract
protocol we introduce at the beginning, that is, they alter-
nate between computation in the approximate model and
data collection in the real environment.

In this section we show that such interactivity is crucial
for our purpose. In particular, we prove a hardness result
that, if all the data are collected before we perform any com-
putation in M̂ , no algorithm can achieve the desired polyno-
mial sample complexity even if the conditions required by
Algorithms 1 and 2 are satisfied. We briefly sketch the proof
idea and the full proof is deferred to the appendix.

3339

Theorem 3. If the data collection strategy is independent of
M̂ , no algorithm can learn an ε-optimal policy with proba-
bility 2/3 using poly(|X0|, H, 1/ε) sample trajectories, even
if infM ′∈M v�M ′ = inf

M ′∈ ˜M v�M ′ = v�M .

Proof sketch. Assume towards contradiction that such an
algorithm exists. We can solve the hard instance of best
arm identification with poly(log |A|, 1/ε) samples, which is
against the known lower bound. Concretely, we design |A|2
models, where each model claims that a pair of arms are
more rewarding than others. Applying the hypothetical al-
gorithm to each model allows us to make reliable pair-wise
comparison between the arms using only O(log |A|) inde-
pendent datasets, each of size O(1/ε2).

8 Relax the definition of ξ-correctness

In this section we relax the definition of ξ-correctness as
promised in Remark 1. In Definition 1, whether an (s, a)
pair is correct is determined by how large d

M,̂M
(s, a) is.

The key observation here is that in the proof of Theorem 1,
we only use the fact d

M,̂M
(s, a) ≤ ξ for (s, a) /∈ Xξ-inc in

Eq.(3) through dF
M,̂M

(recall Fact 3). Therefore, we can sim-

ply re-define Xξ-inc based on dF
M,̂M

instead of d
M,̂M

, and all
the analyses and guarantees extend straightforwardly. Due
to Fact 3, the new definition will result in a smaller num-
ber of incorrect state-action pairs, and hence yield improved
sample complexity in Theorem 1. The same thing happens
to Theorem 2, where we can re-define Xξ-inc based on d

˜F
M,̂M

.
The complication here, however, is that the definition of

dF
M,̂M

(d ˜F
M,̂M

) depends on F (F̃), which further depends
on Xξ-inc (recall Definitions 3, 4, and 7), and we are now
modifying the definition of Xξ-inc to make it depend on F
(F̃). The resolution to the recursive dependence is to define
things in a bottom-up order; see Algorithm 3. This proce-
dure is very similar to the for-loop in Algorithm 2, where the
same issue has already been encountered. The formal state-
ment of the tightened results is given below. In the appendix
we also describe a scenario where |X ξ-inc| and |X̃ξ-inc| are
substantially smaller than |Xξ-inc|.

Proposition 2. Let X ξ-inc and X̃ξ-inc be defined via Algo-
rithm 3. We have: (1) X ξ-inc ⊆ Xξ-inc, X̃ξ-inc ⊆ Xξ-inc.
(2) Theorems 1 and 2 still hold if we replace |Xξ-inc| in the
theorem statements by |X ξ-inc| and |X̃ξ-inc| respectively.

9 Conclusions and discussions

In this paper, we investigate the theoretical properties of re-
inforcement learning with an approximate model as side in-
formation. We believe that there are 3 high-level insights that
can be drawn from the paper:

1. We need the model to always stay optimistic (Assump-
tion 1), otherwise there are degenerate cases where the
model is useless even if it is correct in all but a constant
number of state-action pairs (Proposition 1).

Algorithm 3 CONSTRUCTBADSET(M , M̂ , ξ)

1: X ξ-inc ← {}.
2: for h = H − 1, . . . , 2, 1 do

3: M ← {M̂X : X ⊆ X ξ-inc}. // use M̂\X for X̃ξ-inc

4: F ← {V �
M ′ : M ′ ∈ M}.

5: X ξ-inc ← X ξ-inc
⋃

{(s, a) ∈ Sh ×A : dF
M,̂M

(s, a) > ξ}.
6: end for

2. It is important that the learner interacts with the environ-
ment and the model in an alternating manner (Theorem 3).

3. Under 1+2, we can achieve polynomial sample complex-
ity in the number of incorrect state-action pairs and incur
no dependence on |S| and |A| (Theorems 1 and 2).

We conclude the paper by discussing related work, limi-
tations of our assumptions and results, and open questions.

• The most related work is (Cutler, Walsh, and How 2015),
who consider multiple simulators with varying levels of
fidelity. They implicitly assume that a simulator’s quality
is homogeneous across the state-action space, evidenced
by their fidelity defined as the worst-case error over states
and actions. Consequently, they incur dependence on |S|
and |A|. In another related work, (Ha and Yamane 2015)
propose an algorithm for linear control problems that is
similar in spirit to our Algorithm 1. While no sample com-
plexity guarantee is given, their algorithm is empirically
validated and produces promising results.

• A major limitation of our work is that we assume |S| (and
|A|) is large but |Xξ-inc| is small, which can be unrealistic.
While it is possible to extend the analyses to accommo-
date continuous Xξ-inc by a covering argument (Kakade,
Kearns, and Langford 2003; Pazis and Parr 2013), such
arguments incur dependence on the covering numbers,
which are typically exponential in the dimension. Tak-
ing our analyses forward to a practical scenario may
require satisfying theoretical solutions to exploration in
large state spaces, an important research direction that is
relatively understudied by itself despite a few very recent
advances (Krishnamurthy, Agarwal, and Langford 2016;
Jiang et al. 2017).

