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Abstract

We present a deep generative model for Zero-Shot Learn-
ing (ZSL). Unlike most existing methods for this problem,
that represent each class as a point (via a semantic embed-
ding), we represent each seen/unseen class using a class-
specific latent-space distribution, conditioned on class at-
tributes. We use these latent-space distributions as a prior
for a supervised variational autoencoder (VAE), which also fa-
cilitates learning highly discriminative feature representations
for the inputs. The entire framework is learned end-to-end
using only the seen-class training data. At test time, the la-
bel for an unseen-class test input is the class that maximizes
the VAE lower bound. We further extend the model to a (i)
semi-supervised/transductive setting by leveraging unlabeled
unseen-class data via an unsupervised learning module, and
(ii) few-shot learning where we also have a small number of
labeled inputs from the unseen classes. We compare our model
with several state-of-the-art methods through a comprehensive
set of experiments on a variety of benchmark data sets.

Introduction

A goal of autonomous learning systems is the ability to
learn new concepts even when the amount of supervision
for such concepts is scarce or non-existent. This is a task
that humans are able to perform effortlessly. Endowing ma-
chines with similar capability, however, has been challenging.
Although machine learning and deep learning algorithms
can learn reliable classification rules when supplied with
abundant labeled training examples per class, their gener-
alization ability remains poor for classes that are not well-
represented (or not present) in the training data. This limita-
tion has led to significant recent interest in zero-shot learning
(ZSL) and one-shot/few-shot learning (Socher et al. 2013;
Lampert et al. 2014; Lake et al. 2015; Vinyals et al. 2016;
Ravi et al. 2017). We provide a more detailed overview of
existing work on these methods in the Related Work section.

In order to generalize to previously unseen classes with no
labeled training data, a common assumption is the availability
of side information about the classes. The side information
is usually provided in the form of class attributes (human-
provided or learned from external sources such as Wikipedia)

∗Corresponding authors
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

representing semantic information about the classes, or in the
form of the similarities of the unseen classes with each of
the seen classes. The side information can then be leveraged
to design learning algorithms (Socher et al. 2013) that try to
transfer knowledge from the seen classes to unseen classes
(by linking corresponding attributes).

Although this approach has shown promise, it has several
limitations. For example, most of the existing ZSL methods
assume that each class is represented as a fixed point (e.g.,
an embedding) in some semantic space, which does not ade-
quately account for intra-class variability (Akata et al. 2015).
Another limitation of most existing methods is that they usu-
ally lack a proper generative model (Kingma et al. 2014b;
Rezende et al. 2014; Kingma et al. 2014a) of the data. Hav-
ing a generative model has several advantages (Kingma et
al. 2014b; Rezende et al. 2014; Kingma et al. 2014a), such
as unraveling the complex structure in the data by learning
expressive feature representations and the ability to seam-
lessly integrate unlabeled data, leading to a transductive/semi-
supervised estimation procedure. This, in the context of ZSL,
may be especially useful when the amount of labeled data for
the seen classes is small, but otherwise there may be plenty
of unlabeled data from the seen/unseen classes.

Motivated by these desiderata, we design a deep genera-
tive model for the ZSL problem. Our model (summarized
in Figure 1) learns a set of attribute-specific latent space
distributions (modeled by Gaussians), whose parameters are
outputs of a trainable deep neural network (defined by pψ
in Figure 1). The attribute vector is denoted as a, and is as-
sumed given for each training image, and it is inferred for
test images. The class label is linked to the attributes, and
therefore by inferring attributes of a test image, there is an
opportunity to recognize classes at test time that were not
seen when training. These latent-space distributions serve
as a prior for a variational autoencoder (VAE) (Kingma et
al. 2014b) model (defined by a decoder pθ and an encoder
qφ in Figure 1). This combination further helps the VAE to
learn discriminative feature representations for the inputs.
Moreover, the generative aspect also facilitates extending
our model to semi-supervised/transductive settings (omitted
in Figure 1 for brevity, but discussed in detail in the Trans-
ductive ZSL section) using a deep unsupervised learning
module. All the parameters defining the model, including
the deep neural-network parameters ψ and the VAE decoder
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Figure 1: A diagram of our basic model; only the training stage is shown here. In the above figure, a ∈ R
M denotes the class

attribute vector (given for training data, inferred for test data). Red-dotted rectangle/ellipse correspond to the unseen classes.
Note: The CNN module is not part of our framework and is only used as an initial feature extractor, on top of which the rest of
our model is built. The CNN can be replaced by any feature extractor depending on the data type

and encoder parameters θ, φ, are learned end-to-end, using
only the seen-class labeled data (and, optionally, the available
unlabeled data when using the semi-supervised/transductive
setting).

