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Abstract

A biologically plausible neural network model named Per-
ception Coordination Network (PCN) is proposed for online
multi-modal concept acquisition and binding. It is a hierar-
chical structure inspired by the structure of the brain, and
functionally divided into the primary sensory area (PSA), the
primary sensory association area (SAA), and the higher or-
der association area (HAA). The PSA processes many ele-
mentary features, e.g., colors, shapes, syllables, and basic fla-
vors, etc. The SAA combines these elementary features to
represent the unimodal concept of an object, e.g., the image,
name and taste of an apple, etc. The HAA connects several
primary sensory association areas like a function of synaes-
thesia, which means associating the image, name and taste
of an object. PCN is able to continuously acquire and bind
multi-modal concepts in an online way. Experimental results
suggest that PCN can handle the multi-modal concept acqui-
sition and binding problem effectively.

Introduction

The brain is a hierarchical structure with many function
specific modules. For example, neurons which are tuned
to a particular color (Livingstone and Hubel 1988), shape
(Hegdé and Essen 2000), basic flavor (de Araujo and Si-
mon 2009), and phoneme (Mesgarani et al. 2014) are widely
found. These low-level feature neurons can correspond to
the bottom layer of the brain hierarchy of perception. Then,
neurons that respond selectively to particular visual object
(Kobatake and Tanaka 1994) and word (Chan et al. 2014) are
also discovered. We call them concept neurons here, which
can be corresponded to the middle layer of the brain hierar-
chy of perception. Neurons that respond selectively to rep-
resentations of the same individual across different sensory
modalities including vision and audition are detected in the
human medial temporal lobe (Quiroga 2012). It is a kind of
multi-modal response neuron, which corresponds to the top
layer of the brain hierarchy of perception. We name these
neurons associated neurons. Fig. 1 gives the visual, audi-
tory, gustatory, and olfactory pathways in the brain. The per-
ception in the back of the pathway synthesizes the percep-
tion in the front of the pathway, i.e., the sensation becomes
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complicated through its pathway. Different sensations inter-
act with each other through the areas where different sen-
sory pathways converge. Obviously, such brain structure is

Figure 1: Hierarchical and modularized perception pathway
in the brain.

efficient and convenient for multi-modal concept acquisition
and binding. In (Fuster 1997), an example of concept acqui-
sition and association between vision and touch at the cellu-
lar level is given. The explanation is based on the Hebbian
theory, which is summarized as “cells that fire together, wire
together”. As shown in Fig. 2, when a visual and a tactile
signal stimulate the network synchronously, a cell-assembly
will be formed quickly by the facilitated synapses to asso-
ciate the visual and tactile sense.

Inspired by the brain’s hierarchical structure and the coor-
dination between different functional modules in the struc-
ture, a Perception Coordination Network (PCN) is proposed
to handle multi-modal concept acquisition and binding be-
tween different sensory modules. Briefly, the main contribu-
tions are as follows,

(1) Different types of neurons with particular compu-
tational models are defined, which makes the hierarchical
structure of PCN have a good interpretability.

(2) Through creating of connections between neurons,
PCN learns new concepts and bindings without forgetting
of already learned concepts and bindings.
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Figure 2: Sensory association at the cellular level. 1. Two
visual inputs coincide in time. 2. Passive long-term memory
formed by the facilitated synapses generated during step 1,
marked in red. 3. One of the visual inputs activates the sub-
network in step 2. 4. A visual and a tactile input coincide.
5. A bimodal network of long-term memory formed by the
facilitated synapses generated during step 4, marked in red.
6. The tactile stimulus activates the bimodal network. The
figure is reproduced from (Fuster 1997).

Related Work

Many scholars study in sensory integration and multi-modal
concept acquisition. In (Schyns 1991), a modular neural
network is proposed for concept acquisition, where a self-
organizing map (SOM) is used to build concept prototype
and a brain-state-in-a-box is used to associate concept names
to the output of the SOM. In (Yamauchi, Oota, and Ishii
1999), several neural network modules are fused by some
integrating units. The network is able to learn categories
of objects by integrating information from several sensors.
In (Jantvik, Gustafsson, and Papliński 2011), a multi-modal
self-organizing network (MMSON) is proposed for sensory
integration with several SOM modules. Positional coordi-
nates of unimodal SOM which receives sensory data are
fused by a high level SOM.