• The conditions we have identified (e.g., Assumption 1 and
the agnostic version) are sufficient. Are they necessary
and are there weaker conditions?

• There is a gap between the interactivity of our algorithms
(polynomially many alternations) and the non-interactive
lower bound (no alternation at all; see Theorem 3). While
we might expect a stronger lower bound to exclude even
a small (e.g., constant) number of alternations, the cur-
rent formulation cannot prevent the agent from loading
the entire M̂ into its memory to consult the model at any
future time. Obtaining the stronger lower bound (if it ex-
ists) would require a careful characterization of what kind
of computation is allowed within each round.

3340

• The sample complexity guarantees obtained in Theo-
rems 1 and 2 may not be optimal. In particular, it might be
possible to remove one 1/ε term by carefully distinguish-
ing important states from the unimportant ones (Dann and
Brunskill 2015). It might also be possible to reduce the de-
pendence on |Xξ-inc| by determinizing the order in which
we fix / penalize incorrect (s, a) pairs, e.g., by delaying
model revision and updating multiple state-action pairs at
once. Tightening the upper bounds and finding matching
lower bounds are interesting directions for future work.

• Our algorithms explore with the optimal policy of the
model. Are there more sophisticated strategies that im-
prove sample complexity? Since we want to avoid depen-
dence on |A|, standard operations such as taking actions
uniformly are prohibited. Any intelligent exploration in
this case might have to be heavily informed by the model.

Acknowledgements

The author thanks the anonymous reviewers for the insight-
ful comments. The research question was inspired by a con-
versation with David Meger at McGill University.

References

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2-3):235–256.
Azar, M. G.; Osband, I.; and Munos, R. 2017. Minimax
regret bounds for reinforcement learning. In Proceedings
of the 34th International Conference on Machine Learning,
263–272.
Bjarnason, R.; Fern, A.; and Tadepalli, P. 2009. Lower
bounding Klondike solitaire with Monte-Carlo planning.
In Proceedings of International Conference on Automated
Planning and Scheduling, 26–33.
Cutler, M., and How, J. P. 2015. Efficient reinforcement
learning for robots using informative simulated priors. In
Robotics and Automation (ICRA), 2015 IEEE International
Conference on, 2605–2612. IEEE.
Cutler, M.; Walsh, T. J.; and How, J. P. 2015. Real-world
reinforcement learning via multifidelity simulators. IEEE
Transactions on Robotics 31(3):655–671.
Dann, C., and Brunskill, E. 2015. Sample complexity of
episodic fixed-horizon reinforcement learning. In Advances
in Neural Information Processing Systems, 2818–2826.
Grill, J.-B.; Valko, M.; and Munos, R. 2016. Blazing the
trails before beating the path: Sample-efficient monte-carlo
planning. In Advances in Neural Information Processing
Systems, 4680–4688.
Ha, S., and Yamane, K. 2015. Reducing hardware experi-
ments for model learning and policy optimization. In 2015
IEEE International Conference on Robotics and Automation
(ICRA), 2620–2626.
Hanna, J. P., and Stone, P. 2017. Grounded action trans-
formation for robot learning in simulation. In AAAI, 3834–
3840.

Heess, N.; Wayne, G.; Silver, D.; Lillicrap, T.; Erez, T.; and
Tassa, Y. 2015. Learning continuous control policies by
stochastic value gradients. In Advances in Neural Informa-
tion Processing Systems, 2944–2952.
Jiang, N.; Krishnamurthy, A.; Agarwal, A.; Langford, J.; and
Schapire, R. E. 2017. Contextual decision processes with
low Bellman rank are PAC-learnable. In Proceedings of the
34th International Conference on Machine Learning, vol-
ume 70, 1704–1713.
Kakade, S.; Kearns, M. J.; and Langford, J. 2003. Explo-
ration in metric state spaces. In Proceedings of the 20th
International Conference on Machine Learning (ICML-03),
306–312.
Kearns, M., and Singh, S. 2002. Near-optimal reinforce-
ment learning in polynomial time. Machine Learning 49(2-
3):209–232.
Kearns, M.; Mansour, Y.; and Ng, A. Y. 2002. A sparse sam-
pling algorithm for near-optimal planning in large Markov
decision processes. Machine Learning 49(2-3):193–208.
Kober, J.; Bagnell, J. A.; and Peters, J. 2013. Reinforcement
learning in robotics: A survey. The International Journal of
Robotics Research 0278364913495721.
Koos, S.; Mouret, J.-B.; and Doncieux, S. 2010. Crossing
the reality gap in evolutionary robotics by promoting trans-
ferable controllers. In Proceedings of the 12th annual con-
ference on Genetic and evolutionary computation, 119–126.
ACM.
Krishnamurthy, A.; Agarwal, A.; and Langford, J. 2016.
PAC reinforcement learning with rich observations. In Ad-
vances in Neural Information Processing Systems, 1840–
1848.
Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2016. End-
to-end training of deep visuomotor policies. Journal of Ma-
chine Learning Research 17(39):1–40.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational Conference on Machine Learning, 1928–1937.
Pazis, J., and Parr, R. 2013. PAC optimal exploration in con-
tinuous space Markov Decision Processes. In Proceedings
of the 27th AAAI Conference on Artificial Intelligence.
Rusu, A. A.; Vecerik, M.; Rothörl, T.; Heess, N.; Pas-
canu, R.; and Hadsell, R. 2016. Sim-to-real robot learn-
ing from pixels with progressive nets. arXiv preprint
arXiv:1610.04286.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. Na-
ture 529(7587):484–489.

3341