Once the model has been trained, it can be used in the ZSL
setting as follows. Assume that there are classes we wish to
identify at test time that have not been seen when training.
While we have not seen images before from such classes, it
is assumed that we know the attributes of these previously
unseen classes. The latent space distributions pψ(z|a) for
all the unseen classes (Figure 1, best seen in color, shows
this distribution for one such unseen class using a red-dotted
ellipse) are inferred by conditioning on the respective class
attribute vectors a (including attribute vectors for classes not
seen when training). Given a test input x∗ from some unseen
class, the associated class attributes a∗ are predicted by first
mapping x∗ to the latent space via the VAE recognition
model qφ(z∗|x∗), and then finding a∗ that maximizes the
VAE lower bound. The test image is assigned a class label y∗
linked with a∗. This is equivalent to finding the class latent
distribution pψ that has the smallest KL divergence w.r.t. the
variational distribution qφ(z∗|x∗).

Variational Autoencoder

The variational autoencoder (VAE) is a deep generative
model (Kingma et al. 2014b; Rezende et al. 2014), capa-
ble of learning complex density models for data via latent
variables. Given a nonlinear generative model pθ(x|z) with
input x ∈ R

D and associated latent variable z ∈ R
L drawn

from a prior distribution p0(z), the goal of the VAE is to
use a recognition model qφ(z|x) (also called an inference
network) to approximate the posterior distribution of the la-
tent variables, i.e., pθ(z|x), by maximizing the following
variational lower bound

Lv
θ,φ(x) = Eqφ(z|x)[log pθ(x|z)]− KL(qφ(z|x)||p0(z)) .

Typically, qφ(z|x) is defined as an isotropic normal distri-
bution with its mean and standard deviation the output of a
deep neural network, which takes x as input. After learning
the VAE, a probabilistic “encoding” z for the input x can be
generated efficiently from the recognition model qφ(z|x).

We leverage the flexibility of the VAE to design a struc-
tured, supervised VAE that allows us to incorporate class-
specific information (given in the form of class attribute vec-
tors a). This enables one to learn a deep generative model
that can be used to predict the labels for examples from
classes that were not seen at training time (by linking in-
ferred attributes to associated labels, even labels not seen
when training).

Deep Generative Model for ZSL

We consider two settings for ZSL learning: inductive and
transductive. In the standard inductive setting, during train-
ing, we only assume access to labeled data from the seen
classes. In the transductive setting (Kodirov et al. 2015),
we also assume access to the unlabeled test inputs from
the unseen classes. In what follows, under the Inductive
ZSL section, we first describe our deep generative model
for the inductive setting. Then, in the Transductive ZSL sec-
tion, we extend this model for the transductive setting, in
which we incorporate an unsupervised deep embedding mod-
ule to help leverage the unlabeled inputs from the unseen
classes. Both of our models are built on top of a variational
autoencoder (Kingma et al. 2014b; Rezende et al. 2014).
However, unlike the standard VAE (Kingma et al. 2014b;
Rezende et al. 2014), our framework leverages attribute-
specific latent space distributions which act as the prior (Fig-
ure 1) on the latent codes of the inputs. This enables us to
adapt the VAE framework for the problem of ZSL.

Notation In the ZSL setting, we assume there are S seen
classes and U unseen classes. For each seen/unseen class, we
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are given side information, in the form of M -dimensional
class-attribute vectors (Socher et al. 2013). The side informa-
tion is leveraged for ZSL. We collectively denote the attribute
vectors of all the classes using a matrix A ∈ R

M×(S+U).
During training, images are available only for the seen classes,
and the labeled data are denoted Ds = {(xn,an)}Nn=1,
where xn ∈ R

D and an = Ayn , Ayn ∈ R
M denotes the ythn

column of A and yn ∈ {1, . . . , S} is the corresponding label
for xn. The remaining classes, indexed as {S+1, . . . , S+U},
represent the unseen classes (while we know the U associ-
ated attribute vectors, at training we have no corresponding
images available). Note that each class has a unique associ-
ated attribute vector, and we infer unseen classes/labels by
inferring the attributes at test, and linking them to a label.