In (Nakamura, Nagai, and Iwahashi 2011), a bag of mul-
timodal latent Dirichlet allocation (LDA) is introduced for
sensory integration. The bag includes an object categories
LDA, a color categories LDA, and a haptic categories LDA.
In (Araki et al. 2011), an improved version of multimodal
LDA is proposed. When a new object comes to the system,
Gibbs sampling is carried out to the new input data itera-
tively until convergence.

In (Ngiam et al. 2011), a bimodal deep belief network
(DBN) is trained to learn a shared representation of visual
and auditory input. Firstly, a top restricted Boltzmann ma-
chine (RBM) over the pre-trained layers for each modality is
used to generate a shared representation of bimodal features.
Then, a bimodal deep autoencoder is trained which is ini-
tialized with the bimodal DBN weights. Similar approaches
are proposed in (Srivastava and Salakhutdinov 2014), which
learn joint representation between text features and image
features.

In (Parde et al. 2015) and (Thomason et al. 2016), the

meaning of words are grounded in visual features by con-
versations between users and robot. A initial learning phase
is needed which leads to the methods cannot deal with words
grounding in an totally online incremental way.

Most of the methods above do not have an ability to learn
new concepts or new bindings in an online incremental way.
But new concepts and bindings always occur in real world.
Thus, a better learning system should be able to learn new
concepts and bindings continuously, like humans are able
to learn new objects and its name without forgetting the
previously learned ones throughout their lifetimes. Unfortu-
nately, many learning systems suffer the stability-plasticity
dilemma (Carpenter and Grossberg 1988), which means they
either cannot learn new knowledge after a period of learn-
ing or cannot learn new knowledge quickly without catas-
trophic forgetting of already learned knowledge. Taking
this problem as a target, many online incremental methods
for sensory integration are proposed. In (He, Kojima, and
Hasegawa 2007), an incremental knowledge robot 1 (IKR1)
for word grounding is proposed, where a self-organizing in-
cremental neural network (SOINN) (Shen and Hasegawa
2006) handles the visual module and a vector-quantization
(VQ) (Gersho and Gray 1992) system is in charge of the au-
ditory module for words. Integration of words and objects is
achieved by associations between SOINN and VQ system.
In (Meng, Tan, and Xu 2014), a generalized heterogeneous
fusion adaptive resonance theory (GHF-ART) is proposed. It
develops the ART (Carpenter and Grossberg 1988) to multi-
channel model and can be used for fusion of multi-modal
features such as visual and textual features.

Perception Coordination Network

Fig. 3 gives the structure of the PCN. It is a hierarchical
structure and functionally divided into the primary sensory
area (PSA), the primary sensory association area (SAA), and
the higher order association area (HAA). There are three
types of neurons including feature neurons, primary con-
cept neurons, and associated neurons, which perform dif-
ferent functions. External stimulus is categorized into order
independent stimulus (OIDS) and order dependent stimulus
(ODS). Note that the figure only takes vision (OIDS) and
audition (ODS) for example, other sensations can be also
involved in the structure. In the following, we first give an
overview of the network structure. Then, we give the learn-
ing process of the PCN.

Network Structure

Primary Sensory Area (PSA): The PSA includes “feature
neurons”, which respond to particular features, e.g., color
feature, shape feature, or syllable feature, see the bottom
layer in Fig. 3. Feature neurons which respond to the same
type feature are located in the same area α and we use set
NFα to store them. As mentioned above, α can be the color
area, the shape area, or the syllable area. NFα

i is used to de-
note feature neuron i and NFα

i � {wi, σi}, where wi and
σi represent the weights and the activation times of NFα

i

respectively. The activating domains of NFα
i are defined as
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Figure 3: Structure of the Perception Coordination Network.

follows,
ADs(NFα

i ) � {x | ‖x−wi‖ ≤ θ} (1)

Where θ is a parameter that controls the response range of
the ADs.
Primary Sensory Association Area (SAA): The SAA in-
cludes “primary concept neurons”, which connect the fea-
ture neurons to represent a unimodal concept, e.g., to form
visual concepts by connecting shape and color feature neu-
rons, to form auditory concepts such as words by connecting
syllable feature neurons, see the middle layer in Fig. 3. Con-
cept neurons in a sensory association area β are stored in
set NCβ , β can be the visual association area v, auditory as-
sociation area a or other sensory association area. NCβ

i is
used to denote concept neuron i in area β. The connection
between a concept neuron N