Inductive ZSL

We model the data {xn}Nn=1 using a VAE-based deep gener-
ative model, defined by a decoder pθ(xn|zn) and an encoder
qφ(zn|xn). As in the standard VAE, the decoder pθ(xn|zn)
represents the generative model for the inputs xn, and θ rep-
resents the parameters of the deep neural network that define
the decoder. Likewise, the encoder qφ(zn|xn) is the VAE
recognition model, and φ represents the parameters of the
deep neural network that define the encoder.

However, in contrast to the standard VAE prior that as-
sumes each latent embedding zn to be drawn from the same
latent Gaussian (e.g., pψ(zn) = N (0, I)), we assume each
zn to be drawn from a attribute-specific latent Gaussian,
pψ(zn|an) = N (μ(an),Σ(an)), where

μ(an) = fμ(an), Σ(an) = diag(exp (fσ(an))) (1)

where we assume fμ(·) and fσ(·) to be linear functions, i.e.,
fμ(an) = Wμan and fσ(an) = Wσan; Wμ and Wσ are
learned parameters. One may also consider fμ(·) and fσ(·)
to be a deep neural network; this added complexity was not
found necessary for the experiments considered. Note that
once Wμ and Wσ are learned, the parameters {μ(a),Σ(a)}
of the latent Gaussians of unseen classes c = S+1, . . . , S+U
can be obtained by plugging in their associated class attribute
vectors {Ac}S+Uc=S+1, and inferring which provides a better fit
to the data.

Given the class-specific priors pψ(zn|an) on the latent
code zn of each input, we can define the following variational
lower bound for our VAE based model (we omit the subscript
n for simplicity)

Lθ,φ,ψ(x,a) = Eqφ(z|x)[log pθ(x|z)]− KL(qφ(z|x)||pψ(z|a))
(2)

Margin Regularizer The objective in (2) naturally encour-
ages the inferred variational distribution qφ(z|x) to be close
to the class-specific latent space distribution pψ(z|a). How-
ever, since our goal is classification, we augment this objec-
tive with a maximum-margin criterion that promotes qφ(z|x)
to be as far away as possible from all other class-specific
latent space distributions pψ(z|Ac), Ac �= a. To this end,
we replace the −KL(qφ(z|x)||pψ(z|a)) term in our origi-
nal VAE objective (2) by −[KL(qφ(z|x)||pψ(z|a)) − R∗]
where “margin regularizer” term R∗ is defined as the min-
imum of the KL divergence between qφ(z|x) and all other

class-specific latent space distributions:

R∗ = min
c:c∈{1..,y−1,y+1,..,S}

{KL(qφ(z|x)||pψ(z|Ac))}
= − max

c:c∈{1..,y−1,y+1,..,S}
{−KL(qφ(z|x)||pψ(z|Ac))} (3)

Intuitively, the regularizer−[KL(qφ(z|x)||pψ(z|a))−R∗]
encourages the true class and the next best class to be sep-
arated maximally. However, since R∗ is non-differentiable,
making the objective difficult to optimize in practice, we
approximate R∗ by the following surrogate:

R = − log

S∑

c=1

exp(−KL(qφ(z|x)||pψ(z|Ac))) (4)

It can be easily shown that

R∗ ≤ R ≤ R∗ + logS (5)

Therefore when we maximize R, it is equivalent to maxi-
mizing a lower bound on R∗. Finally, we optimize the varia-
tional lower bound together with the margin regularizer as

L̂θ,φ,ψ(x,a) = Eqφ(z|x)[log pθ(x|z)]− KL(qφ(z|x)||pψ(z|a))

−λ log

S∑
c=1

exp(−KL(qφ(z|x)||pψ(z|Ac)))

︸ ︷︷ ︸
R

(6)

where λ is a hyper-parameter controlling the extent of regu-
larization. We train the model using the seen-class labeled
examples Ds = {(xn,an)}Nn=1 and learn the parameters
(θ, φ, ψ) by maximizing the objective in (6). Once the model
parameters have been learned, the label for a new input x̂
from an unseen class can be predicted by first predicting its
latent embedding ẑ using the VAE recognition model, and
then finding the “best” label by solving

ŷ = arg max
y∈Yu

Lθ,φ,ψ(x̂,Ay)

= arg min
y∈Yu

KL(qφ(ẑ|x̂)||pψ(ẑ|Ay)) (7)

where Yu = {S + 1, . . . , S + U} denotes the set of un-
seen classes. Intuitively, the prediction rule assigns x̂ to that
unseen class whose class-specific latent space distribution
pψ(ẑ|a) is most similar to the VAE posterior distribution
qφ(ẑ|x̂) of the latent embeddings. Unlike the prediction rule
of most ZSL algorithms that are based on simple Euclidean
distance calculations of a point embedding to a set of “class
prototypes” (Socher et al. 2013), our prediction rule naturally
takes into account the possible multi-modal nature of the
class distributions and therefore is expected to result in better
prediction, especially when there is a considerable amount of
intra-class variability in the data.

Transductive ZSL

We now present an extension of the model for the transductive
ZSL setting (Kodirov et al. 2015), which assumes that the
test inputs {x̂i}N ′

i=1 from the unseen classes are also available
while training the model. Note that, for the inductive ZSL
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setting (using the objective in (6), the KL term between an
unseen class test input x̂i and its class based prior is given
by −KL(qφ(z|x̂i)||pψ(z|a))). If we had access to the true
labels of these inputs, we could add those directly to the
original optimization problem ((6)). However, since we do
not know these labels, we propose an unsupervised method
that can still use these unlabeled inputs to refine the inductive
model presented in the previous section.

A naïve approach for directly leveraging the unlabeled in-
puts in (6) without their labels would be to add the following
reconstruction error term to the objective

L̃θ,φ,ψ(x̂,a) = Eqφ(z|x)[log pθ(x̂|z)] (8)

However, since this objective completely ignores the label
information of x̂, it is not expected to work well in practice
and only leads to marginal improvements over the purely
inductive case (as corroborated in our experiments).

To better leverage the unseen class test inputs in the trans-
ductive setting, we augment the inductive ZSL objective (6)
with an additional unlabeled data based regularizer that uses
only the unseen class test inputs.

This regularizer is motivated by the fact that the induc-
tive model is able to make reasonably confident predictions
(as measured by the predicted class distributions for these
inputs) for unseen class test inputs, and these confident pre-
dicted class distributions can be emphasized in this regular-
izer to guide those ambiguous test inputs. To elaborate the
regularizer, we first define the inductive model’s predicted
probability of assigning an unseen class test input x̂i to class
c ∈ {S + 1, . . . , S + U} to be

q(x̂i, c) =
exp(−KL(qφ(z|x̂i)||pψ(z|Ac)))∑
c exp(−KL(qφ(z|x̂i)||pψ(z|Ac)))

(9)

Our proposed regularizer (defined below in (10)) promotes
these class probability estimates q(x̂i, c) to be sharper, i.e.,
the most likely class should dominate the predicted class
distribution q(x̂i, c)) for the unseen class test input x̂i.

Specifically, we define a sharper version of the predicted
class probabilities q(x̂i, c) as p(x̂i, c) =

q(x̂i,c)
2/g(c)∑

c′ q(x̂i,c′)2/g(c′)
,

where g(c) =
∑N ′

i=1 q(x̂i, c) is the marginal probability of
unseen class c. Note that normalizing the probabilities by
g(c) prevents large classes from distorting the latent space.

We then introduce our KL based regularizer that encour-
ages q(x̂i, c) to be close to p(x̂i, c). This can be formalized
by defining the sum of the KL divergences between q(x̂i, c)
and p(x̂i, c) for all the unseen class test inputs, i.e,

KL(P (X̂)||Q(X̂)) �
N ′∑

i=1

S+U∑

c=S+1

p(x̂i, c) log
p(x̂i, c)

q(x̂i, c)

(10)
A similar approach of sharpening was recently utilized

in the context of learning deep embeddings for clustering
problems (Xie et al. 2016) and data summarization (Wang
et al. 2016b), and is reminiscent of self-training algorithms
used in semi-supervised learning (Nigam et al. 2000).

Intuitively, unseen class test inputs with sharp probability
estimates will have a more significant impact on the gradient

norm of (10), which in turn leads to improved predictions on
the ambiguous test examples (our experimental results cor-
roborate this). Combining (8) and (10), we have the following
objective (which we seek to maximize) defined exclusively
over the unseen class unlabeled inputs

U(X̂) =

N ′∑

i=1

Eqφ(z|x̂i)[log pθ(x̂i|z)]− KL(P (X̂)||Q(X̂))

(11)
We finally combine this objective with the original objec-

tive ((6)) for the inductive setting, which leads to the overall
objective

∑N
n=1 L̂θ,φ,ψ(xn,an) + U(X̂), defined over the

seen class labeled training inputs {(xn,an)}Nn=1 and the
unseen class unlabeled test inputs {x̂i}N ′

i=1.
Under our proposed framework, it is also straightforward

to perform few-shot learning (Lake et al. 2015; Vinyals et
al. 2016; Ravi et al. 2017) which refers to the setting when
a small number of labeled inputs may also be available for
classes c = S + 1, . . . , S + U . For these inputs, we can
directly optimize (6) on classes c = S + 1, . . . , S + U .