Cβ

i and a feature neuron NFα
j

is defined as follows,

c(i,j) � {NCβ

i , NFα
j , ρ(i,j)} (2)

Where ρ(i,j) is the cumulative activation times of the con-
nection. And α represents the feature areas that the sensory
association area β connects. The activating domains of NCβ

i
is the activations of the feature neurons that it connects. The
external stimulus is divided into two types, which are Type
I. Order InDependent Stimulus (OIDS); and Type II. Order
Dependent Stimulus (ODS). For example, different visual
features of an object belong to the OIDS. Because differ-
ent orders of visual features, such as color and shape, do
not affect the activation of their corresponding visual con-
cept; The syllables contained in a voice wave belong to the
ODS. Because different orders of the same group of sylla-
bles may refer to different concepts such as the words “[bō
luó]” and “[luó bō]”. Correspondingly, two kinds of activat-
ing domains of the concept neurons are defined as follows,

ADs(N
Cβ

i ) �
{
(
−−−−−−−−−−−−−→
NFα

1 , NFα
2 , ..., NFα

n ), ODS
(NFα

1 , NFα
2 , ..., NFα

n ), OIDS
(3)

Where feature neurons NFα
1 , NFα

2 , ..., NFα
n connect the

concept neuron N
Cβ

i . The arrow over the vector means
N

Cβ

i can be fired only by the firing of NFα
1 , NFα

2 , ..., NFα
n

through this direction.
Higher Order Association Area (HAA): The HAA in-
cludes “associated neurons”, which connect primary concept
neurons in different SAA, see the top layer in Fig. 3. Associ-
ated neurons are stored in set NA and NA

i is used to denote
associated neuron i. The connection between a concept neu-
ron N

Cβ
m and another concept neuron N

Cβ
n through NA

i is
defined as follows,

c(m,i,n) � {NCβ
m , NA

i , N
Cβ
n , ρ(m,i,n)} (4)

Where N
Cβ
m and N

Cβ
n come from different PSA, e.g., NCβ

m

can be a visual concept neuron and N
Cβ
n can be an auditory

concept neuron, then a view and a name of an object are
associated. ρ(m,i,n) is the cumulative activation times of the
connection. The activating domains of NA

i is the primary
concept neurons that NA

i connects, i.e.,

ADs(NA
i ) � {NCβ

1 , N
Cβ

2 , ..., N
Cβ
n } (5)

Note that the ADs of the associated neuron is a set of pri-
mary concept neurons, it means any concept neurons in the
set can activate it, i.e., the associated neuron has a multi-
modality activation mode.

Learning Process

The overall learning process of the PCN is as follows: When
a pair of sample comes, e.g., a pair of visual and auditory
input, the PSA will first extract features. Then competitive
learning is conducted and firing neurons will transmit acti-
vated signals to the SAA. After the SAA gets the signals,
competition among concept neurons will be executed to ac-
tivate some concept neurons and the activated signals are
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transmitted to the HAA, meanwhile the SAA is updated.
When the HAA receives the signals, an unconscious impulse
process will be triggered firstly, which uses one channel’s
signal to wake its corresponding concepts in other channels.
Then an introspection process is conducted, which aims to
check the consistency between the current input pair and the
learned knowledge from the past input pairs. Finally, the
SAA will be updated according to the results of the intro-
spection process. Now the process for the current input fin-
ishes, and PCN will go to the next input. In the following,
we use a pair of vision (image of an object) and audition
(name of an object) input to describe the method in detail.
Primary Sensory Area: Currently, the normalized Fourier
descriptors d of the object’s boundary and the color his-
togram g of the object’s area are used for visual features.
The Mel-Frequency Cepstral Coefficients m of a syllable
are used for the auditory features, where short-time energy
and short-time zero crossing are used to extract syllables in
an input word. After feature extraction, competitive learning
is executed. First, a winner neuron in each area α is found
as follows,

NFα
f = argmin

N
Fα
i ∈NFα

‖x−wi‖, where α ∈ {b, c, s} (6)

Where x is the feature vector such as d, g and m. wi is the
weights of feature neuron i. ‖ · ‖ is the distance function, for
vision Euclidean distance is used and for audition dynamic
time warping is used. The superscribe Fb, Fc and Fs rep-
resent the shape, color and syllable PSA respectively. If x
belongs to the ADs of neuron NFα

f , i.e., ‖x−wf‖ ≤ θ, the
weights of NFα

f are updated as follows,

σf = σf + 1; wf = wf + (x−wf )/σf
1 (7)

Then NFα

f is activated. If x does not belong to the ADs of
NFα

f , a new neuron NFα
new will be created for x, i.e.,

NFα
new = {x, 1}, where α ∈ {b, c, s} (8)

Then NFα
new is activated. Finally, the activated signals of the

firing feature neurons are transmitted to the their corre-
sponding SAA: For vision, (N

Fb
fb

, NFc
fc

)
Signal−−−→ Visual SAA,

where NFb

fb
and NFc

fc
represent the activated neurons in

the shape area and color area respectively. For audition,
(
−−−−−−−−−−−−−→
NFs

f1
, NFs

f2
, ..., NFs

fk
)

Signal−−−→ Auditory SAA, where NFs

fk
is the

k-th firing syllable feature neuron, and k is the syllable num-
ber of the input word.
Primary Sensory Association Area: In the SAA, the re-
ceived signals are firstly checked whether equal to any con-
cept neuron’s ADs, i.e., to solve the following equations,

ADs(NCv
i ) = (N

Fb
fb

, NFc
fc

), NCv
i ∈ NCv (9)

ADs(NCa
i ) = (

−−−−−−−−−−−−−→
NFs

f1
, NFs

f2
, ..., NFs

fk
), NCa

i ∈ NCa (10)

Where NCv and NCa represent the visual concept neuron
set and auditory concept neuron set respectively. If some

1The dimension of the weights of different syllable feature neu-
rons is usually not same, so we do not update them using this way.

concept neurons NCv

fv
and NCa

fa
are found by Eq. 9 and

Eq. 10 respectively, then NCv

fv
and NCa

fa
are activated and

the activation times of the connections between the con-
cept neurons and the feature neurons will increase, i.e.,
ρ(fv,fb) = ρ(fv,fb)+1, ρ(fv,fc) = ρ(fv,fc)+1, and ρ(fa,fi) =
ρ(fa,fi)+1, where 1 ≤ i ≤ k. If no concept neuron is found
according to Eq. 9 or Eq. 10, new concept neuron NCv

new or
NCa

new will be created as follows,

For vision: ADs(NCv
new ) = (N

Fb
fb

, NFc
fc

) (11)

For audition: ADs(NCa
new ) = (

−−−−−−−−−−−−−→
NFs

f1
, NFs

f2
, ..., NFs

fk
) (12)

And connections of the new neuron are created as follows,

c(fv,fb) = {NCv
fv

, N
Fb
fb

, 1}; c(fv,fc) = {NCv
fv

, NFc
fc

, 1} (13)

c(fa,fi) = {NCa
fa

, NFs
fi

, 1}, where 1 ≤ i ≤ k (14)

Then the new established neurons are activated. Finally,
the activated signals are transmitted to the HAA, i.e.,
(NCv

fv
, NCa

fa
)

Signal−−−→ HAA, where NCv

fv
and NCa

fa
represent the

activated neurons in visual and auditory SAA.
Higher Order Association Area: When HAA receives sig-
nal (NCv

fv
, NCa

fa
), an unconscious impulse process will be

triggered firstly.
Taking the vision as the start point, to find the associated

neuron which connects NCv

fv
by solving the following equa-

tion,
NCv

fv
∈ ADs(NA

i ), where NA
i ∈ NA (15)

Assuming associated neuron NA
vf is found, then the neuron

is activated, and the primary auditory concept neurons that
connect NA

vf will be unconsciously activated, which are

NCa
u = {NCa

i | NCa
i ∈ ADs(NA

vf )} (16)

Where set NCa
u is used to store these primary auditory con-

cept neurons.
Meanwhile, taking the audition as the start point, find the

associated neuron which connects NCa

fa
as follows,

NCa
fa

∈ ADs(NA
i ), where NA

i ∈ NA (17)

Assuming associated neuron NA
af is found, and the primary

visual concept neurons that connect NA
af will be uncon-

sciously activated, which are

NCv
u = {NCv

i | NCv
i ∈ ADs(NA

af )} (18)

Where set NCv
u is used to store these primary visual concept

neurons.
After the unconscious impulse process, an introspection

process will be executed. This process is divided into four
conditions based on the results of the unconscious impulse.