Related Work

Several prior methods for zero-shot learning (ZSL) are based
on embedding the inputs into a semantic vector space, where
nearest-neighbor methods can be applied to find the most
likely class, which is represented as a point in the same
semantic space (Socher et al. 2013; Norouzi et al. 2013).
Such approaches can largely be categorized into three types:
(i) methods that learn the projection from the input space
to the semantic space using either a linear regression or
a ranking model (Akata et al. 2015; Lampert et al. 2014),
or using a deep neural network(Socher et al. 2013); (ii)
methods that perform a “reverse” projection from the se-
mantic space to the input space(Zhang et al. 2016a), which
helps to reduce the hubness problem encountered when do-
ing nearest neighbor search at test time (Radovanović et al.
2010); and (iii) methods that learn a shared embedding space
for the inputs and the class attributes (Zhang et al. 2016b;
Changpinyo et al. 2016).

Another popular approach to ZSL is based on model-
ing each unseen class as a linear/convex combination of
seen classes (Norouzi et al. 2013), or of a set of shared
“abstract” or “basis” classes (Romera-Paredes et al. 2015;
Changpinyo et al. 2016). Our framework can be seen as a
flexible generalization to the latter type of models since the
parameters Wμ and Wσ defining the latent space distribu-
tions are shared by the seen and unseen classes.

One general issue in ZSL is the domain shift problem –
when the seen and unseen classes come from very different
domains. Standard ZSL models perform poorly under these
situations. However, utilizing some additional unlabeled data
from those unseen domains can somewhat alleviates the prob-
lem. To this end, (Kodirov et al. 2015) presented a transduc-
tive ZSL model which uses a dictionary-learning-based ap-
proach for learning unseen-class classifiers. In their approach,
the dictionary is adapted to the unseen-class domain using
the unlabeled test inputs from unseen classes. Other methods
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that can leverage unlabeled data include (Fu et al. 2015a;
Rohrbach et al. 2013; Li et al. 2015; Zhao et al. 2016). Our
model is robust to the domain shift problem due to its ability
to incorporate unlabeled data from unseen classes.

Somewhat similar to our VAE based approach, recently
(Kodirov et al. 2017) proposed a semantic autoencoder for
ZSL. However, their method does not have a proper genera-
tive model. Moreover, it assumes each class to be represented
as a fixed point and cannot extend to the transductive setting.

Deep encoder-decoder based models have recently gained
much attention for a variety of problems, ranging from
image generation (Rezende et al. 2016) and text match-
ing (Shen et al. 2017). A few recent works exploited
the idea of applying sematic regularization to the latent
embedding spaced shared between encoder and decoder
to make it suitable for ZSL tasks (Kodirov et al. 2017;
Tsai et al. 2017). However, these methods lack a proper
generative model; moreover (i) these methods assume each
class to be represented as a fixed point, and (ii) these meth-
ods cannot extend to the transductive setting. Variational
autoencoder (VAE) (Kingma et al. 2014b) offers an ele-
gant probabilistic framework to generate continues samples
from a latent gaussian distribution and its supervised exten-
sions (Kingma et al. 2014a) can be used in supervised and
semi-supervised tasks. However, supervised/semi-supervised
VAE (Kingma et al. 2014a) assumes all classes to be seen
at the training time and the label space p(y) to be discrete,
which makes it unsuitable for the ZSL setting. In contrast
to these methods, our approach is based on a deep genera-
tive framework using a supervised variant of VAE, treating
each class as a distribution in a latent space. This naturally
allows us to handle the intra-class variability. Moreover, the
supervised VAE model helps learning highly discriminative
representations of the inputs.

Some other recent works have explored the idea of
generative models for zero-shot learning (Li et al. 2017;
Verma et al. 2017). However, these are primarily based on
linear generative models, unlike our model which can learn
discriminative and highly nonlinear embeddings of the in-
puts. In our experiments, we have found this to lead to sig-
nificant improvements over linear models (Li et al. 2017;
Verma et al. 2017).

Deep generative models have also been proposed recently
for tasks involving learning from limited supervision, such
as one-shot learning (Rezende et al. 2016). These models
are primarily based on feedback and attention mechanisms.
However, while the goal of our work is to develop methods
to help recognize previously unseen classes, the focus of
methods such as (Rezende et al. 2016) is on tasks such as
generation, or learning from a very small number of labeled
examples. It will be interesting to combine the expressiveness
of such models within the context of ZSL.

Experiments
We evaluate our framework for ZSL on several benchmark
datasets and compare it with a number of state-of-the-art base-
lines. Specifically, we conduct our experiments on the follow-
ing datasets: (i) Animal with Attributes (AwA) (Lampert et al.
2014); (ii) Caltech-UCSD Birds-200-2011 (CUB-200) (Wah

et al. 2011); and (iii) SUN attribute (SUN) (Patterson et al.
2012). For the large-scale dataset (ImageNet), we follow (Fu
et al. 2016), for which 1000 classes from ILSVRC2012 (Rus-
sakovsky et al. 2015) are used as seen classes, while 360
non-overlapped classes of ILSVRC2010 (Deng et al. 2009)
are used as unseen classes. The statistics of these datasets are
listed in Table 1.

Dataset # Attribute training(+validation) testing
# of images # of classes # of images # of classes

AwA 85 24,295 40 6,180 10
CUB 312 8,855 150 2,933 50
SUN 102 14,140 707 200 10
ImageNet 1,000 200,000 1,000 54,000 360

Table 1: Summary of datasets used in the evaluation

In all our experiments, we consider VGG-19 fc7 features
(Simonyan et al. 2014) as our raw input representation, which
is a 4096-dimensional feature vector. For the semantic space,
we adopt the default class attribute features provided for
each of these datasets. The only exception is ImageNet, for
which the semantic word vector representation is obtained
from word2vec embeddings (Mikolov et al. 2013) trained
on a skip-gram text model on 4.6 million Wikipedia docu-
ments. For the reported experiments, we use the standard
train/test split for each dataset, as done in the prior work.
For hyper-parameter selection, we divide the training set
into training and validation set; the validation set is used for
hyper-parameter tuning, while setting λ = 1 across all our
experiments.

For the VAE model, a multi-layer perceptron (MLP) is used
for both encoder qφ(z|x) and decoder pθ(x|z). The encoder
and decoder are defined by an MLP with two hidden layers,
with 1000 nodes in each layer. ReLU is used as the nonlinear
activation function on each hidden layer and dropout with
constant rate 0.8 is used to avoid overfitting. The latent space
z was set to be 100 for small datasets and 500 for ImageNet.
Our results with variance are reported by repeating with 10
runs. Our model is written in Tensorflow and trained on
NVIDIA GTX TITAN X with 3072 cores and 11GB global
memory.

We compare our method (referred to as VZSL) with a vari-
ety of state-of-the-art baselines using VGG-19 fc7 features
and specifically we conduct our experiments on the following
tasks:
• Inductive ZSL: This is the standard ZSL setting where

the unseen class latent space distributions are learned using
only seen class data.

• Transductive ZSL: In this setting, we also use the unla-
beled test data while learning the unseen class latent space
distributions. Note that, while this setting has access to
more information about the unseen class, it is only through
unlabeled data.

• Few-Shot Learning: In this setting (Lake et al. 2015;
Vinyals et al. 2016; Ravi et al. 2017), we also use a small
number of labeled examples from each unseen class.
In addition, through a visualization experiment (using t-

SNE (Maaten et al. 2008)), we also illustrate our model’s
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Method AwA CUB-200 SUN Average Method ImageNet
(Lampert et al. 2014) 57.23 − 72.00 − DeViSE (Frome et al. 2013) 12.8
ESZSL (Romera-Paredes et al. 2015) 75.32± 2.28 − 82.10± 0.32 − ConSE (Norouzi et al. 2013) 15.5
MLZSC (Bucher et al. 2016) 77.32± 1.03 43.29± 0.38 84.41± 0.71 68.34 AMP (Fu et al. 2015b) 13.1
SDL (Zhang et al. 2016b) 80.46± 0.53 42.11± 0.55 83.83± 0.29 68.80 SS-Voc (Fu et al. 2016) 16.8
BiDiLEL (Wang et al. 2016a) 79.20 46.70 − −
SSE-ReLU (Zhang et al. 2015) 76.33± 0.83 30.41± 0.20 82.50± 1.32 63.08
JFA (Zhang et al. 2016a) 81.03± 0.88 46.48± 1.67 84.10± 1.51 70.53
SAE (Kodirov et al. 2017) 83.40 56.60 84.50 74.83
GFZSL (Verma et al. 2017) 80.83 56.53 86.50 74.59