(a) If some associated neuron NA
af is found through

Eq. 17 and no associated neuron is found through Eq. 15,
it means that the view of the object is new to PCN, but the
voice is met by PCN which may be used to call some other
views. The current visual input should be like the views sym-
bolized by the primary concept neurons in set NCv

u accord-
ing to the current input voice. Therefore, PCN will enquire:
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“The name NCa

fa
can also represent this view?” Then an ex-

ternal signal γ from users is needed to help making judg-
ment. When γ = 1, which means the new view is also called
NCa

fa
, then NCv

fv
is added to the ADs of NA

af ,

ADs(NA
af ) = ADs(NA

af ) ∪NCv
fv

(19)

And the connection between NCv

fv
and NCa

fa
will be created

as follows,

c(fv,af,fa) = {NCv
fv

, NA
af , N

Ca
fa

, 1} (20)

When γ = 0, it means the current view is not called NCa

fa
.

Then a new associated neuron will be created to connect
NCv

fv
but without connecting any name, i.e.,

ADs(NA
new) = {NCv

fv
} (21)

(b) If some associated neuron NA
vf is found through

Eq. 15 and no associated neuron is found through Eq. 17, it
means the current input voice is new to PCN, but the view of
the current object is met before. The object should be called
with the voices symbolized by the primary auditory concept
neurons in set NCa

u if NCa
u is not empty. Then PCN will en-

quire: “This object is called NCa
u previously. Is it also named

NCa

fa
?” Then an external signal γ is needed. When γ = 1,

which means the object is also called NCa

fa
, PCN will put

NCa

fa
into the ADs of NA

vf ,

ADs(NA
vf ) = ADs(NA

vf ) ∪NCa
fa

(22)

Meanwhile, the connection between this new combination
will be created as follows,

c(fv,vf,fa) = {NCv
fv

, NA
vf , N

Ca
fa

, 1} (23)

When γ = 0, which means the object is not called NCa

fa
, the

primary auditory concept neuron NCa

fa
will be rejected by

the network.
(c) If some associated neuron NA

vf and NA
af are found

through Eq. 15 and Eq. 17, it means PCN has seen the
object and heard the voice. The coherence between cur-
rent vision and audition input should be checked firstly. If
NA

vf = NA
af , it means NCv

fv
and NCa

fa
activate the same as-

sociated neuron. The current input pair is consistent with
previous pattern combinations. Then the activity of the con-
nection between NCv

fv
and NCa

fa
through the associated neu-

ron NA
vf will be increased to strengthen the association, i.e.,

ρ(fv,vf,fa) = ρ(fv,vf,fa) + 1. If NCv

fv
and NCa

fa
activate dif-

ferent associated neurons, i.e., NA
vf �= NA

af , it means the
current combinations between NCv

fv
and NCa

fa
is inconsistent

with some previous combinations. PCN will enquire to the
user to get an answer γ. When γ = 1, which means the view
of the object and the name is an expected combination, then
NCv

fv
and NCa

fa
are added to the ADs of NA

af and NA
vf ,

ADs(NA
vf ) = ADs(NA

vf ) ∪NCa
fa

ADs(NA
af ) = ADs(NA

af ) ∪NCv
fv

(24)

And the connections between the new combinations will be
created as follows,

c(fv,vf,fa) = {NCv
fv

, NA
vf , N

Ca
fa

, 1}
c(fv,af,fa) = {NCv

fv
, NA

af , N
Ca
fa

, 1}
(25)

When γ = 0, it means the combination is not expected,
and no operation will be done by PCN.

(d) If no associated neurons are found through Eq. 15 and
Eq. 17, it means the combination of NCv

fv
and NCa

fa
has not

been met before. And a new associated neuron NA
new will be

created to associate this combination as follows,
ADs(NA

new) = {NCv
fv

, NCa
fa

} (26)

And the connection between NCv

fv
and NCa

fa
through NA

new
will be created as follows,

c(fv,new,fa) = {NCv
fv

, NA
new, N

Ca
fa

, 1} (27)

After the introspection process, the learning for current
input finishes. PCN will go to the next input. Algorithm 1
summarizes the learning process.

Algorithm 1 Perception Coordination Network
Initialize: Set the value of parameter θ.

1: Receive a pair of image (OIDS) and name (ODS) of an
object.

2: PSA: Extract features from image and voice. Execute
competitive learning for the feature, formula (6) to (8).

3: SAA: Execute concept learning procedure, formula (9)
to (14).

4: HAA: Execute unconscious impulse process an intro-
spection process, formula (15) to (27).

5: Waiting for the next input pair and go to Step 1.

Experiments

The concept acquisition and binding among vision, audition,
and gustation are conducted. 20 common fruits and foods
are used. Because we do not have real taste data, an artificial
taste data set is designed. The data format is a 6-dimensional
vector which is (sweet, sour, salt, bitter, umami, hot). The
value of each attribute is in the range [0, 1]. For example,
we design the taste of apple as follows, the values of sweet
and sour are uniformly distributed in the range [0.5, 0.6] and
[0, 0.1] respectively, other attributes are 0. During the learn-
ing experiment, we let PCN learn objects’ views, names and
tastes. Firstly, an object is put in front of a camera. Then the
audition program is started and the name of the object is pro-
nounced by the user. At the same time, the vision program
captures the images of the object. When the pronunciation
is finished, the audition program is closed. And the current
round of learning of the object’s name finishes. Then we go
to the next round. When all objects’ image-name learning
are finished, we give the taste data of each object to PCN
with the image of the object simultaneously to make PCN
learn the object’s taste2.

2Algorithm of the gustatory module is similar with that of the
visual module, because they both are OIDS channel.
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Figure 4: Objects used in the experiment.

We conduct the experiment in two environments, which
are (1) Closed environment; and (2) Open-ended environ-
ment (for the stability-plasticity dilemma). In the closed en-
vironment, object is randomly chosen from the 20 objects
in each round of learning. In the open-ended environment,
we first let the methods learn 10 objects. In each round of
learning, object is randomly chosen. After that, we give the
methods the remaining 10 “new” objects in the second learn-
ing period. Similarly, in each round of learning, object is
also randomly chosen. We conduct the experiment 30 times
in both closed and open-ended environment, each time con-
tains 352 rounds of image-name and image-taste learning for
20 objects. Fig. 4 shows examples of the objects. There are
some voices with the same syllables but in different order re-
ferring to different objects (Order Dependent Stimulus), e.g.,
“[bō luó]” and “[luó bō]”. There are also different voices re-
ferring to the same object, e.g., “[pı́ng guǒ]” and “[zhı̀ huı̀
guǒ]”.

We compare PCN with the IKR1 system (He, Kojima,
and Hasegawa 2007), MMSOM (Jantvik, Gustafsson, and
Papliński 2011) and GHF-ART (Meng, Tan, and Xu 2014).
The MMSOM deals with visual-audio fusion, however, it
is not an incremental method which cannot handle the
stability-plasticity dilemma. The IKR1 system and GHF-
ART are incremental method. They handle word grounding
and multi-modal feature fusion in an online way. Because
IKR1 system and MMSOM only give a vision-audition bi-
modal system, we only let them learn visual and auditory
data. GHF-ART does not give a fuzzy operation for audi-
tory information with different dimensions, we let GHF-
ART learn visual and gustatory data. For visual, auditory and
gustatory module, parameter θ of PCN is set as 1/4 times the
2-norm of the weight vector of the feature neurons, 200 and
0.05 respectively. The parameters of the comparison meth-
ods are set following the authors’ suggestions.

Learning Results

During the 60 times experiments, PCN learns 71 to 77 shape
feature neurons, 33 to 39 color feature neurons, 71 to 77 vi-
sual concept neurons; 221 to 228 syllable neurons, 130 to
137 auditory concept neurons; 34 to 36 basic flavor neurons,
52 to 59 gustatory concept neurons; and 60 to 62 associated
neurons. An average of 89 questions are asked during learn-
ing. About 85 questions are related to different names of
the same object, user’s answer is positive. The other about 4

questions are caused by visual and auditory erroneous judge-
ments. Thus, user’s answer is negative.

Fig. 5(a) gives some examples of the learning results. It
can be found that PCN correctly acquires these concepts
and properly binds them. For a more detailed observation,
Fig. 5(b) and Fig. 5(c) gives two examples of learned struc-
ture of the concept apple and pear. The associated neuron
connects the concept neurons in visual, auditory, and gus-
tatory areas. The visual concept neuron connects the shape
and color feature neurons. The auditory concept neuron con-
nects a series of syllable feature neurons. The gustatory con-
cept neuron connects basic flavor feature neurons. Probabil-
ities of connections between visual concept neuron and each
auditory concept neuron through the associated neuron in
Fig. 5(b) are both 0.5, because the we say “[pı́ng guǒ]” and
“[zhı̀ huı̀ guǒ]” with equal probability during experiments.
Other probabilities of the connections are gained in a simi-
lar way.