VZSL# 84.45± 0.74 55.37± 0.59 85.75± 1.93 74.52 - 22.88
VZSL 85.28± 0.76 57.42± 0.63 86.75± 2.02 76.48 - 23.08

Table 2: Top-1 classification accuracy (%) on AwA, CUB-200, SUN and Top-5 accuracy(%) on ImageNet under inductive ZSL.
VZSL# denotes our model trained with the reconstruction term from (6) ignored.

behavior in terms its ability to separate the different classes
in the latent space.

Inductive ZSL

Table 2 shows our results for the inductive ZSL setting. The
results of the various baselines are taken from the correspond-
ing papers or reproduced using the publicly available imple-
mentations. From Table 2, we can see that: (i) our model
performs better than all the baselines, by a reasonable mar-
gin on the small-scale datasets; (ii) On large-scale datasets,
the margin of improvement is even more significant and we
outperform the best-performing state-of-the art baseline by
a margin of 37.4%; (iii) Our model is superior when includ-
ing the reconstruction term, which shows the effectiveness
of the generative model; (iv) Even without the reconstruc-
tion term, our model is comparable with most of the other
baselines. The effectiveness of our model can be attributed
to the following aspects. First, as compared to the methods
that embed the test inputs in the semantic space and then
find the most similar class by doing a Euclidean distance
based nearest neighbor search, or methods that are based on
constructing unseen class classified using a weighted combi-
nation of seen class classifiers (Zhang et al. 2015), our model
finds the "most probable class" by computing the distance of
each test input from class distributions. This naturally takes
into account the shape (possibly multi-modal) and spread
of the class distribution. Second, the reconstruction term in
the VAE formulation further strengthens the model. It helps
leverage the intrinsic structure of the inputs while projecting
them to the latent space. This aspect has been shown to also
help other methods such as (Kodirov et al. 2017) (which we
use as one of the baseline), but the approach in (Kodirov et al.
2017) lacks a generative model. This explains the favorable
performance of our model as compared to such methods.

Transductive ZSL

Our next set of experiments consider the transductive set-
ting. Table 3 reports our results for the transductive setting,
where we compare with various state-of-the-art baselines that
are designed to work in the transductive setting. As Table 3
shows, our model again outperforms the other state-of-the-art
methods by a significant margin. We observe that the gen-
erative framework is able to effectively leverage unlabeled
data and significantly improve upon the results of inductive
setting. On average, we obtain about 8% better accuracies

Method AwA CUB-200 SUN Average
SMS (Guo et al. 2016) 78.47 − 82.00 −
ESZSL (Romera-Paredes et al. 2015) 84.30 − 37.50 −
JFA+SP-ZSR (Zhang et al. 2016a) 88.04± 0.69 55.81± 1.37 85.35± 1.56 77.85
SDL (Zhang et al. 2016b) 92.08± 0.14 55.34± 0.77 86.12± 0.99 76.40
DMaP (Li et al. 2017) 85.66 61.79 − −
TASTE (Yu et al. 2017a) 89.74 54.25 − −
TSTD (Yu et al. 2017b) 90.30 58.20 − −
GFZSL (Verma et al. 2017) 94.25 63.66 87.00 80.63

VZSL# 93.49± 0.54 59.69± 1.22 86.37± 1.88 79.85
VZSL� 87.59± 0.21 61.44± 0.98 86.66± 1.67 77.56
VZSL 94.80± 0.17 66.45± 0.88 87.75± 1.43 83.00

Table 3: Top-1 classification accuracy (%) obtained on AwA,
CUB-200 and SUN under transductive setting. VZSL# de-
notes our model with VAE reconstruction term ignored.
VZSL� denotes our model with only Eq (8) for unlabeled
data. The ’-’ indicates the results was not reported

as compared to the inductive setting. Also note that in some
cases, such as CUB-200, the classification accuracies drop
significantly once we remove the VAE reconstruction term. A
possible explanation to this behavior is that the CUB-200 is
a relative difficult dataset with many classes are very similar
to each other, and the inductive setting may not achieve very
confident predictions on the unseen class examples during the
inductive pre-training process. However, adding the recon-
struction term back into the model significantly improves the
accuracies. Further, compare our entire model with the one
having only (8) for the unlabeled, there is a margin for about
5% on AwA and CUB-200, which indicates the necessity of
introduced KL term on unlabeled data.