Interestingly, the name and the taste of the objects are
linked together automatically through the associated neuron,
while the name and taste data were not given to the sys-
tem simultaneously during learning. It means PCN is able to
make sensory channels coordinate automatically. This is an
advantage of PCN’s network structure.

Testing Results

To test the model learned by PCN, we use one kind of
sensory input to recall other two kinds of sensory output,
e.g., the visual input recalls the auditory and gustatory out-
put. Because IKR1 and MMSOM learn a vision-audition
bimodal result, we only do vision and audition recall each
other. GHF-ART learns visual and gustatory data, we do vi-
sion and gustation recalling. Testing is conducted after each
time of learning. In each time of testing, 528 rounds of re-
calling (176 rounds for each type of recall) are executed with
different data from the learning experiment. Table 1 shows
that PCN recalls “memories” with a much higher accuracy
than other methods. The accuracy of IKR1 and MMSOM is
very unstable, which has a gap about 5% and 15% between
two learning environments. We find that MMSOM cannot
learn new objects after a period of learning. Thus, the drop
of the accuracy mainly dues to the recognition of the latter
10 “new” objects. IKR1 usually “forgets” previously learned
objects when the 10 “new” objects come. Thus, the drop of
the accuracy mainly dues to the recognition of the previous
10 “old” objects. The accuracy of PCN is much higher and
more stable in both environments.

Experiment Summary

Compared with PCN, IKR1, MMSOM and GHF-ART lack
a layer with a function of PCN’s SAA. It makes them can-
not combine features freely, such as assigning different or-
ders of the same syllables to different objects (because they
take the word not the syllable as a unit), which is success-
fully achieved by PCN. This means PCN reuses features in
a much better way. The unconscious impulse and introspec-
tion process in the HAA make PCN can communicate with
users to check whether there is any contradiction, then up-
date the network according to users’ answers, while IKR1,
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Figure 5: Learning results. (a) Ten examples of the associations of learned visual, auditory, and gustatory concepts. (b) and
(c) Example of the network structure of the concept apple and pear including view, taste and name. Icons next to the neurons
represent the objects to which the neurons maximally respond.

Table 1: Statistical results of the testing experiments (mean+std). N/A represents the testing condition is Not Applicable for the
method. Significant decrease of the accuracy is marked by ↓. The best results are in bold. V: Vision, A: Audition, G: Gustation.

V recalls Other A recalls Other G recalls Other

Closed
environment

IKR1 69.10±4.17% ↓ 63.48±3.52% ↓ N/A
GHF-ART 81.92±3.16% N/A 85.11±2.17%
MMSON 76.31±4.25% 65.41±5.27% N/A
PCN 83.98±3.02% 86.24±3.30% 90.35±2.74%

Open-ended
environment

IKR1 75.71±4.22% 70.57±5.25% N/A
GHF-ART 82.07±3.18% N/A 86.40±2.01%
MMSON 63.64±4.04% ↓ 50.11±3.53% ↓ N/A
PCN 84.83±3.26% 88.07±2.78% 92.09±2.16%

MMSOM and GHF-ART are lack of such a function in their
association areas. Through building new connections and
neurons, PCN can handle the stability-plasticity dilemma
very well, while IKR1 and MMSOM cannot. Overall, the
structure of PCN is much more flexible and has a much
stronger plasticity than other methods.

Conclusion

We propose a Perception Coordination Network (PCN) for
online multi-modal concept acquisition and binding. Three
types of neurons, which are in charge of different functions,
are modeled and embed to a hierarchical structure network.
Meanwhile, PCN is able to learn new concepts and bindings
through creating new connections between neurons. Exper-
imental results in both closed environment and open-ended
environment demonstrate that PCN works effectively.

In the future, horizontal connections in each area will be
developed. The framework will be combined with other fea-
tures to make a more robust perception. Finally, as Simon’s

analysis that the hierarchic system is helpful to evolution
(Simon 1962), we will enable PCN a sense augment abil-
ity to solve the perception evolution problem (Xing, Shen,
and Zhao 2013; 2015; 2016; Xing 2016).
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