Few-Shot Learning (FSL)

In this section, we report results on the task of FSL (Salakhut-
dinov et al. 2013; Mensink et al. 2014) and transductive FSL
(Frome et al. 2013) (Socher et al. 2013). In contrast to stan-
dard ZSL, FSL allows leveraging a few labeled inputs from
the unseen classes, while the transductive FSL additionally
also allows leveraging unseen class unlabeled test inputs. To
see the effect of knowledge transfer from the seen classes,
we use a multiclass SVM as a baseline that is provided the
same number of labeled examples from each unseen class. In
this setting, we vary the number of labeled examples from
2 to 20 (for SUN, we only use 2, 5 and 10 due to the small
number of labeled examples). In Figure 3, we also compared
with standard inductive ZSL which does not have access to
the labeled examples from the unseen classes. Our results are
shown in Figure 3.
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Figure 2: t-SNE visualization for AwA dataset (a) Original CNN features (b) Latent code for our VZSL under inductive zero-shot
setting (c) Reconstructed features under inductive zero-shot setting (d) Latent code for our VZSL under transductive zero-shot
setting (e) Reconstructed features under transductive setting. Different colors indicate different classes.
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Figure 3: Accuracies (%) in FSL setting: For each data set,
results are reported using 2,5,10,15,20 labeled examples for
each unseen class

As can be seen, even with as few as 2 or 5 additional la-
beled examples per class, the FSL significantly improves over
ZSL. We also observe that the FSL outperform a multiclass
SVM which demonstrates the advantage of the knowledge
transfer from the seen class data. Table 4 reports our results
for the transductive FSL setting where we compare with other
state-of-the-art baselines. In this setting too, our approach
outperforms the baselines.

Table 4: Transductive few-shot recognition comparison us-
ing top-1 classification accuracy (%). For each test class, 3
images are randomly labeled, while the rest are unlabeled

Method AwA CUB-200 Average
DeViSE (Frome et al. 2013) 92.60 57.50 75.05
CMT (Socher et al. 2013) 90.60 62.50 76.55
ReViSE (Tsai et al. 2017) 94.20 68.40 81.30

VZSL 95.62± 0.24 68.85± 0.69 82.24

t-SNE Visualization

To show the model’s ability to learn highly discriminative
representations in the latent embedding space, we perform a
visualization experiment. Figure 2 shows the t-SNE (Maaten
et al. 2008) visualization for the raw inputs, the learn latent
embeddings, and the reconstructed inputs on AwA dataset,
for both inductive ZSL and transductive ZSL setting.

As can be seen, both the reconstructions and the latent
embeddings lead to reasonably separated classes, which in-
dicates that our generative model is able to learn a highly
discriminative latent representations. We also observe that
the inherent correlation between classes might change after
we learn the latent embeddings of the inputs. For example,
"giant+panda" is close to "persian+cat" in the original CNN

features space but far away from each other in our learned la-
tent space under transductive setting. A possible explanation
could be that the sematic features and image features ex-
press information from different views and our model learns
a representation that is sort of a compromise of these two
representations.

Conclusion

We have presented a deep generative framework for learning
to predict unseen classes, focusing on inductive and
transductive zero-shot learning (ZSL). In contrast to most
of the existing methods for ZSL, our framework models
each seen/unseen class using a class-specific latent-space
distribution and also models each input using a VAE-based
decoder model. Prediction for the label of a test input from
any unseen class is done by matching the VAE posterior
distribution for the latent representation of this input with the
latent-space distributions of each of the unseen class. This
distribution matching method in the latent space provides
more robustness as compared to other existing ZSL methods
that simply use a point-based Euclidean distance metric. Our
VAE based framework leverages the intrinsic structure of
the input space through the generative model. Moreover, we
naturally extend our model to the transductive setting by
introducing an additional regularizer for the unlabeled inputs
from unseen classes. We demonstrate through extensive
experiments that our generative framework yields superior
classification accuracies as compared to existing ZSL
methods, on both inductive ZSL as well as transductive
ZSL tasks. Finally, although we use isotropic Gaussian to
model each model each seen/unseen class, it is possible to
model with more general Gaussian or any other distribution
depending on the data type. We leave this possibility as a
direction for future work.
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